首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Hong Y  Rashid R  Chen S 《Steroids》2011,76(8):802-806
Aromatase is the rate-limiting enzyme in estrogen biosynthesis. As a cytochrome P450, it utilizes electrons from NADPH-cytochrome P450 reductase (CPR) to produce estrogen from androgen. Estrogen is a key factor in the promotion of hormone-dependent breast cancer growth. Aromatase inhibitors (AIs) are drugs that block estrogen synthesis, and are widely used to treat estrogen-dependent breast cancer. Structure-function experiments have been performed to study how CPR and AIs interact with aromatase to further the understanding of how these drugs elicit their effects. Our studies have revealed a strong interaction between aromatase and CPR, and that the residue K108 is situated in a region important to the interaction of aromatase with CPR. The published X-ray structure of aromatase indicates that the F221, W224 and M374 residues are located in the active site. Our site-directed mutagenesis experiments confirm their importance in the binding of the androgen substrate as well as AIs, but these residues interact differently with steroidal inhibitors (exemestane) and non-steroidal inhibitors (letrozole and anastrozole). Furthermore, our results predict that the residue W224 also participates in the mechanism-based inhibition of exemestane, as time-dependent inhibition is eliminated with mutation on this residue. Together with previous research from our laboratory, this study confirms that W224, E302, D309 and S478 are important active site residues involved in the suicide mechanism of exemestane against aromatase.  相似文献   

2.
Aromatase inhibitors (AIs), which block the conversion of androgens to estrogens, are used for hormone-dependent breast cancer treatment. Exemestane, a steroidal that belongs to the third-generation of AIs, is a mechanism-based inhibitor that binds covalently and irreversibly, inactivating and destabilizing aromatase. Since the biological effects of exemestane in breast cancer cells are not totally understood, its effects on cell viability, cell proliferation and mechanisms of cell death were studied in an ER-positive aromatase-overexpressing breast cancer cell line (MCF-7aro). The effects of 3-methyladenine (3-MA), an inhibitor of autophagy and of ZVAD-FMK, an apoptotic inhibitor, in exemestane treated cells were also investigated. Our results indicate that exemestane induces a strong inhibition in MCF-7aro cell proliferation in a dose- and time-dependent manner, promoting a significant cell cycle arrest in G(0)/G1 or in G(2)/M phases after 3 and 6 days of treatment, respectively. This was accompanied by a decrease in cell viability due to activation of cell death by apoptosis, via mitochondrial pathway and the occurrence of autophagy. Inhibition of autophagy by the autophagic inhibitor, 3-MA, resulted in a reduction of cell viability and activation of caspases. All together the results obtained suggest that exemestane induced mitochondrial-mediated apoptosis and autophagy, which act as a pro-survival process regulating breast cancer cell apoptosis.  相似文献   

3.
Estrogen stimulates the proliferation of estrogen receptor (ER)-positive breast cancer cells. Aromatase is the enzyme responsible for the conversion of androgens into estrogens, and synthetic aromatase inhibitors such as letrozole, anastrozole, and exemestane have proven to be effective endocrine regimens for ER-positive breast cancer. In a recent study, we have found that 4-benzyl-3-(4'-chlorophenyl)-7-methoxycoumarin is a potent competitive inhibitor of aromatase with respect to the androgen substrate. Its K(i) value was determined to be 84 nm, significantly more potent than several known aromatase inhibitors. The specific interaction of this compound with aromatase was further demonstrated by the reduction of its binding by several mutations at the active site region of aromatase and evaluated by computer modeling analysis. The structure-activity studies have revealed that three functional groups (i.e. 3-(4'-chlorophenyl), 4-benzyl, and 7-methoxyl) of this coumarin are important in its inhibition of aromatase. In addition, through a matrigel thread three-dimensional cell culture, this compound was shown to behave like known aromatase inhibitors that suppress the proliferation of aromatase and estrogen receptor positive MCF-7aro breast cancer cells. This coumarin has been shown not to be cytotoxic at up to 40 mum. It was found not to be an inhibitor of steroid 5alpha-reductase that also utilizes androgen as the substrate and not to be a ligand of ERalpha, ERbeta, estrogen-related receptors, or androgen receptor. These results demonstrate that coumarins (a common type of phytochemical) or their derivatives can be potent inhibitors of aromatase and may be useful in suppressing aromataseand ER-positive breast tumors.  相似文献   

4.
Inhibition of aromatase: insights from recent studies   总被引:3,自引:0,他引:3  
Santen RJ 《Steroids》2003,68(7-8):559-567
Aromatase is the rate limiting enzyme that catalyzes the conversion of androgens to estrogens. Blockade of this step allows treatment of diseases that are dependent upon estrogen. Over the past two decades, highly potent and specific aromatase inhibitors have been developed which block total body aromatization by over 99%. An important recent question is whether aromatase inhibitors are superior to the antiestrogens for treatment of hormone-dependent breast cancer. The third generation aromatase inhibitors have been compared to tamoxifen for the treatment of breast cancer in the advanced, adjuvant, and neoadjuvant settings. All of these studies suggest the superiority of aromatase inhibitors over tamoxifen. The mechanism responsible for the superiority of the aromatase inhibitors relates to the estrogen agonistic effects of tamoxifen. During exposure to estrogen deprived conditions and to tamoxifen, breast cancer cells adapt and upregulate the MAP kinase and PI-3 kinase pathways. These growth factor signaling pathways potentiate the estrogen agonistic properties of tamoxifen. Data from a large adjuvant therapy trial (ATAC trial) provide evidence that the aromatase inhibitors may also be superior for breast cancer prevention. The mechanism for superiority in this setting probably relates to the genotoxic effects of estradiol metabolites. The aromatase inhibitors may be also useful for the treatment of endometriosis and for ovulation induction as evidenced by preliminary data. The recent advances in development of the aromatase inhibitors clearly demonstrate the utility of these agents for treatment of breast cancer and potentially for other indications.  相似文献   

5.
Around 60–80% of all breast tumors are estrogen receptor-positive. One of the several therapeutic approaches used for this type of cancers is the use of aromatase inhibitors. Exemestane is a third-generation steroidal aromatase inhibitor that undergoes a complex and extensive metabolism, being catalytically converted into chemically active metabolites. Recently, our group showed that the major exemestane metabolites, 17β-hydroxy-6-methylenandrosta-1,4-dien-3-one and 6-(hydroxymethyl)androsta-1,4,6-triene-3,17-dione, as well as, the intermediary metabolite 6β-Spirooxiranandrosta-1,4-diene-3,17-dione, are potent aromatase inhibitors in breast cancer cells. In this work, in order to better understand the biological mechanisms of exemestane in breast cancer and the effectiveness of its metabolites, it was investigated their effects in sensitive and acquired-resistant estrogen receptor-positive breast cancer cells. Our results indicate that metabolites induced, in sensitive breast cancer cells, cell cycle arrest and apoptosis via mitochondrial pathway, involving caspase-8 activation. Moreover, metabolites also induced autophagy as a promoter mechanism of apoptosis. In addition, it was demonstrated that metabolites can sensitize aromatase inhibitors-resistant cancer cells, by inducing apoptosis. Therefore, this study indicates that exemestane after metabolization originates active metabolites that suppress the growth of sensitive and resistant breast cancer cells. It was also concluded that, in both cell lines, the biological effects of metabolites are different from the ones of exemestane, which suggests that exemestane efficacy in breast cancer treatment may also be dependent on its metabolites.  相似文献   

6.
A summary of second-line randomized studies of aromatase inhibitors   总被引:4,自引:0,他引:4  
The new generation of selective aromatase inhibitors (anastrozole, letrozole and exemestane) offer a significant efficacy and safety advantage over both older agents in this class (aminoglutethimide) and the progestins (megestrol acetate (MA)), as second-line treatment for postmenopausal women with advanced hormone-dependent breast cancer who have failed on tamoxifen therapy. Exemestane, a steroidal aromatase inhibitor, has been shown to have activity after failure with the non-steroidal aromatase inhibitors, anastrozole and letrozole, and could be used as third-line treatment. Although the newer aromatase inhibitors belong to the same class and appear, from indirect comparisons, to have similar efficacy compared with the older therapies, they have different pharmacokinetic and pharmacodynamic profiles, suggesting the potential for clinical differences. Compared with exemestane and letrozole, anastrozole shows greater selectivity for aromatase, as it lacks any evidence of an effect on adrenal steroidogenesis and has no androgenic effects. Therefore, it is clear that these agents should not be considered to be similar in all respects. In summary, the introduction of the aromatase inhibitors represents a significant step forward in the treatment of advanced breast cancer in postmenopausal women. Studies in the adjuvant setting will ultimately determine whether the differences in pharmacokinetics and phamacodynamics will be of clinical relevance.  相似文献   

7.
Abstract A recent approach for treatment and prevention of estrogen-dependent breast cancer focuses on the inhibition of aromatase, the enzyme that catalyzes the final step of estrogen biosynthesis. Some synthetic steroids, such as formestane and exemestane, resembling the natural enzyme substrate androstenedione, revealed to be potent and useful aromatase inhibitors (AIs) and were approved for the treatment of estrogen-dependent breast cancer in postmenopausal women. Recently, we found that five newly synthesized steroids with chemical features in the A- and D-rings considered important for drug-receptor interaction efficiently inhibit aromatase derived from human placental microsomes. In this work, these steroids showed a similar pattern of anti-aromatase activity in several aromatase-expressing cell lines. 5alpha-androst-3-en-17-one and 3alpha,4alpha-epoxy-5alpha-androstan-17-one were revealed to be the most potent inhibitors. These compounds induced a time-dependent inhibition of aromatase, showing to be irreversible AIs. The specific interactions of these compounds with aromatase active sites were further demonstrated by site-directed mutagenesis studies and evaluated by computer-aided molecular modeling. Both compounds were able to suppress hormone-dependent proliferation of MCF-7aro cells in a dose-dependent manner. These findings are important for the elucidation of a structure-activity relationship on aromatase, which may help in the development of new AIs.  相似文献   

8.
Exemestane,a new steroidal aromatase inhibitor of clinical relevance   总被引:2,自引:0,他引:2  
Breast cancer is the leading cause of death among women and the contribution of circulating oestrogens to the growth of some mammary tumours has been recognized. Consequently, suppression of oestrogen action by inhibition of their biosynthesis at the androstenedione-oestrone aromatization step, by means of selective inhibitors of the enzyme aromatase, has become an effective therapeutic option for the treatment of hormone-dependent breast cancer. Exemestane (6-methylenandrosta-1,4-diene-3,17-dione) is a novel steroidal irreversible aromatase inhibitor recently approved and introduced into the global market under the name Aromasin. The design, laboratory and viable syntheses of exemestane, starting from a variety of steroidal precursors, are presented and discussed. Data from biochemical and pharmacological studies as well as the clinical impact of the compound are briefly reviewed. The drug is an orally active and well-tolerated hormonal therapy for postmenopausal patients with advanced breast cancer that has become refractory to standard current hormonal therapies.  相似文献   

9.
Aromatase inhibition has become a major treatment strategy for postmenopausal women with oestrogen-dependent breast cancer. Its optimal application is, however, dependent upon (i) the accurate identification of cancers which are ultimately dependent upon the activity of the aromatase enzyme, (ii) the use of the best method/inhibitor by which to blockade aromatase activity.

The single best predictor of response to aromatase inhibitors is the presence of tumour oestrogen receptors; receptor-negative cancers rarely respond whereas those with high levels seem particularly likely to benefit. However, there is a need for additional discriminatory markers. The use of microarray technology coupled with neoadjuvant therapy is likely to yield promising candidate genes. The finding that, amongst peripheral tissues, the tumour itself may have high activity has led to the suggestion that the tumour aromatase measurements may be predictive; however, in situ studies and the lack of robust assays for tumour aromatase suggest that tumour aromatase may not be an influential marker.

Whilst drugs such as anastrozole, exemestane, formestane and letrozole are all effective and specific inhibitors of aromatase, they differ in structure, potency and mechanism of action. Thus, differential sensitivity of tissues/tumours and non-cross resistance mean inhibitors are not equivalent and individual agents may have differing roles according to the setting in which they will be used. Aromatase inhibitors have evolved as key endocrine agents in the treatment of breast cancer. They offer the promise of rational treatment management based on the accurate identification of individual cohorts of tumours responsive to specific drugs.  相似文献   


10.
Aromatase, the enzyme responsible for estrogen biosynthesis, is a particularly attractive target in the treatment of hormone-dependent breast cancer. The synthesis and biological evaluation of a series of 2-(4'-pyridylmethyl)thio, 7-alkyl- or aryl-substituted isoflavones as potential aromatase inhibitors are described. The isoflavone derivatives demonstrate IC(50) values from 79 to 553 nM and compete with the endogenous substrate, androstenedione. Data supporting the ability of these analogs to suppress aromatase enzyme activity in the SK-BR-3 breast cancer cell line are also presented.  相似文献   

11.
Clinical trials have demonstrated the importance of aromatase inhibitor (AI) therapy in the effective treatment of hormone-dependent breast cancers. Yet, as with all prolonged drug therapy, resistance to aromatase inhibitors does develop. To date, the precise mechanism responsible for resistance to aromatase inhibitors is not completely understood. In this paper, several mechanisms of de novo/intrinsic resistance and acquired resistance to AIs are discussed. These mechanisms are hypothesized based on important findings from a number of laboratories.

To better understand this question, our lab has generated, in vitro, breast cancer cell lines that are resistant to aromatase inhibitors. Resistant cell lines were generated over a prolonged period of time using the MCF-7aro (aromatase overexpressed) breast cancer line. These cell lines are resistant to the aromatase inhibitors letrozole, anastrozole and exemestane and the anti-estrogen tamoxifen, for comparison. Two types of resistant cell lines have been generated, those that grow in the presence of testosterone (T) which is needed for cell growth, and resistant lines that are cultured in the presence of inhibitor only (no T). In addition to functional characterization of aromatase and ER in these resistant cell lines, microarray analysis has been employed in order to determine differential gene expression within the aromatase inhibitor resistant cell lines versus tamoxifen, in order to better understand the mechanism responsible for AI resistance on a genome-wide scale. We anticipate that our studies will generate important information on the mechanisms of AI resistance. Such information can be valuable for the development of treatment strategies against AI-resistant breast cancers.  相似文献   


12.
Aromatase is a key enzyme of estrogen production through conversion from serum androgens in estrogen-dependent postmenopausal breast cancer. Aromatase has been reported to be predominantly located in intratumoral stromal cells and adipocytes but not in parenchymal or carcinoma cells in breast cancer tissue. It is, however, true that there have been controversies regarding intratumoral localization of aromatase in human breast carcinoma, especially whether intratumoral production of estrogens through aromatase occurs in parenchymal or stromal cells. Results of several studies suggested that aromatase present in parenchymal carcinoma cells plays more important roles in the growth and invasion of breast carcinomas than that in stromal cells through providing higher levels of estrogens to carcinoma cells. Aromatase inhibitors are increasingly being used in place of tamoxifen after results of various clinical trials demonstrated that aromatase inhibitors are more effective in increasing survival and recurrence of estrogen-dependent breast cancer patients. Therefore, it is important to clarify the estrogen supplying pathway by aromatase inside of breast carcinoma tissues in order to evaluate the possible efficacy of aromatase inhibitor treatment. In this review, the controversies regarding these intratumoral localization patterns in human breast carcinoma will be briefly summarized.  相似文献   

13.
Aromatase inhibitors (AIs) are the major types of drugs to treat hormone-dependent breast cancer. Although these drugs work effectively, cancer still recurs in many patients after treatment as a result of acquired resistance to the AIs. To characterize the resistant mechanisms, a set of MCF-7aro cell lines that acquired resistance to the AIs was generated. Through an "Omics" approach, we found that the resistance mechanisms of the three AIs (anastrozole, letrozole, and exemestane) differ and activation of estrogen receptor alpha (ERα) is critical for acquired AI resistance. Our results reveal that growth factor/signal transduction pathways are upregulated after ERα-dependent pathways are suppressed by AIs, and ERα can then be activated through different crosstalk mechanisms.  相似文献   

14.
Aromatase and its inhibitors--an overview   总被引:2,自引:0,他引:2  
Estrogen synthesis by aromatase occurs in a number of tissues throughout the body. Strategies which reduce production of estrogen offer useful means of treating hormone-dependent breast cancer. Initially, several steroidal compounds were determined to be selective inhibitors of aromatase. The most potent of these, 4-hydroxyandrostenedione (4-OHA) inhibits aromatase competitively but also causes inactivation of the enzyme. A number of other steroidal inhibitors appear to act by this mechanism also. In contrast, the newer imidazole compounds are reversible, competitive inhibitors. In vivo studies demonstrated that 4-OHA inhibited aromatase activity in ovarian and peripheral tissues and reduced plasma estrogen levels in rat and non-human primate species. In rats with mammary tumors, reduction in ovarian estrogen production was correlated with tumor regression. 4-OHA was also found to inhibit gonadotropin levels in animals in a dose-dependent manner. The mechanism of this effect appears to be associated with the weak androgenic activity of the compound. Together with aromatase inhibition, this action may contribute to reducing the growth stimulating effects of estrogen. A series of studies have now been completed in postmenopausal breast cancer patients treated with 4-OHA either 500 mg/2 weeks or weekly, or 250 mg/2 weeks. These doses did not affect gonadotropin levels. Plasma estrogen concentrations were significantly reduced. Complete or partial tumor regression occurred in 26% of the patients and the disease was stabilized in 25% of the patients. The results suggest that 4-OHA is of benefit to postmenopausal patients who have relapsed from prior hormonal therapies. Several of the steroidal inhibitors are now entering clinical trials as well as non-steroidal compounds which are more potent and selective than aminoglutethimide. Aromatase inhibitors should provide several useful additions to the treatment of breast cancer.  相似文献   

15.
Aromatase is an important pharmacological target in the anti-cancer therapy as the intratumoral aromatase is the source of local estrogen production in breast cancer tissues. Suppression of estrogen biosynthesis by aromatase inhibition represents an effective approach for the treatment of hormone-sensitive breast cancer. Because of the membrane-bound character and heme-binding instability, no crystal structure of aromatase was reported for a long time, until recently when crystal structure of human placental aromatase cytochrome P450 in complex with androstenedione was deposited in PDB. The present study is towards understanding the structural and functional characteristics of aromatase to address unsolved mysteries about this enzyme and elucidate the exact mode of binding of aromatase inhibitors. We have performed molecular docking simulation with twelve different inhibitors (ligands), which includes four FDA approved drugs; two flavonoids; three herbal compounds and three compounds having biphenyl motif with known IC(50) values into the active site of the human aromatase enzyme. All ligands showed favorable interactions and most of them seemed to interact to hydrophobic amino acids Ile133, Phe134, Phe221, Trp224, Ala306, Val370, Val373, Met374 and Leu477 and hydrophilic Arg115 and neutral Thr310 residues. The elucidation of the actual structure-function relationship of aromatase and the exact binding mode described in this study will be of significant interest as its inhibitors have shown great promise in fighting breast cancer.  相似文献   

16.
17.
Aromatase and cyclooxygenases: enzymes in breast cancer   总被引:8,自引:0,他引:8  
Aromatase (estrogen synthase) is the cytochrome P450 enzyme complex that converts C19 androgens to C18 estrogens. Aromatase activity has been demonstrated in breast tissue in vitro, and expression of aromatase is highest in or near breast tumor sites. Thus, local regulation of aromatase by both endogenous factors as well as exogenous medicinal agents will influence the levels of estrogen available for breast cancer growth. The prostaglandin PGE2 increases intracellular cAMP levels and stimulates estrogen biosynthesis, and previous studies in our laboratories have shown a strong linear association between aromatase (CYP19) expression and expression of the cyclooxygenases (COX-1 and COX-2) in breast cancer specimens. To further investigate the pathways regulating COX and CYP19 gene expression, studies were performed in normal breast stromal cells, in breast cancer cells from patients, and in breast cancer cell lines using selective pharmacological agents. Enhanced COX enzyme levels results in increased production of prostaglandins, such as PGE2. This prostaglandin increased aromatase activity in breast stromal cells, and studies with selective agonists and antagonists showed that this regulation of signaling pathways occurs through the EP1 and EP2 receptor subtypes. COX-2 gene expression was enhanced in breast cancer cell lines by ligands for the various peroxisome proliferator-activated receptors (PPARs), and differential regulation was observed between hormone-dependent and -independent breast cancer cells. Thus, the regulation of both enzymes in breast cancer involves complex paracrine interactions, resulting in significant consequences on the pathogenesis of breast cancer.  相似文献   

18.
Particularly in postmenopausal women, peripheral aromatase appears to be the major source of oestrogens which may encourage the growth of hormone-dependent tumours. Studies have therefore been undertaken to determine factors which influence biosynthesis of oestrogens within breast tissues. Aromatase activity was measured in (i) breast cancers by incubating tumour homogenates with [73H]testosterone and characterizing the production of radioactively-labelled oestradiol and (ii) breast fat by incubation of sub-cellular fractions of fibroblast cell lines with [1ß3H]androstenedione and monitoring the formation of 3H2O. Evidence has been presented that (i) certain treatment regimes for cancer profoundly influence aromatase activity in breast tumours, (ii) aromatase activity is elevated in breast fat associated with malignancy and (iii) breast-derived fluids and extracts can markedly affect aromatase activity in cultured fibroblasts of breast fat.  相似文献   

19.
20.
Local endocrine effects of aromatase inhibitors within the breast   总被引:11,自引:0,他引:11  
To determine the effects of aromatase inhibitors on oestrogen uptake, in situ aromatase activity and endogenous oestrogens in the breast, postmenopausal women with large primary ER-rich breast cancers have been treated neoadjuvantly for 3 months with either letrozole (2.5 or 10 mg daily) or anastrozole (1 or 10 mg daily) or exemestane (25 mg daily). Patients were given an infusion of 3H-androstenedione and 14C-oestrone for 18 h before and at the end of the study period. Blood, tumour and non-malignant breast were taken immediately after each infusion; oestrogens were extracted and purified. Tumour volume was measured before and during treatment at monthly intervals so that endocrinological changes could be related to clinical response. Treatment with each of the aromatase inhibitors was associated with a profound reduction in peripheral aromatase (as monitored by the level of plasma 3H-oestrone). There was no consistent effect on uptake of radioactively labelled oestrogen into breast tumours but a tendency for levels to increase after treatment in non-malignant breast. Conversely, therapy was associated with a marked inhibition of in situ oestrogen synthesis in both tumour and non-malignant breast (in occasional tissues, inhibitors appeared to be less effective but the effect was not related to clinical or pathological responses). Similar decreases were apparent in endogenous levels of oestrone and oestradiol. The absence of in situ aromatase activity tended to be associated with lack of clinical response to aromatase inhibition but the relationship was not absolute, limiting the utility of measurements of tumour aromatase as a predictive indices. Ex vivo studies of tissue aromatase indicated that such measurements consistently underestimate the inhibitory potential of reversible non-steroidal agents (and occasionally paradoxical in vitro increases in aromatase activity were seen with treatment). However, in situ assays demonstrate that new aromatase inhibitors such as anastrozole, exemestane and letrozole have profound effects on the local endocrinology within the postmenopausal breast, these being compatible with the clinico-pathological changes which occur with treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号