首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A synthetic heparin-mimicking polyaromatic anionic compound RG-13577 (polymer of 4-hydroxyphenoxy acetic acid and formaldehyde ammonium salt, Mr approximately 5800) exhibits specific binding to vascular smooth muscle cells (SMCs) and inhibits their proliferative response to growth promoting factors. Receptor binding of (14)C-RG-13577 was efficiently competed by apolipoprotein E3 (apoE), lactoferrin, and the LRP (LDL receptor-related protein) receptor associated 39 kDa protein (RAP). Unlike cell surface binding of apoE, binding of RG-13577 to SMCs was not affected by heparin, heparan sulfate degrading enzymes, or low density lipoprotein (LDL). Moreover, wild-type and heparan sulfate-deficient Chinese hamster ovary (CHO) cells, as well as normal- and LDL receptor negative- human skin fibroblasts bind RG-13577, but not apoE, to a similar extent. On the other hand, homozygous mouse embryonic fibroblasts deficient in the LDL receptor-related protein (LRP) expressed a markedly reduced binding of RG-13577 as compared to normal mouse embryonic fibroblasts. These results indicate that RG-13577 and related compounds bind to the LRP receptor on the surface of vascular SMCs. Addition of lactoferrin to cultured SMCs protected the cells against the antiproliferative effect of compound RG-13577, suggesting that this inhibition is mediated by RG-13577 binding to LRP receptors on the SMC surface. Altogether, we have identified a series of synthetic polyaromatic anionic molecules that exhibit specific binding to LRP and thereby exert an antiproliferative effect on vascular SMCs. These compounds are applied to suppress SMC proliferation associated with restenosis and accelerated atherosclerosis.  相似文献   

2.
Connective-tissue growth factor (CTGF) is a member of the CCN family of secreted proteins. CCN family members contain four characteristic domains and exhibit multiple activities: they associate with the extracellular matrix, they can mediate cell adhesion, cell migration and chemotaxis, and they can modulate the activities of peptide growth factors. Many of the effects of CTGF are thought to be mediated by binding to integrins, whereas others may be because of its recently identified ability to interact with BMP4 and TGF beta. We demonstrate, using Xenopus embryos, that CTGF also regulates signalling through the Wnt pathway, in accord with its ability to bind to the Wnt co-receptor LDL receptor-related protein 6 (LRP6). This interaction is likely to occur through the C-terminal (CT) domain of CTGF, which is distinct from the BMP- and TGF beta-interacting domain. Our results define new activities of CTGF and add to the variety of routes through which cells regulate growth factor activity in development, disease and tissue homeostasis.  相似文献   

3.
4.
Type-I ribosome-inactivating protein-trichosanthin (TCS) exhibits selective cytotoxicity toward different types of cells. It is believed that the cytotoxicity results from the inhibition of ribosomes to decrease protein synthesis, thereby indicating that there are specific mechanisms for TCS entry into target cells to reach the ribosomes. Low-density lipoprotein (LDL) receptor-related protein 1 (LRP1) is a large scavenger receptor that is responsible for the binding and endocytosis of diverse biological ligands on the cell surface. In this study, we demonstrated that 2 choriocarcinoma cell lines can significantly bind and internalize TCS. In contrast, Hela cell line displayed no obvious TCS binding and endocytosis. Furthermore LRP1 gene silencing in JAR and BeWo cell lines blocked TCS binding; TCS could also interact with LRP1.The results of our study established that LRP1 was a major receptor for phagocytosis of TCS in JAR and BeWo cell lines and might be the molecular basis of TCS abortificient and anti-choriocarcinoma activity.  相似文献   

5.
The low density lipoprotein receptor-related protein (LRP) is a scavenger receptor that binds to many proteins, some of which trigger signal transduction. Receptor-recognized forms of alpha(2)-Macroglobulin (alpha(2)M*) bind to LRP, but the pattern of signal transduction differs significantly from that observed with other LRP ligands. For example, neither Ni(2+) nor the receptor-associated protein, which blocks binding of all known ligands to LRP, block alpha(2)M*-induced signal transduction. In the current study, we employed alpha(2)-macroglobulin (alpha(2)M)-agarose column chromatography to purify cell surface membrane binding proteins from 1-LN human prostate cancer cells and murine macrophages. The predominant binding protein purified from 1-LN prostate cancer cells was Grp 78 with small amounts of LRP, a fact that is consistent with our previous observations that there is little LRP present on the surface of these cells. The ratio of LRP:Grp 78 is much higher in macrophages. Flow cytometry was employed to demonstrate the presence of Grp 78 on the cell surface of 1-LN cells. Purified Grp 78 binds to alpha(2)M* with high affinity (K(d) approximately 150 pm). A monoclonal antibody directed against Grp 78 both abolished alpha(2)M*-induced signal transduction and co-precipitated LRP. Ligand blotting with alpha(2)M* showed binding to both Grp 78 and LRP heavy chains in these preparations. Use of RNA interference to silence LRP expression had no effect on alpha(2)M*-mediated signaling. We conclude that Grp 78 is essential for alpha(2)M*-induced signal transduction and that a "co-receptor" relationship exists with LRP like that seen with several other ligands and receptors such as the uPA/uPAR (urinary type plasminogen activator or urokinase/uPA receptor) system.  相似文献   

6.
The alpha 2-macroglobulin receptor/low density lipoprotein receptor-related protein (alpha 2MR/LRP) consists of two polypeptides, 515 and 85 kDa, that are noncovalently associated. A 39-kDa polypeptide, termed the receptor-associated protein (RAP), interacts with the 515-kDa subunit after biosynthesis of these molecules and remains associated on the cell surface. This molecule regulates ligand binding of alpha 2MR/LRP (Herz, J., Goldstein, J. L., Strickland, D. K., Ho, Y. K., and Brown, M. S. (1991) J. Biol. Chem. 266, 21232-21238). Titration and binding studies indicate that RAP binds to two equivalent binding sites on alpha 2MR/LRP, with a KD of 14 nM. Heterologous ligand displacement experiments demonstrated that RAP completely inhibits the binding of 125I-activated alpha 2M to human fibroblasts and to the purified alpha 2MR/LRP, with a Ki of 23 and 26 nM, respectively. A direct correlation between the degree of binding of RAP to the receptor and the degree of ligand inhibition was observed, indicating that as the RAP binding sites are saturated, alpha 2MR/LRP loses its ability to bind ligands. Thus, the amount of RAP bound to alpha 2MR/LRP dictates the level of receptor activity. A model is proposed in which alpha 2MR/LRP contains multiple ligand binding sites, each regulated by a separate RAP site.  相似文献   

7.
Human pregnancy zone protein (PZP) is a major pregnancy-associated plasma protein strongly related to alpha2-macroglobulin (alpha2-M). Both alpha-macroglobulins (alpha-Ms) covalently bind proteinases, which is accompanied by the exposure of carboxy terminal receptor recognition domains important for the rapid clearance from the circulation and tissues. It is accepted that the molecule responsible for the clearance of alpha2-M- and PZP-proteinase complexes is the low-density lipoprotein receptor-related protein (LRP). Although both alpha-M-proteinase complexes bind to the same receptor, differences in the binding properties have been reported. In addition, although it is known that the binding of alpha2-M-proteinase complexes to LRP can be blocked by Ni2+, the effect on PZP-proteinase has never been examined. In order to investigate differences in the binding properties of both alpha-Ms to the receptor, we purified LRP from human placenta by affinity chromatography and then analyzed the specificity and affinity of binding of alpha2-M- and PZP-proteinase complexes to the receptor by enzyme immunoassay. Our results clearly established that although both alpha-M-proteinase complexes specifically bind to LRP, PZP-chymotrypsin complexes bind to the receptor with lesser apparent affinity (Kd approximately equal 320 nM) than alpha2-M-chymotrypsin complexes (Kd approximately equal 40 nM). We also demonstrated that Ni2+ blocks the binding of alpha2-M-chymotrypsin complexes, but not PZP-chymotrypsin complexes, to LRP. These data suggest that the binding to LRP involves conformational differences between both alpha-Ms in a region immediately upstream of the carboxy terminal receptor recognition domain. The possibility that PZP-proteinase complexes interact with other receptors not available to alpha2-M-proteinase complexes could be considered.  相似文献   

8.
The 39-kDa receptor-associated protein (RAP) binds to the alpha 2-macroglobulin receptor/low density lipoprotein receptor-related protein (alpha 2MR/LRP) and inhibits binding of ligands to this receptor. The in vivo function of RAP may be to regulate ligand binding and/or assist in the correct biosynthetic processing or trafficking of the alpha 2MR/LRP. Here we show that RAP binds another putative receptor, the kidney glycoprotein 330 (gp330). Gp330 is a high molecular weight glycoprotein that is structurally similar to both the alpha 2MR/LRP and low density lipoprotein receptor. The ability of RAP to bind to gp330 was demonstrated by ligand blotting and solid phase binding assays, which showed that RAP binds to gp330 with high affinity (Kd = 8 nM). Exploiting the interaction of gp330 and RAP, we purified gp330 by affinity chromatography with a column of RAP coupled to Sepharose. Gp330 preparations obtained by this procedure were notably more homogeneous than those obtained by conventional methods. Immunocytochemical staining of human kidney sections localized RAP to the brush-border epithelium of proximal tubules. The fact that gp330 is also primarily expressed by proximal tubule epithelial cells strengthens the likelihood that the interaction between gp330 and RAP occurs in vivo. The functional significance of RAP binding to gp330 may be to antagonize ligand binding as has been demonstrated for the alpha 2MR/LRP or to assist in the biosynthetic processing and/or trafficking of this receptor.  相似文献   

9.
Protein production within the secretory pathway is accomplished by complex but organized processes. Here, we demonstrate that the growth factor midkine interacts with LDL receptor-related protein 1 (LRP1) at high affinity (K(d) value, 2.7 nm) not only at the cell surface but also within the secretory pathway during biosynthesis. The latter premature ligand-receptor interaction resulted in aggregate formation and consequently suppressed midkine secretion and LRP1 maturation. We utilized an endoplasmic reticulum (ER) retrieval signal and an LRP1 fragment, which strongly bound to midkine and the LRP1-specialized chaperone receptor-associated protein (RAP), to construct an ER trapper. The ER trapper efficiently trapped midkine and RAP and mimicked the premature ligand-receptor interaction, i.e. suppressed maturation of the ligand and receptor. The ER trapper also diminished the inhibitory function of LRP1 on platelet-derived growth factor-mediated cell migration. Complementary to these results, an increased expression of RAP was closely associated with midkine expression in human colorectal carcinomas (33 of 39 cases examined). Our results suggest that the premature ligand-receptor interaction plays a role in protein production within the secretory pathway.  相似文献   

10.
The Cytotoxic Necrotizing Factor 1 (CNF1) is a protein toxin which is a major virulence factor of pathogenic Escherichia coli strains. Here, we identified the Lutheran (Lu) adhesion glycoprotein/basal cell adhesion molecule (BCAM) as cellular receptor for CNF1 by co-precipitation of cell surface molecules with tagged toxin. The CNF1-Lu/BCAM interaction was verified by direct protein-protein interaction analysis and competition studies. These studies revealed amino acids 720 to 1014 of CNF1 as the binding site for Lu/BCAM. We suggest two cell interaction sites in CNF1: first the N-terminus, which binds to p37LRP as postulated before. Binding of CNF1 to p37LRP seems to be crucial for the toxin''s action. However, it is not sufficient for the binding of CNF1 to the cell surface. A region directly adjacent to the catalytic domain is a high affinity interaction site for Lu/BCAM. We found Lu/BCAM to be essential for the binding of CNF1 to cells. Cells deficient in Lu/BCAM but expressing p37LRP could not bind labeled CNF1. Therefore, we conclude that LRP and Lu/BCAM are both required for toxin action but with different functions.  相似文献   

11.
The binding pocket of family A GPCRs that bind small biogenic amines is well characterized. In this study we identify residues on CC chemokine receptor 7 (CCR-7) that are involved in agonist-mediated receptor activation but not in high affinity ligand binding. The mutations also affect the ability of the ligands to induce chemotaxis. Two of the residues, Lys3.33(137) and Gln5.42(227), are consistent with the binding pocket described for biogenic amines, while Lys3.26(130) and Asn7.32(305), are found at, or close to, the cell surface. Our observations are in agreement with findings from other peptide and chemokine receptors, which indicate that receptors that bind larger ligands contain contact sites closer to the cell surface in addition to the conventional transmembrane binding pocket. These findings also support the theory that chemokine receptors require different sets of interactions for high affinity ligand binding and receptor activation.  相似文献   

12.
The type III transforming growth factor-beta (TGF-beta) receptor is a cell surface chondroitin/heparan sulfate proteoglycan that binds various forms of TGF-beta with high affinity and specificity. Here, we have used a genetic approach to determine the requirement for glycosaminoglycan (GAG) chains for normal TGF-beta receptor expression and the role that the receptor proteoglycan core and GAG chains play in TGF-beta binding. Chinese hamster ovary (CHO) cells defective in GAG synthesis express on their surface 110-130-kDa type III receptor proteoglycan cores that can bind normal levels of TGF-beta compared to wild type CHO cells. The affinity of the receptor core for TGF-beta 1 and TGF-beta 2 in CHO cell mutants is similar to that of the TGF-beta receptor proteoglycan forms present in wild type CHO cells or in CHO cell mutants that have been allowed to bypass their metabolic defect and express the wild type proteoglycan phenotype. The binding properties of TGF-beta receptor types I and II in CHO cells and the growth-inhibitory response of CHO cell mutants to TGF-beta are not impaired by the absence of GAG chains in the type III receptor. These results show that the GAG chains are dispensable for type III receptor expression on the cell surface, binding of TGF-beta to the receptor core, and growth inhibitory response of the cells to TGF-beta. The evidence also suggests that the type III receptor may act as a multifunctional proteoglycan able to bind TGF-beta via the receptor core while performing another as yet unidentified function(s) via the GAG chains.  相似文献   

13.
Given the importance of the low density lipoprotein receptor-related protein (LRP) as an essential endocytosis and signaling receptor for many protein ligands, and of alpha2-macroglobulin (alpha2M)-proteinase complexes as one such set of ligands, an understanding of the specificity of their interaction with LRP is an important goal. A starting point is the known role of the 138-residue receptor binding domain (RBD) in binding to LRP. Previous studies have localized high affinity alpha2M binding to the eight complement repeat (CR)-containing cluster 2 of LRP. In the present study we have identified the minimum CR domains that constitute the full binding site for RBD and, hence, for alpha2M on LRP. We report on the ability of the triple construct of CR3-4-5 to bind RBD with an affinity (Kd = 130 nM) the same as for isolated RBD to intact LRP. This Kd is 30-fold smaller than for RBD to CR5-6-7, demonstrating the specificity of the interaction with CR3-4-5. Binding requires previously identified critical lysine residues but is almost pH-independent within the range of pH values encountered between extracellular and internal compartments, consistent with an earlier proposed model of intracellular ligand displacement by intramolecular YWTD domains. The present findings suggest a model to explain the ability of LRP to bind a wide range of structurally unrelated ligands in which a nonspecific ligand interaction with the acidic region present in most CR domains is augmented by interactions with other CR surface residues that are unique to a particular CR cluster.  相似文献   

14.
Complement component 3 (C3) and alpha(2)-macroglobulin evolved from a common, evolutionarily old, ancestor gene. Low density lipoprotein-receptor-related protein/alpha(2)-macroglobulin receptor (LRP/alpha(2)MR), a member of the low density lipoprotein receptor family, is responsible for the clearance of alpha(2)-macroglobulin-protease complexes. In this study, we examined whether C3 has conserved affinity for LRP/alpha(2)MR. Ligand blot experiments with human (125)I-C3 on endosomal proteins show binding to a 600-kDa protein, indistinguishable from LRP/alpha(2)MR by the following criteria: it is competed by receptor-associated protein (the 39-kDa receptor-associated protein that impairs binding of all ligands to LRP/alpha(2)MR) and by lactoferrin and Pseudomonas exotoxin, other well known ligands of the multifunctional receptor. Binding of C3 is sensitive to reduction of the receptor and is Ca(2+)-dependent. All these features are typical for cysteine-rich binding repeats of the low density lipoprotein receptor family. In LRP/alpha(2)MR, they are found in four cassettes (2, 8, 10, and 11 repeats). Ligand blotting to chicken LR8 demonstrates that a single 8-fold repeat is sufficient for binding. Confocal microscopy visualizes initial surface labeling of human fibroblasts incubated with fluorescent labeled C3, which changes after 5 min to an intracellular vesicular staining pattern that is abolished in the presence of receptor-associated protein. Cell uptake is abolished in mouse fibroblasts deficient in LRP/alpha(2)MR. Native plasma C3 is not internalized. We demonstrate that the capacity to internalize C3 is saturable and exhibits a K(D) value of 17 nM. After intravenous injection, rat hepatocytes accumulate C3 in sedimentable vesicles with a density typical for endosomes. In conclusion, our ligand blot and uptake studies demonstrate the competence of the LRP/alpha(2)MR to bind and endocytose C3 and provide evidence for an LRP/alpha(2)MR-mediated system participating in C3 metabolism.  相似文献   

15.
The nerve growth factor (NGF) receptor is a glycosylated transmembrane protein present on the cell surface as both high and low affinity forms, but biological responsiveness requires interactions of NGF with the high affinity site. We have tested the effects of mutations in the intracellular domain of the receptor upon its cell surface expression and equilibrium binding of 125I-NGF. Although mutant receptors lacking the entire cytoplasmic domain are processed and expressed at the cell surface and are capable of binding to NGF, the absence of cytoplasmic sequences leads to a loss of high affinity binding and to a lack of an appropriate cross-linking pattern as assessed by N-hydroxysuccinimidyl 4-azidobenzoate photoaffinity cross-linking. These results, taken together with the highly conserved nature of these cytoplasmic sequences, implies that the interaction of the receptor with an accessory molecule is necessary to form the high affinity receptor.  相似文献   

16.
Platelet-derived growth factor (PDGF) causes an acute decrease in the high affinity binding of epidermal growth factor (EGF) to cell surface receptors and an increase in the phosphorylation state of the EGF receptor at threonine654. The hypothesis that PDGF action to regulate the EGF receptor is mediated by the activation of protein kinase C and the subsequent phosphorylation of EGF receptor threonine654 was tested. The human receptors for PDGF and EGF were expressed in Chinese hamster ovary cells that lack expression of endogenous receptors for these growth factors. The heterologous regulation of the EGF receptor by PDGF was reconstituted in cells expressing [Thr654]EGF receptors or [Ala654]EGF receptors. PDGF action was also observed in phorbol ester down-regulated cells that lack detectable protein kinase C activity. Together these data indicate that neither protein kinase C nor the phosphorylation of EGF receptor threonine654 is required for the regulation of the apparent affinity of the EGF receptor by PDGF.  相似文献   

17.
Ten peptides, derived from human alpha 2-macroglobulin (alpha 2M) receptor by chemical or proteolytic digestion, were sequenced. Comparative analysis revealed that all of the resulting sequences were present within the cDNA-deduced structure of low density lipoprotein receptor-related protein (LRP) (Herz, J., Hamann, U., Rogne, S., Myklebost, O., Gausepohl, H., and Stanley, K. K. (1988) EMBO J. 7, 4119-4127). The findings provide evidence that the alpha 2M receptor and LRP are the same molecule. Further evidence comes from immunoprecipitation experiments using a monoclonal antibody specific for the alpha 2M receptor that show this molecule, like LRP, to contain two polypeptides of approximately 420 and 85 kDa that are noncovalently associated. An additional component of this receptor system is a 39-kDa polypeptide that co-purifies with the alpha 2M receptor during affinity chromatography. Solid phase binding studies reveal that the 39-kDa polypeptide binds with high affinity (Kd = 18 nM) to the 420-kDa component of the alpha 2M receptor. The apparent identity of LRP and the alpha 2M receptor suggests that this molecule is a multifunctional receptor with the capacity to bind diverse biological ligands and highlights a possible relationship between two previously unrelated biological processes, lipid metabolism and proteinase regulation.  相似文献   

18.
The 37kDa/67kDa laminin receptor (LRP/LR) has been identified as a cell surface receptor for cellular and infectious prion proteins. Here, we show that an N-terminally truncated LRP mutant encompassing the extracellular domain of the LRP/LR (LRP102-295::FLAG) reduces the binding of recombinant cellular huPrP to mouse neuroblastoma cells, and infectious moPrP27-30 to BHK cells, and interferes with the PrP(Sc) propagation in scrapie-infected neuroblastoma cells (N2aSc(+)). A cell-free binding assay demonstrated the direct binding of the LRP102-295::FLAG mutant to both PrP(c) and PrP(Sc). These results, together with the finding that endogenous LRP levels remain unaffected by the expression of the mutant, indicate that the secreted LRP102-295::FLAG mutant may act in a trans-dominant negative manner as a decoy by trapping PrP molecules. The LRP mutant might represent a potential therapeutic tool for the treatment of TSEs.  相似文献   

19.
B Zhang  R A Roth 《Biochemistry》1991,30(21):5113-5117
We constructed and expressed chimeric receptor cDNAs with insulin receptor exon 3 (residues 191-297 of the cysteine-rich region) replaced with either the comparable region of the insulin-like growth factor I receptor (IGF-IR) or the insulin receptor related receptor (IRR). Both chimeric receptors still could bind insulin with as high affinity as the wild-type receptor. In addition, chimeric receptors containing exon 3 of the IGF-IR could also bind with high affinity both IGF-I and IGF-II. In contrast, chimeric receptors containing exon 3 of IRR did not bind either IGF-I, IGF-II, or relaxin. These results indicate that (1) the high affinity of binding of insulin to its receptor can occur in the absence of insulin receptor specific residues encoded by exon 3, the cysteine-rich region; (2) the cysteine-rich region of the IGF-I receptor can confer high-affinity binding to both IGF-I and IGF-II; and 3) the IRR is unlikely to be a receptor for either IGF-I, IGF-II, or relaxin.  相似文献   

20.
Keratinocyte growth factor (KGF) is a member of the fibroblast growth factor (FGF) family. KGF exhibits potent mitogenic activity for a variety of epithelial cell types but is distinct from other known FGFs in that it is not mitogenic for fibroblasts or endothelial cells. We report saturable specific binding of 125I-KGF to surface receptors on intact Balb/MK mouse epidermal keratinocytes. 125I-KGF binding was completed efficiently by acidic FGF (aFGF) but with 20-fold lower efficiency by basic FGF (bFGF). The pattern of 125I-acidic FGF binding and competition on Balb/MK keratinocytes and NIH/3T3 fibroblasts suggests that these cell types possess related but distinct FGF receptors. Scatchard analysis of 125I-KGF binding suggested major and minor high affinity receptor components (KD = 400 and 25 pM, respectively) as well as a third high capacity/low affinity heparin-like component. Covalent affinity cross-linking of 125I-KGF to its receptor on Balb/MK cells revealed two species of 115 and 140 kDa. KGF also stimulated the rapid tyrosine phosphorylation of a 90-kDa protein in Balb/MK cells but not in NIH/3T3 fibroblasts. Together these results indicate that Balb/MK keratinocytes possess high affinity KGF receptors to which the FGFs may also bind. However, these receptors are distinct from the receptor(s) for aFGF and bFGF on NIH/3T3 fibroblasts, which fail to interact with KGF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号