首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The conversion of substantial amounts of ammonia nitrogen into organic nitrogen as a direct result of nitrification at neutral pH-values, was monitored in soil suspensions amended with ammonium nitrogen. The influence of the chemolithotrophic nitrifying bacteria was verified by applying nitrapyrin as a selective inhibitor in control experiments. In addition, the role of phenolic compounds was examined by adding α naphthol. The factors influencing the nitrification processi.e. pH, NH 4 + −N, NO 2 −N, NO 3 −N were measured during a 60 days incubation period. Nitrification started to be active after 5 and 10 days in the normal and the naphthol spiked soil suspensions respectively; it was inhibited in the nitrapyrin controls. Parallel with nitrification, formation of organic nitrogen was observed. The humic matter fractions were extracted and analyzed by I.R. spectroscopy which revealed the valence vibration ranges of nitro and nitroso groups fixed in different positions on aromatic compounds, both for normal and naphthol spiked samples. High resolution gas chromatography combined with mass spectroscopic analysis indicated the formation of nitrosonaphtholes. In addition a novel organic nitro compound was identifiedi.e. an azido nitro benzene. No nitrogen was fixed in the samples treated with nitrification inhibitor. A mechanism for the fixation of nitrite nitrogen during nitrification is proposed.  相似文献   

2.
A sand-culture experiment was conducted to study the influence of a deficiency of and an excess of micronutrients on the uptake and assimilation of NH 4 + and NO 3 ions by maize. By studying the fate of15N supplied as15NH4NO3 or NH4 15NO3, it was demonstrated that in maize plants NH4−N was absorbed in preference to NO 3 −N. The uptake and distribution of N originating from both NH 4 + and NO 3 was considerably modified by deficiency of, or an excess of, micronutrients in the growth medium. The translocation of NH 4 + −N from roots to shoots was relatively less than that of NO 3 −N. Deficiency as well as excessive amounts of micronutrients, in the growth medium, substantially reduced the translocation of absorbed N into protein. This effect was more pronounced in the case of N supplied as NO 3 . Amino-N was the predominant non-protein fraction in which N from both NH 4 + and NO 3 tended to accumulate. The next important non-protein fractions were NO 3 −N when N was supplied as NO 3 and amide-N when NH 4 + was the source. The relative accumulation of15N into different protein fractions was also a function of imposed micronutrient levels.  相似文献   

3.
M. Burger  L. E. Jackson 《Plant and Soil》2005,266(1-2):289-301
Immobilization of ammonium (NH 4 + ) by plants and microbes, a controlling factor of ecosystem nitrogen (N) retention, has usually been measured based on uptake of15NH 4 + solutions injected into soil. To study the influence of roots on N dynamics without stimulating consumption of NH 4 + , we estimated gross nitrification in the presence or absence of live roots in an agricultural soil. Tomato (Lycopersicon esculentum var. Peto76) plants were grown in microcosms containing root exclosures. When the plants were 7 weeks old,15N enriched nitrate (NO 3 ) was applied in the 0–150 mm soil layer. After 24 h, > 30 times more15NH 4 + was found in the soil with roots than in the soil of the root exclosures. At least 18% of the NH 4 + -N present at this time in the soil with roots had been converted from NO 3 . We estimated rates of conversion of NO 3 to NH 4 + , and rates ofNH 4 + immobilization by plants and microbes, by simulating N-flow of14+15N and15N in three models representing mechanisms that may be underlying the experimental data: Dissimilatory NO 3 reduction to NH 4 + (DNRA), plant N efflux, and microbial biomass nitrogen (MBN) turnover. Compared to NO 3 uptake, plant NH 4 + uptake was modest. Ammonium immobilization by plants and microbes was equal to at least 35% of nitrification rates. The rapid recycling of NO 3 to NH 4 + via plants and/or microbes contributes to ecosystem N retention and may enable plants growing in agricultural soils to capture more NH 4 + than generally assumed.  相似文献   

4.
Scott EE  Rothstein DE 《Oecologia》2011,167(2):547-557
The relationship between inorganic nitrogen (N) cycling and plant productivity is well established. However, recent research has demonstrated the ability of plants to take up low molecular weight organic N compounds (i.e., amino acids) at rates that often rival those of inorganic N forms. In this study, we hypothesize that temperate forest tree species characteristic of low-fertility habitats will prefer amino acids over species characteristic of high-fertility habitats. We measured the uptake of 15N-labeled amino acids (glycine, glutamine, arginine, serine), ammonium (NH4 +), and nitrate (NO3 ) by four tree species that commonly occur in eastern North America, where their abundances have been correlated with inorganic N availability. Specific uptake rates of amino acids were largely similar for all tree species; however, high-fertility species took up NH4 + at rates more than double those of low-fertility species, rendering amino acid N relatively more important to the N nutrition of low-fertility species. Low-fertility species acquired over four times more total N from arginine compared to NH4 + and NO3 ; high-fertility species acquired the most N from NH4 +. Arginine had the highest uptake rates of any amino acid by all species; there were no significant differences in uptake rates of the remaining amino acids. Our results support the idea that the dominant species in a particular habitat are those best able to utilize the most available N resources.  相似文献   

5.
Summary The importance of initial exchangeable soil NH 4 + in nitrogen nutrition and grain yield of rice was studied in a number of representative lowland rice soils in the Philippines. The initial exchangeable soil NH 4 + +fertilizer N plotted against nitrogen uptake by the crop resulted in a highly significant linear relationship (R2=0.91), suggesting that the presence of exchangeable NH 4 + in the soil at transplanting behaved like fertilizer nitrogen. The correlation between N fertilizer rate and N uptake by the rice crop was relatively poor (R2=0.73). On the other hand, relative grain yield was more closely correlated with the initial exchangeable soil NH 4 + +fertilizer N than with fertilizer nitrogen applied alone. These results indicate that the initial exchangeable NH 4 + in the soil contributed substantially to the nitrogen uptake of the crop.Critical nitrogen levels in the soil defined as the initial exchangeable soil NH 4 + +fertilizer N at which the optimum grain yield (95% of the maximum yield) is obtained, varied from 60 to 100 kg N/ha in the wet season and from 100 to 120 kg N/ha in the dry season for the different fertilizer treatments. The results further suggest that the initial exchangeable soil NH 4 + should serve as a guide in selecting an optimum nitrogen fertilizer rate for high grain yields.  相似文献   

6.
The variability of the percentage of extracellular dissolved organic nitrogen (DON) release (PER), along with the relationship between DON release and bacterioplankton activity, was examined during five oceanographic cruises, carried out in the upwelling region of the NW Iberian Peninsula, the SW Bay of Biscay, and a latitudinal transect in the Atlantic Ocean (50°N–35°S). Rates of nitrogen uptake, DON release, and bacterial production were measured at 66 stations and sampled between August 1998 and October 2000. The percentage of DON release relative to the gross uptake of ammonium (PERNH4+) ranged from 3 to 46%, whereas that relative to total nitrogen (NH4 + + NO3 + urea) gross uptake (PERtotal) varied between 21 and 82%. The highest values for both PERNH4+ and PERtotal were found in oligotrophic oceanic waters (<0.25 mg chlorophyll a m−3). In oceanic environments, a positive relationship was found between nitrogen uptake and DON release rates, with a log–log linear regression slope significantly lower than 1, suggesting an inverse relationship between PER and gross nitrogen uptake rates. In contrast, in areas with higher productivity levels (>6 mg chlorophyll a m−3), such as the continental shelf off the NW Iberian Peninsula, PER held constant as nitrogen uptake increased. These results suggest the dominance of different processes controlling DON release in oceanic and neritic zones. DON release rates accounted for less than 15% of the variability observed in bacterial production rates, suggesting a weak response of bacterioplankton to phytoplankton on short time scales (hours). Furthermore, nitrogen budgets showed an excess of DON release in relation to bacterial requirements.  相似文献   

7.
Granitic materials represent a common erosive substrate in California and much of the western United States. When granitic rocks weather, they disintegrate into coarse textured, non-cohesive substrates, known generally as decomposed granite (DG). Because of low moisture and N availability, revegetation of these substrates for erosion control is difficult. If nitrate based fertilizers are used, they can be rapidly leached, while NH 4 + fertilizers may be sequestered mineralogically by interlayer fixation. In this study, we focus on the occurrence of NH 4 + fixation on a decomposed granitic substrate and show that the fixation capacities of these sandy saprolites are significant despite analyses indicating that the samples are predominantly quartz, have low clay contents and have low cation exchange capacities (CEC). At field loading rates equivalent to less than 300 kg N ha−1, 36–42% of added NH 4 + may become unavailable to plants due to interlayer collapse and fixation for an unknown period of time. Ammonium fixation did not vary significantly in relation to substrate weathering class in these samples. Oriented X-ray diffraction analysis revealed the presence of vermiculite in particle size fractions from clay to very coarse sands. While other studies have identified silt as the most active fraction, the relative fixation capacity of these granite saprolites was greatest in the fine and very fine sand fractions when considered on a gram for gram basis of each individual particle size. We found that the extractant cation also influenced the measured levels of NH 4 + fixation in these granite saprolites. At loading rates of 0–150 kg NH 4 + ha−1, extraction with KCl resulted in apparent NH 4 + fixation capacities that were twice as great as those found with NaCl extractions when tested at low NH 4 + concentrations and close to 35% greater at higher NH 4 + amendment loading. Estimation of available ammonium in the decomposed granite using conventional KCl extraction methods appears to cause fixation, rather than extraction of at least part of the substrate’s NH 4 + content.  相似文献   

8.
There is ample experimental evidence that, Na, if supplied in separate fertiliser granules or crystals to N, i.e., in blended fertiliser form, can improve both the yield and the recovery of fertiliser N by grassland swards in situations of limited K supply, but not in situations of K abundance. There is some evidence, though, that in K-replete situations, Na, if supplied in the same fertiliser granule as N, i.e. in concentrated complex fertiliser (CCF) form, also improves dry matter production and N recovery by swards whilst lowering the risk of grass tetany in grazing animals. However, the mechanism for the latter effect of Na on N uptake has never been elucidated, nor has it been clarified whether Na stimulates NH 4 + and NO 3 uptake by plants or simply NO 3 uptake alone. The aim of the present study was to see if supplying Na in the same fertiliser pellets (NNa-CCF) as NH4NO3 (differentially labelled with15N), or in separate pellets (NNa-blend), had any effect on the recovery of15N-labelled NH 4 + and NO 3 -N by perennial ryegrass plants growing in a glasshouse under K-replete conditions. The results of the experiment confirmed that using an NNa-CCF was more beneficial to shoot production than using an NNa-blend. However, the differential in shoot production occurred without any corresponding difference in total N (i.e. NH 4 + plus NO 3 -N) recovery in shoot tissue. Instead, Na, in the CCF appears to have stimulated NO 3 uptake at the expense of NH 4 + absorption, thereby altering the balance between NH 4 + and NO 3 -nutrition in favour of NO 3 -nutrition, and stimulating shoot production as a consequence. It was concluded that if grassland is already well supplied with K it would be more beneficial in terms of sward production to apply a Na and N-containing CCF than a blend of separate Na and N-containing granules or crystals.  相似文献   

9.
Laboratory incubations were used to investigate the influence of soil mixing intensity and waterlogged conditions on nutrient mobilisation from models of cultivated heathland soil. Fragmentation of the peaty surface horizon after different soil cultivation intensities was simulated using four different surface areas of peat organic matter. In well aerated conditions, increased mobilisation of C, NH 4 + −N, PO 4 3− , K+, Ca2+ and Mg2+ was observed with increased mixing intensity and increased surface area of peat. For all nutrients apart from calcium, intensively mixed treatments showed higher mobilisation rates under waterlogging than under well aerated conditions. This was particularly clear for NH 4 −N and PO 4 3− mobilisation. Simple linear regression analysis showed that, under aerated conditions, for four mixing intensities, rates of mobilisation of NH 4 + −N, PO 4 3− , K+, Ca2+ and Mg2+ were approximately constant per unit of peat surface area exposed during soil mixing. Waterlogging was more important than soil mixing intensity in determining nitrogen mobilisation rates in saturated soil.  相似文献   

10.
In a greenhouse study, with and without rice plants, of five flooded Philippine rice soils whose organic C (OC) content varied from 0.5 to 3.6%, incorporation ofSesbania rostrata, Azolla microphylla and rice straw affected the kinetics of soil solution NH 4 + −N, K+, Fe2+, Mn2+, Zn2+, and P. Sesbania and Azolla increased NH 4 + −N concentration above the control treatment, whereas rice straw depressed it. In all soils Azolla released less NH 4 + −N than Sesbania. The apparent net N release depended on the soil and ranged from 44–81% for Sesbania and 27–52% for Azolla. These effects persisted throughout the growth of IR36. Soil solution and exchangeable NH 4 + −N increased initially but levelled off between 30 to 80 days and between 20 to 40 days after flooding (DF), respectively. With rice, soil solution NH 4 + −N concentration, reached a peak at 15–40 DF and declined to very low levels (<4mg L−1). In the 3 soils of low OC content nitrogen derived from green manure ranged from 34–53% and the apparent revovery of added green manure N varied from 29–67%. Almost all N released from both Azolla and Sesbania were recovered in the rice plant in all soils except Concepcion with only 77%. The concentration of K+, Fe2+, Mn2+ and P in the soil solution were higher with rice straw than Sesbania and Azolla in all soils except Hanggan which showed no change in Fe2+ and Mn2+ but increased K+ and P. In general, rice straw, Sesbania and Azolla decreased Zn2+ concentration in all soils.  相似文献   

11.
Human activities are altering biodiversity and the nitrogen (N) cycle, affecting terrestrial carbon (C) cycling globally. Only a few specialized bacteria carry out nitrification—the transformation of ammonium (NH 4 + ) to nitrate (NO 3 ), in terrestrial ecosystems, which determines the form and mobility of inorganic N in soils. However, the control of nitrification on C cycling in natural ecosystems is poorly understood. In an ecosystem experiment in the Patagonian steppe, we inhibited autotrophic nitrification and measured its effects on C and N cycling. Decreased net nitrification increased total mineral N and NH 4 + and reduced NO 3 in the soil. Plant cover (P < 0.05) and decomposition (P < 0.0001) decreased with inhibition of nitrification, in spite of increases in NH 4 + availability. There were significant changes in the natural abundance of δ15N in the dominant vegetation when nitrification was inhibited suggesting that a switch occurred in the form of N (from NO 3 to NH 4 + ) taken up by plants. Results from a controlled-condition experiment supported the field results by showing that the dominant plant species of the Patagonian steppe have a marked preference for nitrate. Our results indicate that nitrifying bacteria exert a major control on ecosystem functioning, and that the inhibition of nitrification results in significant alteration of the C cycle. The interactions between the C and N cycles suggest that rates of C cycling are affected not just by the amount of available N, but also by the relative availability for plant uptake of NH 4 + and NO 3 .  相似文献   

12.
S. C. Jarvis 《Plant and Soil》1987,100(1-3):99-112
Summary Perennial ryegrass was grown in flowing solution culture with nitrogen supplied in amounts that increased exponentially,i.e. in parallel with the rate of increase in growth. Nitrogen was supplied as either NO 3 or NH 4 + , and the amounts to be added were calculated on the basis of extrapolated values for dry weights obtained from fitted curves. There were two rates of addition for each form of N aimed at providing adequate (5.0 per cent) and less than adequate (2.75 per cent) contents in the plants in each case. Measured plant weights and N concentrations were in close agreement with predicted values over a four week experimental period. There was no effect of N-form at high N, and these plants produced 46 per cent more dry matter than the plants at low N. Only minor differences in overall growth occurred with NO 3 or NH 4 + plants at low N, but the NH 4 + plants had a greater shoot:root ratio. The absorption rate (m mol Ng root d−1) for NH 4 + -N was therefore greater than for NO 3 -N. The cation/anion composition of the plants was affected in a predicable way, and to a greater or lesser extent at high or low N, respectively, in NO 3 or NH 4 + plants. The major changes in cation composition came through effects on potassium absorption. Plants with low NO 3 appeared to be under greater N stress than those with low NH 4 + because of the lower shoot:root ratio and the greater C∶N ratio in the shoots.  相似文献   

13.
Tomato plants were cultivated (from 2 to 23 days after germination) in media with NO 3 , NH 4 + , or a mixture of both forms in different proportions used as the N source given with or without 5 mol dm−3 HCO 3 . The accumulation of soluble sugars (reducing sugars and sucrose) and free amino acids was higher in the roots and leaves of NH 4 + -fed plants than in NO 3 -fed plants. Starch accumulation in NH 4 + -fed plants was higher in leaves (about 28%) and lower in roots (about 37%) in comparison with that of NO 3 -fed plants. Plants cultivated in media containing a mixture of NO 3 /NH 4 + were characterized by a lower content of sugars and amino acids accumulation in comparison with that in plants fed with NO 3 or NH 4 + . An elevated HCO 3 concentration in the rhizosphere stimulated the accumulation of soluble sugars and free amino acids in all the experimental variants. There were only small differences in the starch content.  相似文献   

14.
This study examined changes in dissolved organic nitrogen (DON) and dissolved inorganic nitrogen (DIN) in coastal seawater after exposure to sand along a high energy beach face over an annual cycle between April 2004 and July 2005. Dissolved organic nitrogen, NO3 , and NH4 + were released from sand to seawater in laboratory incubation experiments clearly demonstrating that they are a potential source of N to underlying groundwater or coastal seawater. DON increases in seawater, after exposure to surface sands in laboratory experiments, were positively correlated with in situ water column DON concentrations measured at the same time as sand collection. Increase in NO3 and NH4 + were not correlated with their in situ concentrations. This suggests that DON released from beach sands is relatively more recalcitrant while NO3 and NH4 + are utilized rapidly in the coastal ocean. The release of N was seasonal with carbon to nitrogen ratios indicating that recent primary productivity was responsible for the largest fluxes in summer while more degraded humic material contributed to lower fluxes in winter. Fluxes of total dissolved nitrogen (DON and DIN) from surface sand (2.1 × 10−4 mol m−2 h−1) were similar to that of groundwater and more than an order of magnitude larger than rain deposition indicating the potential importance of surface sand derived nitrogen to the coastal zone with a corresponding impact on primary productivity.  相似文献   

15.
It is possible to cultivate aerobic granular sludge at a low organic loading rate and organics-to-total nitrogen (COD/N) ratio in wastewater in the reactor with typical geometry (height/diameter = 2.1, superficial air velocity = 6 mm/s). The noted nitrification efficiency was very high (99%). At the highest applied ammonia load (0.3 ± 0.002 mg NH4+–N g total suspended solids (TSS)−1 day−1, COD/N = 1), the dominating oxidized form of nitrogen was nitrite. Despite a constant aeration in the reactor, denitrification occurred in the structure of granules. Applied molecular techniques allowed the changes in the ammonia-oxidizing bacteria (AOB) community in granular sludge to be tracked. The major factor influencing AOB number and species composition was ammonia load. At the ammonia load of 0.3 ± 0.002 mg NH4+–N g TSS−1 day−1, a highly diverse AOB community covering bacteria belonging to both the Nitrosospira and Nitrosomonas genera accounted for ca. 40% of the total bacteria in the biomass.  相似文献   

16.
Summary The uptake and distribution of15NH 4 + ,15NO 3 and15N2 was studied in greenhouse-grown beans (Phaseolus vulgaris L.) with a commercial cultivar and 2 recombinant inbred backcross lines;15N was supplied in the nutrient solution at the R3 (50% bloom) stage. Plants were harvested 1, 5 and 10 days after treatment, and were separated into nodules, roots, stems, mature leaflets, immature leaflets, and flowers/fruits. All 3 lines showed rapid increases in the N content of flowers/fruits after the R3 stage. However, the percentage N in these tissues decreased after the R3 stage. One of the recombinant lines showed a greater uptake of NH 4 + than the other 2 lines. Rates of15N2 fixation and NO 3 uptake were similar for all 3 lines, N2 fixation estimated from total N content showed the 2 recombinant lines with 24 and 34 percent greater activity than the commercial cultivar. Distribution of15N at the whole plant level was similar for all 3 lines for a similar N source.15NO 3 was transported first to leaflets and the label then moved into flowers/fruits. Transport of fixed N2 was from the nodules to roots, stems and into flowers/fruits; usually less than 10 percent entered the leaflets. This indicates that N2 fixation furnishes N directly to flowers/fruits with over 50 percent of the fixed N being deposited into flowers/fruits within 5 days after treatment.  相似文献   

17.
The modification of large areas of tropical forest to agricultural uses has consequences for the movement of inorganic nitrogen (N) from land to water. Various biogeochemical pathways in soils and riparian zones can influence the movement and retention of N within watersheds and affect the quantity exported in streams. We used the concentrations of NO3 and NH4 + in different hydrological flowpaths leading from upland soils to streams to investigate inorganic N transformations in adjacent watersheds containing tropical forest and established cattle pasture in the southwestern Brazilian Amazon Basin. High NO3 concentrations in forest soil solution relative to groundwater indicated a large removal of N mostly as NO3 in flowpaths leading from soil to groundwater. Forest groundwater NO3 concentrations were lower than in other Amazon sites where riparian zones have been implicated as important N sinks. Based on water budgets for these watersheds, we estimated that 7.3–10.3 kg N ha−1 y−1 was removed from flowpaths between 20 and 100 cm, and 7.1–10.2 kg N ha−1 y−1 was removed below 100 cm and the top of the groundwater. N removal from vertical flowpaths in forest exceeded previously measured N2O emissions of 3.0 kg N ha−1 y−1 and estimated emissions of NO of 1.4 kg N ha−1 y−1. Potential fates for this large amount of nitrate removal in forest soils include plant uptake, denitrification, and abiotic N retention. Conversion to pasture shifted the system from dominance by processes producing and consuming NO3 to one dominated by NH4 +, presumably the product of lower rates of net N mineralization and net nitrification in pasture compared with forest. In pasture, no hydrological flowpaths contained substantial amounts of NO3 and estimated N removal from soil vertical flowpaths was 0.2 kg N ha−1 y−1 below the depth of 100 cm. This contrasts with the extent to which agricultural sources dominate N inputs to groundwater and stream water in many temperate regions. This could change, however, if pasture agriculture in the tropics shifts toward intensive crop cultivation.  相似文献   

18.
Nitrogen (N) limits plant productivity and its uptake and assimilation may be regulated by N source, N availability, and nitrate reductase activity (NRA). Knowledge of how these factors interact to affect N uptake and assimilation processes in woody angiosperms is limited. We fertilized 1-year-old, half-sib black walnut (Juglans nigra L.) seedlings with ammonium (NH4 +) [as (NH4)2SO4], nitrate (NO3 ) (as NaNO3), or a mixed N source (NH4NO3) at 0, 800, or 1,600 mg N plant−1 season−1. Two months following final fertilization, growth, in vivo NRA, plant N status, and xylem exudate N composition were assessed. Specific leaf NRA was higher in NO3 -fed and NH4NO3-fed plants compared to observed responses in NH4 +-fed seedlings. Regardless of N source, N addition increased the proportion of amino acids (AA) in xylem exudate, inferring greater NRA in roots, which suggests higher energy cost to plants. Root total NRA was 37% higher in NO3 -fed than in NH4 +-fed plants. Exogenous NO3 was assimilated in roots or stored, so no difference was observed in NO3 levels transported in xylem. Black walnut seedling growth and physiology were generally favored by the mixed N source over NO3 or NH4 + alone, suggesting NH4NO3 is required to maximize productivity in black walnut. Our findings indicate that black walnut seedling responses to N source and level contrast markedly with results noted for woody gymnosperms or herbaceous angiosperms.  相似文献   

19.
Forest die-back and impaired tree vitality have frequently been ascribed to Al-toxicity and Al-induced nutritional disorders due to increased acidification of forest soils. Therefore, in this experiment effects of Al were studied on growth and nutrient uptake with seedlings of five different forest tree species. During growth in culture solutions with and without Al all five species proved to be very Al-tolerant, despite high accumulation of Al in roots. In the coniferous evergreens Douglas-fir and Scots pine shoot as well as root Al concentrations were significantly higher than in the deciduous broad-leaved species oak and birch. Larch showed intermediate Al levels. In none of the five species did Al reduce nutrient concentrations or the Ca/Al ratio to values below the critical level. Besides differences in Al accumulation, coniferous and broad-leaved species also differed with respect to uptake and assimilation of nitrogen. Due to extra NH 4 + uptake, oak and birch showed a much higher N uptake and higher NH 4 + preference than the coniferous species. Especially with oak this high NH 4 + preference in combination with a low specific root surface area resulted in a high root proton efflux density. In comparison to both broad-leaved trees and Scots pine the NO 3 reduction capacity of larch and Douglas-fir was extremely low. This may have important consequences for both species if grown in NO 3 -rich soils.  相似文献   

20.
Iodine is vital to human health, and iodine biofortification programs help improve human intake through plant consumption. There is no research on whether iodine biofortification influences basic plant physiological processes. Because nitrogen (N) uptake, utilization, and accumulation are determining factors in crop yield, the aim of this work was to establish the effect of the application of different doses (20, 40, and 80 μM) and forms of iodine (iodate [IO3 ] vs. Iodide [I]) on N metabolism and photorespiration. For this study we analyzed shoot biomass and the activities of nitrate reductase (NR), nitrite reductase (NiR), glutamine synthetase (GS), glutamate synthase (GOGAT), aspartate aminotransferase (AAT), glutamate dehydrogenase (GDH), glycolate oxidase (GO), glutamate:glyoxylate aminotransferase (GGAT), serine:glyoxylate aminotransferase (SGAT), hydroxypyruvate reductase (HR) and catalase (CAT), nitrate (NO3 ), ammonium (NH4 +), organic and total N, amino acids, proteins, serine (ser), malate, and α-ketoglutaric acid in edible lettuce leaves. Application of I at doses of at least 40 μM reduced the foliar concentration of NO3 with no decrease in biomass production, which may improve the nutritional quality of lettuce plants. In contrast, the application of 80 μM of I is phytotoxic for lettuce plants, reducing the biomass, foliar concentration of organic N and NO3 , and NR and GDH activities. HR activity is significantly inhibited with all doses of I; the least inhibition was at 80 μM. This may involve a decrease in the incorporation of carbonated skeletons from photorespiration into the Calvin cycle, which may be partially associated with the biomass decrease. Finally, the application of IO3 increases biomass production, stimulates NO3 reduction and NH4 + incorporation (GS/GOGAT), and optimizes the photorespiratory process. Hence, this appears to be the most appropriate form of iodine from an agronomic standpoint.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号