首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Nishiya I 《Human cell》1998,11(3):109-114
The aim of our cell kinetic studies is to better understand the effects of chemo-endocrine therapy at the cell biological and molecular level. Cancer cell growth is characterized by uncontrolled proliferation, resulting in DNA distribution pattern in which, at any time, more cells are not G1 phase but in S, G2 and M phase of a shortened cycle. In a recent progress, flow cytometry (FCM) has become a powerful tool for the quantitative analysis of cell cycle parameters by measuring nuclear DNA content in large cell population with high speed. With the aid of FCM in earlier work about 60-80% of ovarian cancers were found to contain aneuploid cells. Now, multi-parameter FCM linked to a computer is available to measure fluorescent intensities not only no base total DNA (Propidium iodide) but also A-T (Hoechst 33342) and G-C (Mithramycin) base pairs in solid cancer nuclei. Since cisplatinum (CDDP) is the most important drug in the treatment of ovarian cancer, we have studied the relationship of CDDP cytotoxicity, pertubations cell cycle kinetis and DNA damage in ovarian adenocarcinoma cells in vitro & in vivo. We employed both CDDP sensitive cell line (KFt) and resistant cell line (KFr) derived from human serous cystoadenocarcinoma of the ovary by Kikuchi et al (JNCI 1986). Comparing cell kinetic pertubations of experimental cells demonstrates a decrease in G1 phase cells concomitant increase in S phase cells. The KFr cells had distinctly a shorter S-phase block up to 24 hrs not A-T but G-C preference in a quick response followed repairing of DNA damage to 48 hrs. However, some fractions of CDDP resistant cell population showed a later onset of G2, M phase accumulation. Comparison with the increase in early S phase cells of KFr in detailed analysis suggests only those damaged cells that are not killed immediately may proceed to G1 phase and start into DNA synthesis in S phase. Measurement of labeling index (L. I.) with Bromodeoxyuridine (BrdU) support our interpretation of differences between sensitivity and resistance to anti-cancer drug. Additionally, we discuss a targeting chemotherapy by coupling cytotoxic drugs with estrogen based on increasing DNA damage into apoptosis and interfares with DNA repair process.  相似文献   

2.
The cytokinetic effects of carboplatin(CBDCA) on a human ovarian cancer cell line(KF-1) were examined by means of cell survival rate and flow cytometry in comparison with cisplatin(CDDP). CBDCA and CDDP exhibited dose dependent cytotoxicity on KF-1, and CBDCA showed compatible cell growth inhibition to that of 15 times concentration of CDDP in comparison with IC50 of 72 hrs after drug addition. From the analysis of cell cycle, CBDCA and CDDP inhibited cell cycle progression at G2 + M phase. CBDCA exhibited G2 + M phase block to that of 15 to 20 times the concentration of CDDP. We suggested that CBDCA had potential therapeutic activity against ovarian cancer, but should be evaluated carefully in the clinical use.  相似文献   

3.
NGX6基因对人结肠癌细胞HT-29细胞周期的影响   总被引:6,自引:1,他引:6  
NGX6基因是新克隆的候选抑瘤基因,研究表明NGX6重表达可抑制结肠癌细胞的增殖.为进一步研究NGX6对细胞周期的影响,采用流式细胞仪检测NGX6重表达对结肠癌细胞HT-29细胞周期的影响,发现NGX6重表达可增加HT-29细胞在G0/G1期的分布比例,减少了S,G2,M期细胞数.利用蛋白质印迹和流式细胞术分析NGX6转染前后HT-29细胞周期素(cyclins)和细胞周期素依赖性蛋白激酶抑制物(cyclin-dependentkinaseinhibitor,CKI)的表达变化,发现NGX6可下调HT-29细胞中cyclinE、cyclinD1的表达及上调p27的表达,对cyclinA和cyclinB的表达无明显影响,p16在三组结肠癌细胞中均无表达.研究结果表明,NGX6在HT-29细胞中通过下调cyclinE、cyclinD1和上调p27的表达,阻滞细胞周期于G0/G1期,从而发挥其在结肠癌中的抑瘤作用.  相似文献   

4.
Rhodamine 123 (R 123) is a positively charged dye at physiological pH that accumulates specifically in the mitochondria of living cells without cytotoxic effect. In the present study, the uptake of R 123 by EL-4 lymphoma cells in culture with anticancer agents was measured by flow cytometry. Changes in R 123 uptake during the cultivation period were compared with cell distribution at different phases of the cell cycle. According to the increase in the proportion of S phase cells, mitochondrial synthesis increased, giving rise to a maximal fluorescence intensity of about 1.3-fold. Synchronous cultures showed the same relationship between increased mitochondrial uptake of R 123 and the S phase fraction as was observed in normal cultures. After treatment with 10(-3) M 5-fluorouracil (5-FU) for 1 h, EL-4 cells showed an increased binding of R 123 per cell followed by an accumulation of early S phase cells transiently. However, uptake of R 123 decreased 24 h later. On the contrary, after treatment with 10 micrograms/ml of cis-diamminedichloroplatinum (CDDP), a G2 + M block was observed from 12 h of reseeding and accumulation of the G2 + M cells continued. In this case, high uptake of R 123 continued during the observation period. From these results, mitochondrial synthesis seemed to increase according to the increment in proportion of S phase when the acceleration of the cell cycle turnover was augmented or the cycle was blocked in S phase by 5-FU. CDDP inhibited the cell division at G2 + M phase and caused increased R 123 fluorescence per cell. The stainability of R 123 may indicate the activity of cell division and may be a good way of evaluating the efficacy of antitumor drugs on the cells.  相似文献   

5.
The protein and DNA contents of mouse myeloid leukemia M1 (clone B24) cells were determined by flow cytometry (FCM) after double fluorescent staining of the cells with fluorescein isothiocyanate and propidium iodide. FCM analysis showed that there was a linear relationship between the DNA and protein contents in logarithmically growing cells, although the protein content showed some variation. B24 cells can be induced to differentiate into macrophage-like cells by treatment with a protein inducer(s) in conditioned medium (CM) of hamster embryo cells. When the cells were treated with various concentrations of CM, cells with a 2C DNA content, G1/0 cells, increased and protein accumulated in these G1/0 cells. The increases in the number of G1/0 cells and in their protein content per cell were proportional to the concentration of CM. Serial analysis of changes in the contents of DNA and protein in differentiating B24 cells showed that DNA synthesis was suppressed by differentiation-induced block of the cell cycle at the G1/0 phase, whereas increase in the protein content was not completely suppressed by block of the cell cycle. These results suggest that unbalanced control of the DNA and protein contents of B24 cells is involved in the mechanisms of the morphological changes during differentiation into macrophages.  相似文献   

6.
《Phytomedicine》2014,21(4):506-514
Devil's club (DC, Oplopanax horridus) is an important medicinal herb of the Pacific Northwest which has significant antiproliferation activity against a variety of human tumor cell lines in vitro. This study compared the antiproliferation activity of DC extract alone, and in combination with chemotherapeutic agents gemcitabine (GEM), cisplatin (CDDP), and paclitaxel (PTX) on human pancreatic cancer PANC-1 3D spheroids and 2D monolayer cells. 3D tumor spheroids were prepared with a rotary cell culture system. PANC-1 3D spheroids were significantly more resistant to killing by DC extract, GEM and PTX compared to 2D cells, with IC50 levels closer to that observed in vivo. DC extract significantly enhanced the antiproliferation activity of CDDP and GEM at some concentrations. The bioactive compound identified as a polyacetylene showed strong antiproliferation activity against PANC-1 2D cells and 3D spheroids with IC50 at 0.73 ± 0.04 and 3.15 ± 0.16 μM, respectively. 3D spheroids and 2D cells differentially expressed a number of apoptosis related genes. Cell cycle analysis showed that the proportion of cells in S phase was increased and in G2/M phase reduced in 3D spheroids compared to 2D cells. DC extract can potentially be used to enhance the activity of chemotherapeutic agents against pancreatic cancer cells. Use of 3D spheroid model for screening of natural products can potentially increase the efficiency in discovering in vivo bioactive compounds.  相似文献   

7.
BACKGROUND: In a previous work, we demonstrated with flow cytometry (FCM) methods that accumulation of human cyclin B1 in leukemic cell lines begins during the G(1) phase of the cell cycle (Viallard et al. , Exp Cell Res 247:208-219, 1999). In the present study, FCM was used to compare the localization and the kinetic patterns of cyclin B1 expression in Jurkat leukemia cell line and phytohemagglutinin (PHA)-stimulated normal T lymphocytes. METHODS: Cell synchronization was performed in G(1) with sodium n-butyrate, at the G(1)/S transition with thymidine and at mitosis with colchicine. Cells (leukemic cell line Jurkat or PHA-stimulated human T-lymphocytes) were stained for DNA and cyclin B1 and analyzed by FCM. Western blotting was used to confirm certain results. RESULTS: Under asynchronous growing conditions and for both cell populations, cyclin B1 expression was essentially restricted to the G(2)/M transition, reaching its maximal level at mitosis. When the cells were synchronized at the G(1)/S boundary by thymidine or inside the G(1) phase by sodium n-butyrate, Jurkat cells accumulated cyclin B1 in both situations, whereas T lymphocytes expressed cyclin B1 only during the thymidine block. The cyclin B1 fluorescence kinetics of PHA-stimulated T lymphocytes was strictly similar when considering T lymphocytes blocked at the G(1)/S phase transition by thymidine and in exponentially growing conditions. These FCM results were confirmed by Western blotting. The detection of cyclin B1 by Western blot in cells sorted in the G(1) phase of the cell cycle showed that cyclin B1 was present in the G(1) phase in leukemic T cells but not in normal T lymphocytes. Cyclin B1 degradation was effective at mitosis, thus ruling out a defective cyclin B1 proteolysis. CONCLUSIONS: We found that the leukemic T cells behaved quite differently from the untransformed T lymphocytes. Our data support the notion that human cyclin B1 is present in the G(1) phase of the cell cycle in leukemic T cells but not in normal T lymphocytes. Therefore, the restriction point from which cyclin B1 can be detected is different in the two models studied. We hypothesize that after passage through a restriction point differing in T lymphocytes and in leukemic cells, the rate of cyclin B1 synthesis becomes constant in the S and G(2)/M phases and independent from the DNA replication cycle.  相似文献   

8.
Experiments by flow cytometry (FCM) after nuclei isolation have never been done to investigate cyclins. We have conducted different experiments by FCM using whole cells and isolated nuclei to study the immunolocalization and kinetic patterns of cyclin B1 and cyclin E in various leukemic cell lines. During asynchronous growth, all whole cells had a scheduled, cell cycle phase-restricted expression of cyclin B1. By using a washless immunostaining of unfixed nuclei, cyclin B1 was detected in all cell cycle phases, including G1, although to a lesser extent than in G2/M, suggesting that in whole cells the cyclin B1 epitope is masked and accessible only in isolated nuclei. When the cells were synchronized at the G1/S boundary by thymidine or in the G1 phase by sodium n-butyrate, an identical accumulation of cyclin B1 was observed. As for cyclin E, its expression was higher with thymidine treatment than with sodium n-butyrate, particularly in nuclei. The elevated cyclin B1 level in the cells arrested at the G1/S boundary may reflect the increased half-life of this protein stabilized as the result of cyclin E overexpression. However, our FCM data also support the notion that accumulation of human cyclin B1 in leukemic cell lines begins during the G1 phase of the cell cycle, probably in the nucleus. The detection of cyclin B1 by Western blot in cells sorted in the G1 phase of the cell cycle confirms this finding. It is possible, therefore, that tumor transformation or leukemic phenotype may invariably be associated with altered cyclin B1 expression.  相似文献   

9.
Recent reports have shown that CDDP interacts with RNA and protein as well as DNA. We studied the alteration of cell cycle, cellular RNA content and the effect of nucleic acid metabolism on cultured cancer cells after treatment with CDDP by flow cytometry and 3H incorporation assay. The alteration of cell cycle was found to be accumulation of cells in after delay S phase in cytostatic concentrations, CDDP inhibited 3H-TdR uptake markedly at this time and 3H-UR uptake earlier. Increase in RNA content accompanied accumulation of cells in G2M phase. This increase was not a specific phenomenon caused by CDDP, because increase in RNA content was also induced by other inhibitors of DNA synthesis. It is more likely that the direct alteration of cell cycle and cellular RNA content due to action of DNA-combined CDDP rather than that of RNA-combined CDDP.  相似文献   

10.
tBid is a pro-apoptotic molecule. Apoptosis inducers usually act in a cell cycle-specific fashion. The aim of this study was to elucidate whether effect of tBid on hepatocellular carcinoma (HCC) Hep3B cells was cell cycle phase specific. We synchronized Hep3B cells at G0/G1, S or G2/M phases by chemicals or flow sorting and tested the susceptibility of the cells to recombinant tBid. Cell viability was measured by MTT assay and apoptosis by TUNEL. The results revealed that tBid primarily targeted the cells at G0/G1 phase of cell cycle, and it also increased the cells at the G2/M phase. 5-Fluorouracil (5-FU), on the other hand, arrested Hep3B cells at the G0/G1 phase, but significantly reduced cells at G2/M phase. The levels of cell cycle-related proteins and caspases were altered in line with the change in the cell cycle. The combination of tBid with 5-FU caused more cells to be apoptotic than either agent alone. Therefore, the complementary effect of tBid and 5-FU on different phases of the cell cycle may explain their synergistric effect on Hep3B cells. The elucidation of the phase-specific effect of tBid points to a possible therapeutic option that combines different phase specific agents to overcome resistance of HCC.  相似文献   

11.
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) preferentially induces apoptosis in tumor cells over normal cells. To study the relationship between cell cycle progression and TRAIL-induced apoptosis, SW480 colon cancer and H460 lung cancer cell lines were examined for their sensitivity to TRAIL after arrest in different cell cycle phases. Cells were synchronized in G0/G1, S, and G2/M phase by serum starvation, aphidicolin, or nocodazole treatment, respectively. We found that arrest of cells in G0/G1 phase confers significantly higher susceptibility to TRAIL-induced apoptosis as compared to cells in late G1, S, or G2/M phase. To determine if cell cycle phase could be harnessed for therapeutic gain in the presence of TRAIL, we used the HMG-CoA reductase inhibitor, Simvastatin and lovastatin, to enrich a cancer cell population in G0/G1. Both simvastatin and lovastatin significantly augmented TRAIL-induced apoptosis in tumor cells, but not in normal keratinocytes. The results indicate that TRAIL, in combination with a HMG-CoA reductase inhibitor, may have therapeutic potential in the treatment of human cancer.  相似文献   

12.
We previously demonstrated that gambogic acid (GA) is a promising chemotherapeutic compound for human osteosarcoma treatment. The aim of this study was to detect whether the combination of lower-dose GA (0.3 mg/L) and cisplatin (CDDP) (1 mg/L) could perform a synergistic effect on inhibiting tumor in four osteosarcoma cell lines. Our results showed that the combination between GA at lower dose and CDDP significantly exerts a synergistic effect on inhibiting the cellular viability in MG63, HOS, and U2OS cells. In contrast, an antagonistic character was detected in SAOS2 cells exposed to the combined use of lower-dose GA (0.3 mg/L) and CDDP (1 mg/L). Then, analysis of cell cycle showed the combination of both drugs significantly induced the G2/M phase arrest, without any difference relative to GA treatment alone, in MG63 cells. Flow-cytometric analysis of cell apoptosis displayed that the apoptotic rate in the combination group is higher than that in GA treatment alone in MG63, HOS, and U2OS cells. The combined use of both drugs had no effect on mitochondrial membrane potential, but promoted the apoptosis-inducing function through triggering of CDDP in the three cell lines. By measurement of mitochondrial membrane potential, the activity of caspase-3 and the expressions of caspase-8 and caspase-9, it was showed that the apoptosis-promoting effect of the combined use of both drugs could be dependent on the death receptor apoptosis pathway, not dependent on the mitochondria apoptosis mechanism. This research, for the first time, demonstrates that GA could increase the chemotherapeutic effect of CDDP in human osteosarcoma treatment through inducing the cell cycle arrest and promoting cell apoptosis.  相似文献   

13.
The purpose of this study was to investigate the cell cycle perturbation of cultured C6 rat glioma cells induced by 1-(4-amino-2-methyl-5-pyrimidyl)methyl-3-(2-chloroethyl)3-nitrosourea hydrochloride (ACNU) using simultaneous flow cytometric measurements of DNA and bromodeoxyuridine (BrdU) content. A new graphic computer program permitted the quantification of cell density in hexagonal subareas and allowed the fraction of BrdU-labeled cells with mid-S phase DNA content (FLS) to be defined in a narrow window. The cell kinetic parameters such as cell cycle time (Tc) and S phase time (Ts) were estimated from a manually plotted FLS curve at 18 and 6 hr, respectively. The major effect of ACNU on the cell cycle was an accumulation of the cells in the G2M phase 12 to 24 hr posttreatment when compared to G2M traverse of untreated cells. For the two-dimensional analysis, cells were labeled with BrdU and then treated with ACNU, or treated with ACNU and then labeled with BrdU. It was concluded that the cells in the S and G2M phases at the time of ACNU administration progressed to mitosis but that the G1 phase cells accumulated in the subsequent G2M phase. Two-dimensional FCM analysis using BrdU provided a useful tool in studying cell cycle perturbation.  相似文献   

14.
The effect of the tumor promoter okadaic acid on cell cycle progression and on vimentin expression in MPC-11 mouse plasmacytoma cells was compared with that of the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA). Cell cycle progression of asynchronously grown MPC-11 cells was inhibited by both agents, but, in contrast to the G1 phase arrest caused by TPA, okadaic acid gave rise to G2/M phase and S phase arrest. This effect of okadaic acid was delayed significantly compared to the TPA-caused arrest. Furthermore, okadaic acid was able to induce vimentin expression to an extent comparable to the TPA response. However, vimentin expression was markedly delayed in okadaic acid-treated relative to TPA-treated cells. Another protein phosphatase inhibitor, calyculin A, also induced cell cycle changes and vimentin expression at concentrations at or above 1 × 10?9M. Based on these observations, we suggest an involvement of protein phosphatase 1 (possibly also phosphatase 2A and/or other phosphatases) in both the G2/M cell cycle block and the induction of vimentin expression in MPC-11 cells by okadaic acid. © 1995 Wiley-Liss, Inc.  相似文献   

15.
To study the effect of endostar on the expression of hypoxia-inducible factor 1 (HIF-1) and vascular endothelial growth factor (VEGF) and radiosensitization, the changes of A549 cells treated by endostar, radiotherapy and radiotherapy plus endostar were checked by flow cytometry (FCM), methyl thiazolyl tetrazolium (MTT), hoechst staining, and enzyme linked immunosorbent assay (ELISA). The results showed that endostar could block cell periods of A549 and stopped the cell cycle at G2/M and S periods. Cell growth inhibiting and apoptotic rate in the combination group were higher than those in other groups. Meanwhile, the levels of HIF-1 and VEGF expression in the combination group were lower than those of other groups. It suggested that endostar significantly sensitizes the function of radiation in A549 cells by arresting the cell cycle at stage of G2/M and S, increasing the cell growth inhibiting and the apoptotic rate, down-regulating the expression of HIF-1 and VEGF.  相似文献   

16.
Flow cytometric multiparameter analysis of two proliferation-associated nuclear antigens (proliferating cell nuclear antigen (PCNA)/cyclin and Ki-67) was performed on seven human hematopoietic cell lines. PCNA/cyclin, an S phase-related antigen, was detected using an autoantibody and a fluorescein isothiocyanate-labeled anti-human antibody. The Ki-67 antigen, which in cycling cells is expressed with increasing levels during the S phase with a maximum in the M phase, was detected using a monoclonal antibody and a phycoerythrin-conjugated anti-mouse antibody. In some experiments the PCNA/Ki-67 staining was combined with a DNA stain, 7-amino actinomycin D, and simultaneous detection of the three stains was performed by a single laser flow cytometer. Using this technique four distinct cell populations, representing G1, S, G2, and M, respectively, could be demonstrated in cycling cells on the basis of their PCNA/cyclin and Ki-67 levels. The cell cycle phase specificity could be verified using metaphase (vinblastine, colcemide) and G2 phase (mitoxantrone) blocking agents, as well as by stainings with a mitosis-specific antibody (MPM-2). Also, G0 cells could be discriminated from G1 cells in analysis of a mixture of resting peripheral mononuclear blood cells and a proliferating cell line. This technique can be valuable in detailed cell cycle analysis, since all cell cycle phases can be visualized and calculated using a simple double staining procedure.  相似文献   

17.
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) preferentially induces apoptosis in tumor cells over normal cells. To study the relationship between cell cycle progression and TRAIL-induced apoptosis, SW480 colon cancer and H460 lung cancer cell lines were examined for their sensitivity to TRAIL after arrest in different cell cycle phases. Cells were synchronized in G0/G1, S, and G2/M phase by serum starvation, aphidicolin, or nocodazole treatment, respectively. We found that arrest of cells in G0/G1 phase confers significantly higher susceptibility to TRAIL-induced apoptosis as compared to cells in late G1, S, or G2/M phase. To determine if cell cycle phase could be harnessed for therapeutic gain in the presence of TRAIL, we used the HMG-CoA reductase inhibitor, Simvastatin and lovastatin, to enrich a cancer cell population in G0/G1. Both simvastatin and lovastatin significantly augmented TRAIL-induced apoptosis in tumor cells, but not in normal keratinocytes. The results indicate that TRAIL, in combination with a HMG-CoA reductase inhibitor, may have therapeutic potential in the treatment of human cancer.

Key Words

TRAIL, Synchronization, Simvastatin, Cancer Therapy, Lovastatin, Cell Cycle, Apoptosis  相似文献   

18.
从辐照剂量和修复时间两个角度研究了重离子辐照对肿瘤细胞DNA损伤及细胞周期的影响,为重离子治癌的临床应用积累基础数据。不同剂量的80MeV/u^20Ne^10 辐照SMMC—7721细胞样品,利用单细胞凝胶电泳技术(Single Cell Gel Electrophoresis,SCGE)对细胞DNA损伤进行了检测,利用流式细胞技术(Flow Cytometry Methods,FCM)对细胞周期变化进行了分析。80MeV/u^20Ne^10 辐照后4小时内,SMMC—7721细胞的DNA损伤与辐照剂量呈线性关系,在0小时组其线性相关因子r为0.9621,4小时组为0.914;随着修复时间的增加,DNA损伤与辐照剂量不再线性相关,但0.5Gy,1Gy和2Gy三个剂量点的DNA损伤程度极为相近。另外,重离子辐照后SMMC—7721细胞发生S期和G2/M期阻滞现象,其随剂量变化及时间变化的规律不同于X、γ等低LET(Linear Energy Transfer)射线辐照。  相似文献   

19.
Cells from the small cell population of viable cells in the large necrotic centre of murine M8013 tumours were investigated with respect to their cell kinetics. Flow cytometry (FCM) of this part of subcutaneously transplanted tumours revealed the presence of tumour cells with G1, S and G2 + M phase DNA-contents. These severely hypoxic cells could have stopped cell cycle progression due to the nutritional deprivation, irrespective of their position within the cell cycle. Labelling methods, used to disclose the cell kinetics of this cell population, are hampered by the absence of a transport system in these large necrotic areas. Therefore, FCM was used to monitor radiation-induced changes in the cell cycle distribution. From this investigation it was concluded that hypoxic cells in the necrotic centre of the M8013 tumour progress through the cell cycle. As well as a cell population with a cell cycle time (Tc) of approximately 84 hr, a subpopulation with a Tc of approximately 21 hr occurred.  相似文献   

20.
Fucci (fluorescent ubiquitination-based cell cycle indicator) is able to visualize dynamics of cell cycle progression in live cells; G1- and S-/G2-/M-phase cells expressing Fucci emit red and green fluorescence, respectively. This system could be applied to cell kinetic analysis of tumour cells in the field of cancer therapy; however, it is still unclear how fluorescence kinetics change after various treatments, including exposure to anticancer agents. To explore this, we arrested live HeLa cells expressing the Fucci probes at various cell cycle stages and observed the fluorescence, in conjunction with flow cytometric analysis. X-irradiation, HU (hydroxyurea) and nocodazole arrest cells at G2/M boundary, early S-phase and early M-phase, respectively. Although X-irradiation and HU treatment induced similar accumulation kinetics of green fluorescent cells, nocodazole treatment induced an abnormal red fluorescence at M phase, followed by accumulation of both red and green fluorescent cells with 4N DNA content. We conclude that certain agents that disrupt normal cell cycle regulation could cause unexpected fluorescence kinetics in the Fucci system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号