首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recently we have identified mRNA encoding a hitherto unknown mammalian X,K-ATPase beta-subunit expressed predominantly in muscle tissue (Pestov, N. B. et al. (1999) FEBS Lett. 456, 243-248). Here we demonstrate the existence of the predicted protein, designated as beta(m) (beta(muscle)), in human adult skeletal muscle membranes using immunoblotting with beta(m)-specific antibodies generated against recombinant polypeptide formed by extramembrane beta(m) domains. The electrophoretic mobility of beta(m) was shown to be abnormally low due to the presence of Glu-rich sequences. In contrast to mature forms of other known X,K-ATPase beta-subunits, carbohydrate moiety of beta(m) is sensitive to endoglycosidase H and appears to be composed of short high-mannose or hybrid N-glycans. This finding argues in favor of an intracellular location of beta(m) in human skeletal muscle.  相似文献   

2.
Recently discovered muscle-specific beta(m) protein is structurally closely related to the X,K-ATPase beta-subunits. However, it has a number of unique properties such as predominant localization in intracellular stores and lack of association with known X,K-ATPase alpha-subunits on heterologous coexpression. In this study, the primary structure of mouse beta(m) was determined and developmental regulation of the gene (ATP1B4) was analyzed. The expression is first detected at day 14 of gestation, is sharply increased at day 16, and reaches its maximum at day 18. After birth, the expression quickly decreases and is hardly detectable in adult mice. A more detailed subcellular localization study was undertaken, and its results indicate that beta(m) not only is located in sarcoplasmic reticulum but is concentrated in nuclear envelopes of both prenatal and postnatal skeletal muscles. Immunohistochemical studies show that beta(m) is specific to myocytes and, at the subcellular level, many nuclear envelopes are intensively labeled in both fetal and newborn skeletal muscles. Accordingly, beta(m) is detected by immunoblotting in purified nuclei and nuclear membranes from neonatal skeletal muscles. On transfection of human rhabdomyosarcoma cell line RD, green fluorescent protein-tagged beta(m) resides intracellularly with significant enrichment in nuclear envelopes, whereas beta(m) with transmembrane domain deleted localizes in both cytoplasm and nucleoplasm. Nuclear beta(m) apparently is not in association with Na,K-ATPase because we never detected its alpha-subunit in myonuclear membranes. These results indicate that beta(m) has a specialized function in mammalian perinatal myocytes, different from functions of other X,K-ATPase beta-subunits. The unique temporospatial distribution of beta(m) protein expression suggests its important role in development of growing skeletal muscle.  相似文献   

3.
The endothelial Na,K-ATPase is an active component in maintaining a variety of normal vascular functions. The enzyme is characterized by a complex molecular heterogeneity that results from differential expression and association of multiple isoforms of both its alpha- and beta-subunits. The aim of the present study was to determine which isoforms of the Na,K-ATPase are expressed in human endothelial cells. HUVEC (human umbilical vein endothelial cells) were used as a model of well known human endothelial cells. The high sensitive method RT-PCR was used with primers specific for the various isoforms of the alpha- and beta-subunits of the Na,K-ATPase. The results show that HUVEC express alpha1-, but not alpha2-, alpha3- or alpha4-isoforms of the catalytic subunit and that beta3- but not beta2- or beta1-isoforms is present in these cells. These findings are in contradiction with our previous detection of Na,K-ATPase isoforms in HUVEC using antibodies (14). Such results raise the technical problem of the specificity of the available antibodies directed against the different isoforms as well as the question of the physiological relevance of the diversity of the Na,K-ATPase isoforms.  相似文献   

4.
We have isolated cDNA clones from rat brain and human liver encoding a putative isoform of the Na,K-ATPase beta subunit. The rat brain cDNA contains an open reading frame of 870 nucleotides coding for a protein of 290 amino acids with a calculated molecular weight of 33,412. The corresponding amino acid sequence shows 98% identity with its human liver counterpart. The proteins encoded by the rat and human cDNAs exhibit a high degree of primary sequence and secondary structure similarity with the rat Na,K-ATPase beta subunit. We have therefore termed the polypeptides these cDNAs encode a beta 2 subunit with the previously characterized rat cDNA encoding a beta 1 subunit. Analysis of rat tissue RNA reveals that the beta 2 subunit gene encodes a 3.4-kilobase mRNA which is expressed in a tissue specific fashion distinct from that of rat beta 1 subunit mRNA. Cell lines derived from the rat central nervous system shown to lack beta 1 subunit mRNA sequences were found to express beta 2 subunit mRNA. These results suggest that different members of the Na,K-ATPase beta subunit family may have specialized functions.  相似文献   

5.
The Na,K-ATPase, consisting of alpha- and beta-subunits, regulates intracellular ion homeostasis. Recent studies have demonstrated that Na,K-ATPase also regulates epithelial cell tight junction structure and functions. Consistent with an important role in the regulation of epithelial cell structure, both Na,K-ATPase enzyme activity and subunit levels are altered in carcinoma. Previously, we have shown that repletion of Na,K-ATPase beta1-subunit (Na,K-beta) in highly motile Moloney sarcoma virus-transformed Madin-Darby canine kidney (MSV-MDCK) cells suppressed their motility. However, until now, the mechanism by which Na,K-beta reduces cell motility remained elusive. Here, we demonstrate that Na,K-beta localizes to lamellipodia and suppresses cell motility by a novel signaling mechanism involving a cross-talk between Na,K-ATPase alpha1-subunit (Na,K-alpha) and Na,K-beta with proteins involved in phosphatidylinositol 3-kinase (PI3-kinase) signaling pathway. We show that Na,K-alpha associates with the regulatory subunit of PI3-kinase and Na,K-beta binds to annexin II. These molecular interactions locally activate PI3-kinase at the lamellipodia and suppress cell motility in MSV-MDCK cells, independent of Na,K-ATPase ion transport activity. Thus, these results demonstrate a new role for Na,K-ATPase in regulating carcinoma cell motility.  相似文献   

6.
A full-length cDNA clone encoding the human gastric H,K-ATPase (EC 3.6.1.36)beta-subunit was isolated from a human gastric mucosal lambda gt10 library using oligonucleotide probes which were based on the cDNA sequence from rat and rabbit H,K-ATPase beta-subunits. The insert was 1407 bp in length and encoded a polypeptide of 291 amino acids with a MW = 33,367 Da. It exhibited 84.2%, 85.6% and 81.3% identity to the H,K-ATPase beta-subunits of rabbit, pig and rat, respectively.  相似文献   

7.
8.
In the standard [3H]ouabain-binding assay for quantification of the Na,K-ATPase (Na+ + K+-dependent ATPase) concentration in rat skeletal muscles, samples are incubated for 2 X 60 min in 1 microM-[3H]ouabain at 37 degrees C followed by a wash-out for 4 X 30 min at 0 degree C. To obtain accurate determinations, values determined by this standard assay should be corrected for non-specific uptake and retention of [3H]ouabain (11% overestimation), loss of specifically bound [3H]ouabain during wash-out (21% underestimation), evaporation from muscle samples during weighing (4% overestimation), impurity of [3H]ouabain (5% underestimation) and incomplete saturation of [3H]ouabain binding sites (6% underestimation). Thus corrected the standard [3H]ouabain-binding assay determines the total Na,K-ATPase concentration. Hence, in the soleus muscle of 12-week-old rats the total [3H]ouabain-binding-site concentration is 278 +/- 20 pmol/g wet wt. This is at variance with the evaluation of the Na,K-ATPase concentration from Na,K-ATPase activity measurements in muscle membrane fractions, where the recovery of Na,K-ATPase is only 2-18%. Quantification of the total Na,K-ATPase concentration is of particular importance since it is a prerequisite for the discussion of quantitative aspects of the Na,K-ATPase.  相似文献   

9.
Expression of Na,K-ATPase catalytic alpha isoform (alpha 1, alpha 2, and alpha 3) and beta subunit genes in rodent muscle was investigated using the murine C2C12 myogenic cell line. RNA blot analyses of myoblasts revealed expression primarily of the alpha 1 mRNA and low levels of alpha 2 mRNA. Fusion of the proliferating myoblasts to form myotubes was accompanied by an approximate 12-fold induction of the alpha 2 mRNA. In contrast, expression of alpha 1 mRNA remained constant throughout myogenesis. The alpha 3 mRNA was not detected in either myoblasts or myotubes. The beta mRNA abundance also increased 2-3-fold during myotube formation. In rodent tissues, low and high affinity cardiac glycoside (e.g. ouabain) receptors have been shown to be associated with the Na,K-ATPase catalytic alpha 1 and alpha 2 isoform subunits, respectively. The existence of these two functional classes of Na,K-ATPase in myoblasts and myotubes correlated with the biphasic ouabain inhibition of Na,K-ATPase activity. Confluent myoblasts expressed primarily the alpha 1 isozyme (IC50 = 3.6 X 10(-5) M; 95% of total activity) and lesser amounts of the alpha 2 isozyme (IC50 = 1.1 X 10(-7) M; 5% of total activity). In contrast, the myotubes showed significant levels of the alpha 1 isozyme (IC50 = 4.0 X 10(-5) M; 68% of total activity) and, in addition, showed a 6-fold increase in the relative levels of the alpha 2 isozyme (IC50 = 1.1 X 10(-7) M; 32% of total activity). To quantitate further the expression of the high affinity, ouabain-sensitive alpha 2 isozyme, a whole cell [3H]ouabain-binding assay was used. Results revealed that myotubes have an approximately 6-fold greater concentration of [3H]ouabain-binding sites than myoblasts with an apparent dissociation constant (Kd) of 1.4 X 10(-7) M. The results indicate that muscle cells can express multiple isozymes of Na,K-ATPase and that expression of the alpha 2 isozyme is developmentally regulated during myogenesis.  相似文献   

10.
G Blanco  R J Melton  G Sánchez  R W Mercer 《Biochemistry》1999,38(41):13661-13669
Different isoforms of the sodium/potassium adenosinetriphosphatase (Na,K-ATPase) alpha and beta subunits have been identified in mammals. The association of the various alpha and beta polypeptides results in distinct Na,K-ATPase isozymes with unique enzymatic properties. We studied the function of the Na,K-ATPase alpha4 isoform in Sf-9 cells using recombinant baculoviruses. When alpha4 and the Na pump beta1 subunit are coexpressed in the cells, Na, K-ATPase activity is induced. This activity is reflected by a ouabain-sensitive hydrolysis of ATP, by a Na(+)-dependent, K(+)-sensitive, and ouabain-inhibitable phosphorylation from ATP, and by the ouabain-inhibitable transport of K(+). Furthermore, the activity of alpha4 is inhibited by the P-type ATPase blocker vanadate but not by compounds that inhibit the sarcoplasmic reticulum Ca-ATPase or the gastric H,K-ATPase. The Na,K-ATPase alpha4 isoform is specifically expressed in the testis of the rat. The gonad also expresses the beta1 and beta3 subunits. In insect cells, the alpha4 polypeptide is able to form active complexes with either of these subunits. Characterization of the enzymatic properties of the alpha4beta1 and alpha4beta3 isozymes indicates that both Na,K-ATPases have similar kinetics to Na(+), K(+), ATP, and ouabain. The enzymatic properties of alpha4beta1 and alpha4beta3 are, however, distinct from the other Na pump isozymes. A Na, K-ATPase activity with similar properties as the alpha4-containing enzymes was found in rat testis. This Na,K-ATPase activity represents approximately 55% of the total enzyme of the gonad. These results show that the alpha4 polypeptide is a functional isoform of the Na,K-ATPase both in vitro and in the native tissue.  相似文献   

11.
Na,K-ATPase is a crucial enzyme for ion homeostasis in human tissues. Different isozymes are produced by assembly of four alpha- and three beta-subunits. The expression of the alpha3/beta1 isozyme is confined to brain and heart. Its heterologous production has so far never been attempted in a lower eukaryote. In this work we explored whether the methylotrophic yeast Pichia pastoris is capable of expressing the alpha3/beta1 isoform of human Na,K-ATPase. cDNAs encoding the alpha(3) and the beta(1)-subunits were cloned under the control of the inducible promoter of Pichia pastoris alcohol oxidase 1. Pichia pastoris could express the single alpha3- and beta1-subunits and even coexpress them after methanol induction. beta1-subunit was produced as a major 44-kDa glycosylated polypeptide and alpha3 as a 110-kDa unglycosylated polypeptide. Expression at the plasma membrane was limited in shaking flask cultures but by cultivating P. pastoris cells in a fermenter there was a 10-fold increase of the number of ouabain binding sites per cell. The exported enzyme was estimated to be about 0.230 mg L(-1) at the end of a bioreactor run. Na,K-ATPase proved active and the dissociation constant of the recombinant enzyme-ouabain interaction was determined.  相似文献   

12.
13.
14.
A W Shyjan  R Levenson 《Biochemistry》1989,28(11):4531-4535
We have developed a panel of antibodies specific for the alpha 1, alpha 2, alpha 3, and beta subunits of the rat Na,K-ATPase. TrpE-alpha subunit isoform fusion proteins were used to generate three antisera, each of which reacted specifically with a distinct alpha subunit isotype. Western blot analysis of rat tissue microsomes revealed that alpha 1 subunits were expressed in all tissues while alpha 2 subunits were expressed in brain, heart, and lung. The alpha 3 subunit, a protein whose existence had been inferred from cDNA cloning, was expressed primarily in brain and copurified with ouabain-inhibitable Na,K-ATPase activity. An antiserum specific for the rat Na,K-ATPase beta subunit was generated from a TrpE-beta subunit fusion protein. Western blot analysis showed that beta subunits were present in kidney, brain, and heart. However, no beta subunits were detected in liver, lung, spleen, thymus, or lactating mammary gland. The distinct tissue distributions of alpha and beta subunits suggest that different members of the Na,K-ATPase family may have specialized functions.  相似文献   

15.
The Na,K-ATPase function appears impaired in human heart failure with dilation; however little is known in animal model with idiopathic dilated cardiomyopathy. We studied Na,K-ATPase isoform composition and activity from cardiomyopathic hamsters of the MS 200 strain with pure dilated cardiomyopathy and compared them with those of healthy Syrian hamsters. 150-day-old male MS 200 Syrian hamsters (n = 16) and sex- and age-matched healthy Syrian hamsters (n = 15) were used. Antibodies specific for the three alpha-isoforms and against the beta1-isoform were used to study Na,K-ATPase isoform expression in ventricular myocardium. Na,K-ATPase activity was quantified in homogenate and membrane fractions. There was no significant change in left ventricular mass. Morphological examination revealed a decreased septum thickness in the dilated cardiomyopathy compared with control hamster. Idiopathic dilated cardiomyopathy in hamsters presented significantly reduced membrane alpha1 and beta1 abundances and reduced Na,K-ATPase activity (-35% vs. healthy control, p<0.05). Chronic heart failure had no effect on the Na,K-ATPase alpha2-subunit protein. We have demonstrated for the first time that dilated cardiomyopathy induces a specific reduction of both membrane alpha1- and beta1-isoform abundance and Na,K-ATPase activity in hamsters similar to those previously reported in human dilated heart failure.  相似文献   

16.
The Na,K-ATPase generates electrochemical gradients across the plasma membrane that are responsible for numerous cellular and physiological processes. The active Na,K-ATPase is minimally composed of an alpha and a beta subunit and families of isoforms for both subunits exist. Recent studies have identified a physiological role for the rat Na,K-ATPase alpha4 isoform in sperm motility. However, very little is known about the human Na,K-ATPase alpha4 isoform other than its genomic sequence and structure and its mRNA expression pattern. Here, the human alpha4 isoform of the Na,K-ATPase is cloned, expressed, and characterized. Full length cDNAs encoding the putative human alpha4 isoform of the Na,K-ATPase were identified from a number of ESTs and a protein product corresponding to this isoform was shown to be expressed from these cDNAs. The human Na,K-ATPase alpha4 isoform protein was found to be expressed in mature sperm in human testes sections and it is localized specifically to the principle piece of human sperm. In addition, the presence of the Na,K-ATPase alpha4 isoform is absent in immature testes however its expression appears coincident with sexual maturity. And finally, the human Na,K-ATPase alpha4 isoform was shown to be as sensitive to cardiac glycoside inhibition as the human Na,K-ATPase alpha1 isoform. Considering the important role of the rat Na,K-ATPase alpha4 isoform in rat sperm motility, the demonstration that the human alpha4 isoform is a sperm-specific protein localized to the flagellum suggests a role for the human Na,K-ATPase alpha4 isoform in human sperm physiology.  相似文献   

17.
18.

Background

Changes in ion distribution across skeletal muscle membranes during muscle activity affect excitability and may impair force development. These changes are counteracted by the Na,K-ATPase. Regulation of the Na,K-ATPase is therefore important for skeletal muscle function. The present study investigated the presence of oxidative stress (glutathionylation) on the Na,K-ATPase in rat skeletal muscle membranes.

Results

Immunoprecipitation with an anti-glutathione antibody and subsequent immunodetection of Na,K-ATPase protein subunits demonstrated 9.0±1.3% and 4.1±1.0% glutathionylation of the α isoforms in oxidative and glycolytic skeletal muscle, respectively. In oxidative muscle, 20.0±6.1% of the β1 units were glutathionylated, whereas 14.8±2.8% of the β2-subunits appear to be glutathionylated in glycolytic muscle. Treatment with the reducing agent dithiothreitol (DTT, 1 mM) increased the in vitro maximal Na,K-ATPase activity by 19% (P<0.05) in membranes from glycolytic muscle. Oxidized glutathione (GSSG, 0–10 mM) increased the in vitro glutathionylation level detected with antibodies, and decreased the in vitro maximal Na,K-ATPase activity in a dose-dependent manner, and with a larger effect in oxidative compared to glycolytic skeletal muscle.

Conclusion

This study demonstrates the existence of basal glutathionylation of both the α and the β units of rat skeletal muscle Na,K-ATPase. In addition, the study suggests a negative correlation between glutathionylation levels and maximal Na,K-ATPase activity.

Perspective

Glutathionylation likely contributes to the complex regulation of Na,K-ATPase function in skeletal muscle. Especially, glutathionylation induced by oxidative stress may have a role in Na,K-ATPase regulation during prolonged muscle activity.  相似文献   

19.
20.
Na,K-ATPase transports Na(+) and K(+) across cell membranes and consists of alpha- and beta-subunits. Na,K-ATPase also associates with small FXYD proteins that regulate the activity of the pump. We have used cryoelectron microscopy of two-dimensional crystals including data to 8 A resolution to determine the three-dimensional (3-D) structure of renal Na,K-ATPase containing FXYD2, the gamma-subunit. A homology model for the alpha-subunit was calculated from a Ca(2+)-ATPase structure and used to locate the additional beta- and gamma-subunits present in the 3-D map of Na,K-ATPase. Based on the 3-D map, the beta-subunit is located close to transmembrane helices M8 and M10 and the gamma-subunit is adjacent to helices M2 and M9 of the alpha-subunit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号