共查询到20条相似文献,搜索用时 15 毫秒
1.
Keiji Sugimoto Sachiko Fujii Masayoshi Kaiho Itsuo Nakamura 《Cell and tissue research》1990,261(3):509-516
Summary Actin-containing cytoplasmic fibers were visualized in the mesenteric mesothelial cells of the large intestine of bullfrog tadpoles by rhodamine-phalloidin staining of en face preparations of mesothelial cells. These fibers were concurrently stained by immunofluorescence using antibodies to myosin or -actinin. Electron microscopy showed the presence of bundles of microfilaments in the basal cytoplasm of the cells. Such fibers in the mesothelial cells may be comparable to the stress fibers present in cultured cells. The mesothelial cells initially formed axially oriented stress fibers when they changed from a rhombic to a slender spindle-like shape. On the other hand, stress fibers disappeared as cells transformed from elongated to polygonal shapes during the period of metamorphic climax. Expression of stress fibers in these cells appears to be related to the degree of tension loaded on the mesentery, which may be generated by mesenteric winding. These stress fibers in the mesothelial cells may serve to regulate cellular transformation. They may also help to maintain cellular integrity by strengthening the cellular attachment to subepithelial tissue against tensile stress exerted on the mesentery. 相似文献
2.
Summary Monoclonal antibodies (MABs) have been raised against acidic glycolipids extracted from the electric organ of Torpedo marmorata. One of these, designated L9, appears to recognize acidic glycolipids in adult T. marmorata electric organ, electromotor nerves and brain, adult rat sciatic nerve, and in embryonic and neonatal rat brain, starting at embryonic day (ED) 15 and disappearing by the 20th day of post-natal life. The epitope is present in growth cones isolated from 4-day-old rats; its proportion relative to total gangliosides is, however, no higher than that found in whole neonatal brain membranes. Desialidation of the acidic glycolipid fraction modifies neither the immunoreactivity nor the RF value following thin-layer chromatography (TLC) of the antigen; it is concluded that the antigen is not a ganglioside. The MAB, HNK-1, recognizes the L9 antigen. Both HNK-1 and L9 recognize a sulphoglycolipid of the same RF in TLC. The function of the L9 antigen is not known but its evolutionary conservation, presence in growth cones and its developmental regulation in the mammalian central nervous system indicate that it plays an important role in nervous system maturation. 相似文献
3.
The role of microtubules and intermediate filaments in control of cell shape of cultured cells of hepatomas McA-RH-7777 and 27 was investigated. Indirect immunofluorescence with specific polyclonal antibodies against tubulin and monoclonal antibodies against prekeratin with molecular weight 49 kD and vimentin was used. Incubation of cells in colcemid, resulting in specific distribution of microtubules did not change either prekeratin or vimentin distribution in cells of both the hepatomas, but reversed polarization of elongated McA-RH-7777 cells. These data suggest that the effect of disruption of microtubular system on the cell shape is not mediated by alterations of intermediate filaments. 相似文献
4.
The actin cytoskeleton stress fiber is an actomyosin-based contractile structure seen as a bundle of actin filaments. Although tension development in a cell is believed to regulate stress fiber formation, little is known for the underlying biophysical mechanisms. To address this question, we examined the effects of tension on the behaviors of individual actin filaments during stress fiber (actin bundle) formation using cytosol-free semi-intact fibroblast cells that were pre-treated with the Rho kinase inhibitor Y-27632 to disassemble stress fibers into a meshwork of actin filaments. These filaments were sparsely labeled with quantum dots for live tracking of their motions. When ATP and Ca(2+) were applied to the semi-intact cells to generate actomyosin-based forces, actin meshwork in the protruded lamellae was dragged toward the cell body, while the periphery of the meshwork remained in the original region, indicating that centripetally directed tension developed in the meshwork. Then the individual actin filaments in the meshwork moved towards the cell body accompanied with sudden changes in the direction of their movements, finally forming actin bundles along the direction of tension. Dragging the meshwork by externally applied mechanical forces also exerted essentially the same effects. These results suggest the existence of tension-dependent remodeling of cross-links within the meshwork during the rearrangement of actin filaments, thus demonstrating that tension is a key player to regulate the dynamics of individual actin filaments that leads to actin bundle formation. 相似文献
5.
6.
The dynamic remodeling of actin filaments in guard cells functions in stomatal movement regulation. In our previous study, we found that the stochastic dynamics of guard cell actin filaments play a role in chloroplast movement during stomatal movement. In our present study, we further found that tubular actin filaments were present in tobacco guard cells that express GFP-mouse talin; approximately 2.3 tubular structures per cell with a diameter and height in the range of 1–3 µm and 3–5 µm, respectively. Most of the tubular structures were found to be localized in the cytoplasm near the inner walls of the guard cells. Moreover, the tubular actin filaments altered their localization slowly in the guard cells of static stoma, but showed obvious remodeling, such as breakdown and re-formation, in moving guard cells. Tubular actin filaments were further found to be colocalized with the chloroplasts in guard cells, but their roles in stomatal movement regulation requires further investigation.Key words: actin dynamics, tubular actin filaments, chloroplast, guard cell, stomatal movementStomatal movement responses to surrounding environment are mediated by guard cell signaling.1,2 Actin filaments within guard cells are dynamic cytoarchitectures and function in stomatal development and movement.3 Arrays of actin filaments in guard cells that are dependent on different stomatal apertures have also been reported in references 4–7. For example, the random or longitudinal orientations of actin filaments in closed stomata change to a radial orientation or ring-like array after stomata opening.5,6,8 The reorganization of the actin architecture during stomatal movement depends on the depolymerization and repolymerization of actin filaments in guard cells. In contrast to the traditional treadmill model of actin dynamic mechanisms, stochastic dynamics of actin have been revealed in plant cells, such as in the epidermal cells of hypocotyl and root, the pavement cells of Arabidopsis cotyledons, and the guard cells of tobacco (Nicotiana tabacum).9–11 In this alternative system, the short actin fragments generated from severed long filaments can link with each other to form longer filaments by end-joining activity. The actin regulatory proteins, Arp2/3 complex, capping protein and actin depolymerizing factor (ADF)/cofilin, may also be involved in the stochastic dynamics of actin filaments.12,13Using tobacco GFP-mouse talin expression lines, we have previously analyzed the stochastic dynamics of guard cell actin filaments and their roles in chloroplast displacement during stomatal movement.6,11 We found from these analyses that another arrangement of actin filaments, i.e., tubular actin filaments, exists in the guard cells of these tobacco lines. We first found the circle-like actin filaments in 82% of the guard cells (counting 320 cells) in tobacco expressing GFPmouse talin when analyzing a single optical section (Fig. 1A). In a previous study of BY-2 cells expressing GFP-Lifeact labeled actin filaments, Smertenko et al. found similar structures, i.e., quoit-like structures or acquosomes in all of the plant tissues examined except growing root hairs.10 However, in our present analysis of serial sections, we determined that the circle-like actin filaments in the tobacco guard cells were long tubes (Fig. 1A), as the lengths (about 3–5 µm) of these structures were greater than their diameter (about 1–3 µm). Hence, we denoted these structures as tubular actin filaments to distinguish them from the circular conformations of actin filaments observed previously in other plant cell tissues.10,14–19 About 2.3 of these tubular actin filaments were found per guard cell, which is less than the number of acquosomes reported in BY-2 cells (about 6.7 per cell).10 Analysis of serial optical sections at the z-axis revealed that the tubular actin filaments localize in the cytoplasm near the inner walls of the guard cells (Fig. 1B), which is similar to the distribution of chloroplasts in guard cells.11 Longitudinal sections further revealed a colocalization of tubular actin filaments and chloroplasts (Fig. 1B).Open in a separate windowFigure 1Tubular actin filaments in the guard cells of a tobacco (Nicotiana tabacum) line expressing GFP-mouse talin. (A) Optical-sections (interval, 1.5 µm) of guard cells in a moving stoma showing tubular actin filaments (arrow heads). Frames (a1) and (a2) are cross sections of 1.5-µm-picture through the yellow and red lines, respectively, revealing the cross section of the circle structures are parallel lines (arrows). (B) Optical-sections of a stoma from the outer periclinal walls to the inner walls of the guard cells (interval, 1 µm). The tubular actin filaments (arrow heads) are localized in the cytoplasm near to the inner periclinal walls of guard cells. Frame (b1) is the guard cell on the right of the frame “4 µm”; (b2) is the cross section of b1 through the red line; and (b3) is a higher magnification image of the area encompassed by the white square in b2. Arrows indicate the colocalization between the tubular actin filaments and the chloroplast (indicated using a red pseudocolor). (C) Time-series imaging showing the movement of tubular actin filaments in the guard cells of static stomata. Frame (c1) comprises three images colored red (0 S), green (40 S) and blue (80 S), that are merged in a single frame to show the translocation of the tubular actin filaments (arrows). (D) Time-series images of the opening stomata showing the breakdown (arrows) and re-formation (arrowheads) of the tubular actin filaments. All images were captured using a Zeiss LSM 510 META confocal laser scanning microscope, as described by Wang et al.11 Bars, 10 µm.We performed time-lapse imaging and found that the translocation of tubular actin filaments is slow in static stomata in which the distance between two tubular actin filaments typically increased from 2.22 to 2.50 µm after 80 sec (Fig. 1C). In moving stomata, however, the tubular actin filaments showed an obvious dynamic reorganization whereby they could be processed into short fragments and also reemerged after they had disintegrated (Fig. 1D). These results indicate that tubular actin filaments have stochastic dynamics that are similar to the long actin filaments of guard cells.11 In our previous study, we found that the stochastic dynamics of actin filaments correlate with light-induced chloroplast movement in guard cells.11 However, whether the dynamics of the tubular actin filaments are also involved in chloroplast movement during stomatal movement remains to be investigated. In cultured mesophyll cells which had been mechanically isolated from Zinnia elegans, Wilsen et al. previously found a close association between fully closed actin rings and chloroplasts.18 These authors further found that the average percentage of cells with free actin rings increased at the initial culture stage, and then decreased, which indicates that the formation of actin rings might be a response of the actin cytoskeleton to cellular stress or disturbance.18 The turgor pressure of guard cells is the fundamental basis of stomatal movement leading to changes in the shape, volume, wall structure, and membrane surface of guard cells.20–24 We speculate from our current data that there is a relationship between tubular actin filaments and the shape changes of guard cells during stomatal movement. 相似文献
7.
The relationship between stress fibers and tension in mesothelial cells of the bullfrog small intestine was examined by fluorescence cytochemistry using en face mesothelial cell preparations. In nontreated controls, actin revealed by rhodamine-phalloidin staining was localized only along the margins of the mesothelial cells. On the other hand, many stress fibers were formed in the mesothelial cells within 5-7 min after stretching of the intestinal wall in a given direction. The orientation of stress fibers within the cells was coincident with the direction of the tension applied. These cytoplasmic fibers disappeared almost completely from the mesothelial cells within 30 min after the release of tension. According to a difference in the intensity of tension necessary for stress fiber expression, the intestinal mesothelial cells were classified into two groups. Furthermore, cells containing stress fibers in each group showed a rapid increase in number once a given value of tension was applied. The present results indicate that the mesothelial cells of bullfrog small intestine may develop stress fibers to counteract tension exerted on the intestinal wall. Such stress fibers may serve to maintain cellular integrity by strengthening the cellular attachment to subepithelial tissue. 相似文献
8.
Role of phragmoplast filaments in cell-plate formation 总被引:4,自引:0,他引:4
9.
Y P Cheon M C Gye C H Kim B M Kang Y S Chang S R Kim M K Kim 《Zygote (Cambridge, England)》1999,7(2):123-129
Hatching has been suggested to occur as a result of protease-mediated lysis and the blastocoele tension. However, even if rupturing is initiated at multiple sites, interestingly only a single site is used for escape. This implies that there are several mechanisms involved in hatching. In this study, the involvement of actin filaments in mouse embryo hatching was examined. We treated mouse embryos with cytochalasin B for 12 h or 24 h at the morula, middle blastocyst, expanded blastocyst, lobe-formed blastocyst and hatching blastocyst stages, and measured the amount and distribution of actin filaments using a confocal microscope. At morula, middle blastocyst, lobe-formed blastocyst and hatching blastocyst stages embryonic development was completely arrested by cytochalasin B. However, when transferred to cytochalasin-B-free medium, the embryos resumed development and escaped the zona pellucida. In the expanded blastocysts development was almost completely inhibited by cytochalasin B, but rupturing occurred in some embryos. However, development stopped completely at the ruptured stage. Distribution of actin filaments was prominent at rupturing and hatching sites regardless of cytochalasin B treatment. The amount of actin filaments was prominent at hatching embryos compared with other developmental stages of embryos. These actin filaments were distributed intensively between the trophectodermal cells, and formed locomotion patterns. Taken together, these results suggest that not only tension and lytic enzymes are required to rupture, but the activity of actin filaments may have a crucial role in the process of hatching. 相似文献
10.
The Dbl family proto-oncogene vav is a guanine nucleotide exchange factor (GEF) for Rho family GTPases. Deletion of the N-terminus of Vav, harboring the single calponin homology (CH) domain, activates Vav's transforming potential, suggesting an important role of the CH domain in influencing Vav function. Since calponin binds actin, it has been suggested that the CH domain may mediate association with the actin cytoskeleton. In this study we have analyzed the subcellular localization and investigated the putative actin association of the Vav protein using enhanced green fluorescent protein (EGFP) fusion constructs. Our data show that both EGFP-tagged full length Vav and the CH domain-depleted EGFPvav 143-845 construct localize throughout the cytoplasm but fail to colocalize with F-actin. However, the latter construct of Vav was more strongly retained in the Triton-insoluble cytoskeleton fraction than full length Vav. Whereas removal of the CH domain had no apparent influence on the subcellular localization of Vav, deletion of the SH domains caused nuclear localization, indicating that Vav contains a functional nuclear localization signal. Expression of N-terminally truncated Vav constructs caused depolarization of fibroblasts and triggered the bundling of actin stress fibers into parallel arrays in NIH 3T3 cells. Notably, the parallel actin bundles showed prolonged resistance to the actin polymerization antagonists cytochalasin B and latrunculin B. These data point towards a regulatory role for the CH domain in Vav and suggest an actin cross-linking or bundling protein as a downstream effector molecule of vav-mediated signalling pathways. 相似文献
11.
L F Lemanski 《The Journal of cell biology》1979,82(1):227-238
Recessive mutant gene c in Ambystoma mexicanum embryos causes a failure of the heart to function even though initial heart development appears normal. An analysis of the constituent proteins of normal and mutant hearts by SDS-poly-acrylamide gel electrophoresis shows that actin (43,000 daltons) is present in almost normal amounts, while myosin heavy chain (200,000 daltons) is somewhat reduced in mutants. Both SDS-polyacrylamide gel electrophoresis and immunofluorescence studies reveal that tropomyosin is abundant in normal hearts, but very much reduced in mutants. Electron microscope studies of normal hearts show numerous well-organized myofibrils. Although mutant cardiomyocytes contain a few 60- and 150-A filaments, organized sacromeres are absent. Instead, amorphous proteinaceous collections are prominent. Previously reported heavy meromyosin (HMM)-binding experiments on glycerinated hearts demonstrate that most of the actin is contained within the amorphous collections in a nonfilamentous state, and the addition of HMM causes polymerization into F actin (Lemanski et al., 1976, J. Cell. Biol. 68:375-388). In the present study, glycerol-extracted hearts are incubated with tropomyosin, purified from rabbit or chicken skeletal muscle. This treatment causes the amorphous collections to disappear, and large numbers of distinct thin actin (60- to 80-A) filaments are seen in their place. Negative staining experiments corroborate this observation. These results suggest that the nonfilamentous actin located in the amorphous collections of mutant heart cells is induced to form into filaments with the addition of tropomyosin. 相似文献
12.
Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape 总被引:17,自引:7,他引:17
下载免费PDF全文

《The Journal of cell biology》1993,120(4):923-934
Microtubules are long, proteinaceous filaments that perform structural functions in eukaryotic cells by defining cellular shape and serving as tracks for intracellular motor proteins. We report the first accurate measurements of the flexural rigidity of microtubules. By analyzing the thermally driven fluctuations in their shape, we estimated the mean flexural rigidity of taxol-stabilized microtubules to be 2.2 x 10(-23) Nm2 (with 6.4% uncertainty) for seven unlabeled microtubules and 2.1 x 10(-23) Nm2 (with 4.7% uncertainty) for eight rhodamine-labeled microtubules. These values are similar to earlier, less precise estimates of microtubule bending stiffness obtained by modeling flagellar motion. A similar analysis on seven rhodamine-phalloidin- labeled actin filaments gave a flexural rigidity of 7.3 x 10(-26) Nm2 (with 6% uncertainty), consistent with previously reported results. The flexural rigidity of these microtubules corresponds to a persistence length of 5,200 microns showing that a microtubule is rigid over cellular dimensions. By contrast, the persistence length of an actin filament is only approximately 17.7 microns, perhaps explaining why actin filaments within cells are usually cross-linked into bundles. The greater flexural rigidity of a microtubule compared to an actin filament mainly derives from the former's larger cross-section. If tubulin were homogeneous and isotropic, then the microtubule's Young's modulus would be approximately 1.2 GPa, similar to Plexiglas and rigid plastics. Microtubules are expected to be almost inextensible: the compliance of cells is due primarily to filament bending or sliding between filaments rather than the stretching of the filaments themselves. 相似文献
13.
Summary Ring formed actin filaments were observed in tobacco BY-2 cells. The change of this structure during culture was followed by fluorescence microscopy. 相似文献
14.
Interactions between actin filaments and between actin filaments and membranes in quick-frozen and deeply etched hair cells of the chick ear 总被引:7,自引:13,他引:7
下载免费PDF全文

《The Journal of cell biology》1982,95(1):249-261
Replicas of the apical surface of hair cells of the inner ear (vestibular organ) were examined after quick freezing and rotary shadowing. With this technique we illustrate two previously undescribed ways in which the actin filaments in the stereocilia and in the cuticular plate are attached to the plasma membrane. First, in each stereocilium there are threadlike connectors running from the actin filament bundle to the limiting membrane. Second, many of the actin filaments in the cuticular plate are connected to the apical cell membrane by tiny branched connecting units like a "crow's foot." Where these "feet" contact the membrane there is a small swelling. These branched "feet" extend mainly from the ends of the actin filaments but some connect the lateral surfaces of the actin filaments as well. Actin filaments in the cuticular plate are also connected to each other by finer filaments, 3 nm in thickness and 74 +/- 14 nm in length. Interestingly, these 3-nm filaments (which measure 4 nm in replicas) connect actin filaments not only of the same polarity but of opposite polarities as documented by examining replicas of the cuticular plate which had been decorated with subfragment 1 (S1) of myosin. At the apicolateral margins of the cell we find two populations of actin filaments, one just beneath the tight junction as a network, the other at the level of the zonula adherens as a ring. The latter which is quite substantial is composed of actin filaments that run parallel to each other; adjacent filaments often show opposite polarities, as evidenced by S1 decoration. The filaments making up this ring are connected together by the 3-nm connectors. Because of the polarity of the filaments this ring may be a "contractile" ring; the implications of this is discussed. 相似文献
15.
Actin has been found in nuclei of many cell types, but little is known about its form and function. A recent study has shown that a lack of specific export allows actin to accumulate in the nucleus, where it forms a network of actin filaments that may be required to stabilize the giant nucleus of the Xenopus oocyte. 相似文献
16.
Muscle contraction results from relative sliding of actin and myosin filaments. However, the possibility that actin filaments twist or rotate during sliding has not yet been experimentally investigated. We found that a super helix of an actin filament is formed in an in vitro motile system. This fact suggests that an actin filament twists and rotates due to a torque component of a sliding force generated at cross-bridges. 相似文献
17.
18.
ADP-ribosylated actin caps the barbed ends of actin filaments 总被引:13,自引:0,他引:13
The mode of action on actin polymerization of skeletal muscle actin ADP-ribosylated on arginine 177 by perfringens iota toxin was investigated. ADP-ribosylated actin decreased the rate of nucleated actin polymerization at substoichiometric ratios of ADP-ribosylated actin to monomeric actin. ADP-ribosylated actin did not tend to copolymerize with actin. Actin filaments were depolymerized by the addition of ADP-ribosylated actin. The maximal monomer concentration reached by addition of ADP-ribosylated actin was similar to the critical concentration of the pointed ends of actin filaments. ADP-ribosylated actin had no effect on the rate of polymerization of gelsolin-capped actin filaments which polymerize at the pointed ends. The results suggest that ADP-ribosylated actin acts as a capping protein which binds to the barbed ends of actin filaments to inhibit polymerization. Based on an analysis of the depolymerizing effect of ADP-ribosylated actin, the equilibrium constant for binding of ADP-ribosylated actin to the barbed ends of actin filaments was determined to be about 10(8) M-1. As actin is ADP-ribosylated by perfringens iota toxin and by botulinum C2 toxin, it appears that conversion of actin into a capping protein by ADP-ribosylation is a pathophysiological reaction catalyzed by bacterial toxins which ultimately leads to inhibition of actin assembly. 相似文献
19.
The actin filament severing protein actophorin promotes the formation of rigid bundles of actin filaments crosslinked with alpha-actinin 总被引:4,自引:7,他引:4
下载免费PDF全文

S K Maciver D H Wachsstock W H Schwarz T D Pollard 《The Journal of cell biology》1991,115(6):1621-1628
The actin filament severing protein, Acanthamoeba actophorin, decreases the viscosity of actin filaments, but increases the stiffness and viscosity of mixtures of actin filaments and the crosslinking protein alpha-actinin. The explanation of this paradox is that in the presence of both the severing protein and crosslinker the actin filaments aggregate into an interlocking meshwork of bundles large enough to be visualized by light microscopy. The size of these bundles depends on the size of the containing vessel. The actin filaments in these bundles are tightly packed in some areas while in others they are more disperse. The bundles form a continuous reticulum that fills the container, since the filaments from a particular bundle may interdigitate with filaments from other bundles at points where they intersect. The same phenomena are seen when rabbit muscle aldolase rather than alpha-actinin is used as the crosslinker. We propose that actophorin promotes bundling by shortening the actin filaments enough to allow them to rotate into positions favorable for lateral interactions with each other via alpha-actinin. The network of bundles is more rigid and less thixotropic than the corresponding network of single actin filaments linked by alpha-actinin. One explanation may be that alpha-actinin (or aldolase) normally in rapid equilibria with actin filaments may become trapped between the filaments increasing the effective concentration of the crosslinker. 相似文献
20.
As is well known, the light scattering intensity of F-actin solutions increases immediately upon formation of the rigor complex with subfragment-1 (S-1). We have found that after the initial rise in scattering, there is a further gradual increase in scattering (we call it "super-opalescence"). Fluorescence and electron microscopic observations of acto-S-1 solutions showed that super-opalescence results from formation of actin filament bundles once S-1 binds to F-actin. The actin bundles possessed transverse stripes with a periodicity of about 350 A, which suggested that in the bundles actin filaments are arranged in parallel register. The rate of the initial process of bundle formation (i.e. side-by-side dimerization) could be approximately estimated by measuring the initial rate of super-opalescence (V0). V0 had a maximum (V0m) at a molar ratio of S-1 to actin of 1;6-1;7, regardless of the actin concentration, pH (6-8.5), Mg2+ concentration (up to 5 mM), or ionic strength (up to 0.3 M KC1). Lower pH, higher Mg2+ concentration, and higher ionic strength increased V0m; V0 was proportional to the square of the actin concentration, regardless of the solution conditions. 相似文献