首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Major characteristics, substrate specificities and enantioselectivities of epoxide hydrolases from various sources are described. Epoxide hydrolase activity in yeasts is discussed in more detail and is compared with activities in other microorganisms. Constitutively produced bacterial epoxide hydrolases are highly enantioselective in the hydrolysis of 2,2- and 2,3-disubstituted epoxides. A novel bacterial limonene-1,2-epoxide hydrolase, induced by growth on monoterpenes, showed high activities and selectivities in the hydrolysis of several substituted alicyclic epoxides. Constitutively produced epoxide hydrolases are found in eukaryotic microorganisms. Enzymes from filamentous fungi are useful biocatalysts in the resolution of aryl- and substituted alicyclic epoxides. Yeast epoxide hydrolase activity has been demonstrated for the enantioselective hydrolysis of various aryl-, alicyclic- and aliphatic epoxides by a strain of Rhodotorula glutinis. The yeast enzyme, moreover, is capable of asymmetric hydrolysis of meso epoxides and performs highly enantioselective resolution of unbranched aliphatic 1,2-epoxides. Screening for other yeast epoxide hydrolases shows that high enantioselectivity is restricted to a few basidiomycetes genera only. Resolution of very high substrate concentrations is possible by using selected basidiomycetes yeast strains.  相似文献   

2.
Epoxide hydrolase-encoding cDNA sequences were isolated from the basidiomycetous yeast species Rhodosporidium toruloides CBS 349, Rhodosporidium toruloides CBS 14 and Rhodotorula araucariae CBS 6031 in order to evaluate the molecular data and potential application of this type of enzymes. The deduced amino acid sequences were similar to those of the known epoxide hydrolases from Rhodotorula glutinis CBS 8761, Xanthophyllomyces dendrorhous CBS 6938 and Aspergillus niger LCP 521, which all correspond to the group of the microsomal epoxide hydrolases. The epoxide hydrolase encoding cDNAs of the Rhodosporidium and Rhodotorula species were expressed in Escherichia coli. The recombinant strains were able to hydrolyze trans-1-phenyl-1,2-epoxypropane with high enantioselectivity.  相似文献   

3.
The enantioselective hydrolysis of racemic epichlorohydrin for the production of enantiopure (S)-epichlorohydrin using whole cells of Aspergillus niger ZJB-09173 in organic solvents was investigated. Cyclohexane was used as the reaction medium based on the excellent enantioselectivity of epoxide hydrolase from A. niger ZJB- 09173 in cyclohexane. However, cyclohexane had a negative effect on the stability of epoxide hydrolase from A. niger ZJB-09173. In the cyclohexane medium, substrate inhibition, rather than product inhibition of catalysis, was observed in the hydrolysis of racemic epichlorohydrin using A. niger ZJB-09173. The racemic epichlorohydrin concentration was markedly increased by continuous feeding of substrate without significant decline of the yield. Ultimately, 18.5% of (S)-epichlorohydrin with 98 percent enantiomeric excess from 153.6 mM of racemic epichlorohydrin was obtained by the dry cells of A. niger ZJB-09173, which was the highest substrate concentration in the production of enantiopure (S)-epichlorohydrin by epoxide hydrolases using an organic solvent medium among the known reports.  相似文献   

4.
A novel epoxide hydrolase from Aspergillus niger SQ-6 has now been cloned by inverse PCR. Its gene shows eight exons including a non-coding exon at its 5'-terminal (GenBank Accession No. AY966486). Phylogenetic analysis using deduced amino acid sequence (395 aa) confirms it as an epoxide hydrolase and shares 58.3% identity with that of A. niger LCP521 (GenBank Accession No. AF238460). The predicted catalytic triad is composed of Asp(191), His(369) and Glu(343). Active recombinant epoxide hydrolase has been successfully expressed in Escherichia coli as protein fusions with a poly-His tail. Scale-up fermentation can yield 2.5g/L of recombinant protein. The electrophoretic pure recombinant protein, which shows similar characterization as natural enzyme purified from A. niger SQ-6, can be easily purified by Ni(2+)-chelated affinity and gel-filtration chromatography. Optimal pH and temperature for purified enzyme are pH 7.5 and 37 degrees C, respectively. The K(m), k(cat) and maximal velocity (V(max)) for p-nitrostyrene oxide are determined to be 1.02mM, 172s(-1) and 231micromol min(-1)mg(-1), respectively. The enzyme can be inhibited by oxidant (H(2)O(2)), solvent (Tetrahydrofuran) and several metal ions including Hg(2+), Fe(2+) and Co(2+). This (R)-stereospecific epoxide hydrolase exhibits high enantioselectivity (enantiomeric excess value, 99%) for the less hindered carbon atom of epoxide. It may be an industrial biocatalyst for the preparation of enantiopure epoxides or vicinal diols.  相似文献   

5.
The epoxide hydrolase from Rhodotorula glutinis was isolated and initially characterized. The enzyme was membrane associated and could be solubilized by Triton X-100. Purification yielded an enzyme with sp. act. of 66 mol 1,2-epoxyhexane hydrolyzed min–1 mg–1 protein. The enzyme was not completely purified to homogeneity but, nevertheless, a major protein was isolated by SDS-PAGE for subsequential amino acid determination of peptide fragments. From sequence alignments to related enzymes, a high homology towards the active site sequences of other microsomal epoxide hydrolases was found. Molecular mass determinations indicated that the native enzyme exists as a homodimer, with a subunit molecular mass of about 45 kDa. Based upon these, this epoxide hydrolase is structurally related to other microsomal epoxide hydrolases.  相似文献   

6.
An enantioconvergent biotransformation of racemic styrene oxide by using two recombinant microbial epoxide hydrolases (EHs) in one pot has been investigated to prepare enantiopure vicinal diols. The recombinant whole cell possessing EH gene from Aspergillus niger LK or Rhodotorula glutinis exhibited a complementary enantioselectivity and regioselectivity, compared to the recombinant cell containing Caulobacter crescentus EH gene. When two recombinant microbial EHs were used in combination, 1.3 g of enantiopure (R)-1,2-phenylethandiol with more than 90% enantiopurity and 95% overall yield was obtained from 1.2 g of racemic styrene oxide in a preparative-scale batch enantioconvergent biotransformation.  相似文献   

7.
Background: Epoxide hydrolases have important roles in the defense of cells against potentially harmful epoxides. Conversion of epoxides into less toxic and more easily excreted diols is a universally successful strategy. A number of microorganisms employ the same chemistry to process epoxides for use as carbon sources. Results: The X-ray structure of the epoxide hydrolase from Aspergillus niger was determined at 3.5 A resolution using the multiwavelength anomalous dispersion (MAD) method, and then refined at 1.8 A resolution. There is a dimer consisting of two 44 kDa subunits in the asymmetric unit. Each subunit consists of an alpha/beta hydrolase fold, and a primarily helical lid over the active site. The dimer interface includes lid-lid interactions as well as contributions from an N-terminal meander. The active site contains a classical catalytic triad, and two tyrosines and a glutamic acid residue that are likely to assist in catalysis. Conclusions: The Aspergillus enzyme provides the first structure of an epoxide hydrolase with strong relationships to the most important enzyme of human epoxide metabolism, the microsomal epoxide hydrolase. Differences in active-site residues, especially in components that assist in epoxide ring opening and hydrolysis of the enzyme-substrate intermediate, might explain why the fungal enzyme attains the greater speeds necessary for an effective metabolic enzyme. The N-terminal domain that is characteristic of microsomal epoxide hydrolases corresponds to a meander that is critical for dimer formation in the Aspergillus enzyme.  相似文献   

8.
Stereoselectivities of microbial epoxide hydrolases   总被引:5,自引:0,他引:5  
Epoxide hydrolases from bacterial and fungal sources are highly versatile biocatalysts for the asymmetric hydrolysis of epoxides on a preparative scale. Besides kinetic resolution, which yields the corresponding enantiomerically enriched vicinal diol and the remaining nonconverted epoxide, enantioconvergent processes are also possible, which lead to the formation of a single enantiomeric diol from a racemic oxirane. The data available to date indicate that the enantioselectivities of enzymes from certain microbial sources can be correlated to the substitutional pattern of various types of substrates: red yeasts (e.g. Rhodotorula or Rhodosporidium sp.) give best enantioselectivities with monosubstituted oxiranes; fungal cells (e.g. from Aspergillus and Beauveria sp.) are best suited for styrene oxide-type substrates; bacterial enzymes, on the other hand (in particular from Actinomycetes such as Rhodococcus and Nocardia sp.) are the biocatalysts of choice for more highly substituted 2,2- and 2,3-disubstituted epoxides.  相似文献   

9.
Epoxide hydrolases are a small superfamily of enzymes important for the detoxification of chemically reactive xenobiotic epoxides and for the processing of endogenous epoxides that act as signaling molecules. Here, we report the identification of two human epoxide hydrolases: EH3 and EH4. They share 45% sequence identity, thus representing a new family of mammalian epoxide hydrolases. Quantitative RT-PCR from mouse tissue indicates strongest EH3 expression in lung, skin, and upper gastrointestinal tract. The recombinant enzyme shows a high turnover number with 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acid (EET), as well as 9,10-epoxyoctadec-11-enoic acid (leukotoxin). It is inhibited by a subclass of N,N'-disubstituted urea derivatives, including 12-(3-adamantan-1-yl-ureido)-dodecanoic acid, 1-cyclohexyl-3-dodecylurea, and 1-(1-acetylpiperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea, compounds so far believed to be selective inhibitors of mammalian soluble epoxide hydrolase (sEH). Its sensitivity to this subset of sEH inhibitors may have implications on the pharmacologic profile of these compounds. This is particularly relevant because sEH is a potential drug target, and clinical trials are under way exploring the value of sEH inhibitors in the treatment of hypertension and diabetes type II.  相似文献   

10.
A rhamnogalacturonan hydrolase gene of Aspergillus aculeatus was used as a probe for the cloning of two rhamnogalacturonan hydrolase genes of Aspergillus niger. The corresponding proteins, rhamnogalacturonan hydrolases A and B, are 78 and 72% identical, respectively, with the A. aculeatus enzyme. In A. niger cultures which were shifted from growth on sucrose to growth on apple pectin as a carbon source, the expression of the rhamnogalacturonan hydrolase A gene (rhgA) was transiently induced after 3 h of growth on apple pectin. The rhamnogalacturonan hydrolase B gene was not induced by apple pectin, but the rhgB gene was derepressed after 18 h of growth on either apple pectin or sucrose. Gene fusions of the A. niger rhgA and rhgB coding regions with the strong and inducible Aspergillus awamori exlA promoter were used to obtain high-producing A. awamori transformants which were then used for the purification of the two A. niger rhamnogalacturonan hydrolases. High-performance anion-exchange chromatography of oligomeric degradation products showed that optimal degradation of an isolated highly branched pectin fraction by A. niger rhamnogalacturonan hydrolases A and B occurred at pH 3.6 and 4.1, respectively. The specific activities of rhamnogalacturonan hydrolases A and B were then 0.9 and 0.4 U/mg, respectively, which is significantly lower than the specific activity of A. aculeatus rhamnogalacturonan hydrolase (2.5 U/mg at an optimal pH of 4.5). Compared to the A enzymes, the A. niger B enzyme appears to have a different substrate specificity, since additional oligomers are formed.  相似文献   

11.
The Rhodotorula glutinis epoxide hydrolase, Eph1, was produced in the heterologous host Escherichia coli BL21(DE3) in order to develop a highly effective epoxide hydrolysis system. A 138-fold increase in Eph1 activity was found in cell extracts of the recombinant E. coli when compared to cell extracts of Rhodotorula glutinis, despite the formation of Eph1 inclusion bodies. Optimization of cultivation conditions and co-expression of molecular chaperones resulted in a further increase in activity and a reduction of the inclusion bodies formation, respectively. Compared to Rhodotorula glutinis cells and cell extracts, a total increase in Eph1 activity of over 200 times was found for both Escherichia coli cells and crude enzyme preparations of these cells. The improved conditions for recombinant Eph1 production were used to demonstrate the Eph1-catalysed kinetic resolution of a new Eph1 substrate, 1-oxaspiro[2.5]octane-2-carbonitrile.  相似文献   

12.
13.
Epoxide hydrolases catalyze the conversion of epoxides to diols. The known functions of such enzymes include detoxification of xenobiotics, drug metabolism, synthesis of signaling compounds, and intermediary metabolism. In plants, epoxide hydrolases are thought to participate in general defense systems. In the present study, we report the first structure of a plant epoxide hydrolase, one of the four homologous enzymes found in potato. The structure was solved by molecular replacement and refined to a resolution of 1.95 A. Analysis of the structure allows a better understanding of the observed substrate specificities and activity. Further, comparisons with mammalian and fungal epoxide hydrolase structures reported earlier show the basis of differing substrate specificities in the various epoxide hydrolase subfamilies. Most plant enzymes, like the potato epoxide hydrolase, are expected to be monomers with a preference for substrates with long lipid-like substituents of the epoxide ring. The significance of these results in the context of biological roles and industrial applications is discussed.  相似文献   

14.
15.
Isolates representing Cryptococcus laurentii and Cryptococcus podzolicus, originating from soil of a heathland indigenous to South Africa, were screened for the presence of enantioselective epoxide hydrolases for 2,2-disubstituted epoxides. Epoxide hydrolase activity for the 2,2-disubstituted epoxide (+/-)-2-methyl-2-pentyl oxirane was found to be abundantly present in all isolates. The stereochemistry of the products formed by the epoxide hydrolase enzymes from isolates belonging to the two species (11 isolates representing C. laurentii and 23 isolates representing C. podzolicus) was investigated. The enantiopreferences of the epoxide hydrolases for 2,2-disubstituted epoxides of these two species were found to be opposite. All strains of C. laurentii preferentially hydrolysed the (S)-epoxides while all C. podzolicus isolates preferentially hydrolysed the (R)-epoxides of (+/-)-2,2-disubstituted epoxides. These findings indicate that the stereochemistry of the products formed from 2,2-disubstituted epoxides by the epoxide hydrolase enzymes of these yeasts should be evaluated as additional taxonomic criterion within the genus Cryptococcus. Also, the selectivity of some epoxide hydrolases originating from isolates of C. podzolicus was high enough to be considered for application in biotransformations for the synthesis of enantiopure epoxides and vicinal diols.  相似文献   

16.
We describe a convenient method for amplification of novel epoxide hydrolase-encoding genes directly from the metagenome. In a first step, small specific regions of putative epoxide hydrolase genes were amplified by using PCR with degenerate consensus primers specific for prokaryotic epoxide hydrolases, and environmental DNA as template. In a second step, the sequence obtained from one randomly selected epoxide hydrolase gene fragment served as the starting point for genome-walking PCR. This technique enabled us to recover a complete novel epoxide hydrolase gene with a GC content of 64.7%. A database search revealed that this novel gene was 44% and 43% identical to two putative epoxide hydrolases from Ralstonia metallidurans and Ralstonia eutropha, respectively, at the amino acid level, the highest among all orthologs searched. The gene, which encodes a polypeptide with a molecular mass of 34 kDa, was cloned and overexpressed in Escherichia coli. The recombinant enzyme showed hydrolyzing activity toward aliphatic terminal epoxides with chain lengths ranging from 6 to 10 carbon atoms. In all cases, the enantioselectivity of the enzyme was low. Determination of the regioselectivity coefficients αR and αS revealed that the oxirane ring was attacked almost exclusively at the non-substituted carbon of the R-epoxide. The preference for attack at the non-substituted ring carbon of the S-epoxide was dependent on the chain length of the substrate and ranged from 55% to 78%, resulting in a partially enantioconvergent reaction.  相似文献   

17.
The fungus Aspergillus niger is an industrial producer of pectin-degrading enzymes. The recent solving of the genomic sequence of A. niger allowed an inventory of the entire genome of the fungus for potential carbohydrate-degrading enzymes. By applying bioinformatics tools, 12 new genes, putatively encoding family 28 glycoside hydrolases, were identified. Seven of the newly discovered genes form a new gene group, which we show to encode exoacting pectinolytic glycoside hydrolases. This group includes four exo-polygalacturonan hydrolases (PGAX, PGXA, PGXB and PGXC) and three putative exo-rhamnogalacturonan hydrolases (RGXA, RGXB and RGXC). Biochemical identification using polygalacturonic acid and xylogalacturonan as substrates demonstrated that indeed PGXB and PGXC act as exo-polygalacturonases, whereas PGXA acts as an exo-xylogalacturonan hydrolase. The expression levels of all 21 genes were assessed by microarray analysis. The results from the present study demonstrate that exo-acting glycoside hydrolases play a prominent role in pectin degradation.  相似文献   

18.
Epoxide hydrolases are enzymes involved in metabolism and defense of plants. Genome scanning suggested the presence of several genes encoding epoxide hydrolase in Arabidopsis thaliana. To assure that the predicted genes are functional and the translated products have epoxide hydrolase activity analysis at the protein level is needed. We have started to clone the cDNAs and overexpress them for catalytic and physico-chemical analysis. We here report that Pichia pastoris serves as an efficient system for overexpression of soluble epoxide hydrolase 1 (AtsEH1) from A. thaliana. A tag containing six histidine residues was added to the N-terminus to enable efficient one-step purification on nickel-agarose. The enzyme was expressed at levels >18 mg.L(-1) of culture and a French Press was found to be effective to achieve cell lysis. The recombinant enzyme had a molecular mass of 37 or 38 kDa based on SDS-PAGE or MALDI-TOF analysis, respectively. The enzyme was highly active towards the substrate trans-stilbene oxide (TSO) and had a pH optimum at 7 and a temperature optimum at 54 degrees C. Using TSO as substrate the K(m) and V(max) values were determined to 5 micro M and 2 micromol min(-1) mg protein(-1), respectively. The activity was 50-fold lower towards cis-stilbene oxide. The stability over time was tested from 20 to 54 degrees C and the enzyme lost activity at varying degrees at the temperatures tested but was stable for several months at 4 degrees C.  相似文献   

19.
黑曲霉葡萄糖氧化酶基因的克隆及其在酵母中的高效表达   总被引:8,自引:0,他引:8  
将黑曲霉葡萄糖氧化酶(GOD)基因重组进大肠杆菌酵母穿梭质粒Ppic9,转化甲基营养酵母Pichia pastoris GS115,构建出GOD的高产酵母工程菌株。在酵母αFactor及AOX1基因启动子和终止信号的调控下,黑曲霉GOD在甲基酵母中大量表达并分泌至胞外,经甲醇诱导3~4d,发酵液中的GOD活力可达30~40u/mL。SDS-PAGE证实GOD在培养物上清中的含量显著高于其它杂蛋白,约占胞外蛋白总量的60%~70%,经Q SepharoseTMFast Flow离子交换柱一步纯化即达电泳纯。重组酵母GOD比活达426.63u/mg蛋白,是商品黑曲霉GOD的1.6倍。动力学性质分析表明,重组酵母GOD的KmKcat分别为38.25mmol/L和3492.66s-1,与商品黑曲霉GOD相比,具有更高的催化效率。重组酵母GOD的高活力特性可有效提高葡萄糖传感器的线性检测范围。  相似文献   

20.
In insects, epoxide hydrolases (EHs) play critical roles in the metabolism of xenobiotic epoxides from the food resources and in the regulation of endogenous chemical mediators, such as juvenile hormones. Using the baculovirus expression system, we expressed and characterized an epoxide hydrolase from Anopheles gambiae (AgEH) that is distinct in evolutionary history from insect juvenile hormone epoxide hydrolases (JHEHs). We partially purified the enzyme by ion exchange chromatography and isoelectric focusing. The experimentally determined molecular weight and pI were estimated to be 35 kD and 6.3 respectively, different than the theoretical ones. The AgEH had the greatest activity on long chain epoxy fatty acids such as 14,15-epoxyeicosatrienoic acids (14,15-EET) and 9,10-epoxy-12Z-octadecenoic acids (9,10-EpOME or leukotoxin) among the substrates evaluated. Juvenile hormone III, a terpenoid insect growth regulator, was the next best substrate tested. The AgEH showed kinetics comparable to the mammalian soluble epoxide hydrolases, and the activity could be inhibited by AUDA [12-(3-adamantan-1-yl-ureido) dodecanoic acid], a urea-based inhibitor designed to inhibit the mammalian soluble epoxide hydrolases. The rabbit serum generated against the soluble epoxide hydrolase of Mus musculus can both cross-react with natural and denatured forms of the AgEH, suggesting immunologically they are similar. The study suggests there are mammalian sEH homologs in insects, and epoxy fatty acids may be important chemical mediators in insects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号