首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The depression of cardiac contractility induced by space microgravity is an important issue of aerospace medicine research, while its precise mechanism is still unknown. In the present study, we explored effects of simulated microgravity on nitric oxide (NO) level, inducible nitric oxide synthase (iNOS) expression and related regulative mechanism using electron spin resonance (ESR) spectroscopy, immunocytochemistry and in situ hybridization. We found a remarkable increase of NO level and up-regulation of iNOS and iNOS mRNA expression in rat cardiac myocytes under simulated microgravity. Staurosporine (a nonselective protein kinase inhibitor), calphostin C (a selective protein kinase C inhibitor), partially inhibited the effect of simulated microgravity. Thus regulative effect of simulated microgravity on iNOS expression is mediated at least partially via activation of protein kinase C. These results indicate that NO system in cardiac myocytes is sensitive to simulated microgravity and may play an important role in the depression of cardiac contractility induced by simulated microgravity.  相似文献   

2.
Prolonged exposure to space microgravity results in cardiovascular deconditioning and the depression of cardiac contractility, while its mechanism is still unknown[1]. Thus study about ef-fects of microgravity on cardiac myocytes and related mechanism is an important issue in space medicine. It would also contribute to understanding effects of mechanical signal on signal transduction in cardiac myocytes and pathology of related diseases. Nitric oxide (NO) is a universal signal molecular in ce…  相似文献   

3.
Cephalic elevations in arterial pressure associated with microgravity and prolonged bed rest alter cerebrovascular autoregulation in humans. Using the head-down tail-suspended (HDT) rat to chronically induce headward fluid shifts and elevate cerebral artery pressure, previous work has likewise shown cerebral perfusion to be diminished. The purpose of this study was to test the hypothesis that 2 wk of HDT reduces cerebral artery vasodilation. To test this hypothesis, dose-response relations for endothelium-dependent (2-methylthioadenosine triphosphate and bradykinin) and endothelium-independent (nitroprusside) vasodilation were determined in vitro in middle cerebral arteries (MCAs) from HDT and control rats. All in vitro measurements were done in the presence and absence of the nitric oxide synthase inhibitor N(G)-nitro-L-arginine methyl ester (10(-5) M) and cyclooxygenase inhibitor indomethacin (10(-5) M). MCA caveolin-1 protein content was measured by immunoblot analysis. Endothelium-dependent vasodilation to 2-methylthioadenosine triphosphate and bradykinin were both lower in MCAs from HDT rats. These lower vasodilator responses were abolished with N(G)-nitro-L-arginine methyl ester but were unaffected by indomethacin. In addition, HDT was associated with lower levels of MCA caveolin-1 protein. Endothelium-independent vasodilation was not altered by HDT. These results indicate that chronic cephalic fluid shifts diminish endothelium-dependent vasodilation through alterations in the endothelial nitric oxide synthase signaling mechanism. Such decrements in endothelium-dependent vasodilation of cerebral arteries could contribute to the elevations in cerebral vascular resistance and reductions in cerebral perfusion that occur after conditions of simulated microgravity in HDT rats.  相似文献   

4.
Denitrifying bacteria in soil generate nitric oxide (NO) from nitrite as a part of the nitrogen cycle, but little is known about NO production by commensal bacteria. We used a chemiluminescence assay to explore if human faeces and different representative gut bacteria are able to generate NO. Bacteria were incubated anaerobically in gas-tight bags, with or without nitrate or nitrite in the growth medium. In addition, luminal NO levels were measured in vivo in the intestines in germ-free and conventional rats, and in rats mono-associated with lactobacilli. We show that human faeces can generate NO after nitrate or nitrite supplementation. Lactobacilli and bifidobacteria generated much NO from nitrite, but only a few of the tested strains produced NO from nitrate and at much lower levels. In contrast, Escherichia coli, Bacteroides thetaiotaomicron, and Clostridium difficile did not produce significant amounts of NO either with nitrate or nitrite. NO generation in the gut lumen was also observed in vivo in conventional rats but not in germ-free rats or in rats mono-associated with lactobacilli. We conclude that NO can be generated by the anaerobic gut flora in the presence of nitrate or nitrite. Future studies will reveal its biological significance in regulation of gastrointestinal integrity.  相似文献   

5.
Diabetes is associated with endothelial dysfunction and increased risk of hypertension, cardiovascular disease, and renal complications. Earlier studies have revealed that hyperglycemia impairs nitric oxide (NO) production and diabetes causes endothelial dysfunction in humans and experimental animals. This study was designed to test the effects of altered concentrations of glucose, insulin, and glucagon, the principal variables in types I and II diabetes, on NO production and endothelial NO synthase (eNOS) expression in cultured human coronary endothelial cells. Cultured endothelial cells were incubated in the presence of glucose at either normal (5.6 mM) or high (25 mM) concentrations for 7 days. The rates of basal and bradykinin-stimulated NO production (nitrate + nitrite) and eNOS protein expression (Western blot) were then determined at the basal condition and in the presence of insulin (10(-8) and 10(-7) M), glucagon (10(-8) and 10(-7) M), or both. Incubation with a high-glucose concentration for 7 days significantly downregulated, whereas insulin significantly upregulated, basal and bradykinin-stimulated NO production and eNOS expression in cultured endothelial cells. The stimulatory action of insulin was mitigated by high-glucose concentration and abolished by cotreatment of cells with glucagon. Thus hyperglycemia, insulinopenia, and hyperglucagonemia, which frequently coexist in diabetes, can work in concert to suppress NO production by human coronary artery endothelial cells.  相似文献   

6.
Plasma nitrite reflects constitutive nitric oxide synthase activity in mammals   总被引:17,自引:0,他引:17  
Changes in plasma nitrite concentration in the human forearm circulation have recently been shown to reflect acute changes in endothelial nitric oxide synthase (eNOS)-activity. Whether basal plasma nitrite is a general marker of constitutive NOS-activity in vivo is yet unclear. Due to the rapid metabolism of nitrite in blood and the difficulties in its analytical determination literature data on levels of nitrite in mammals are largely inconsistent. We hypothesized that constitutive NOS-activity in the circulatory system is relatively uniform throughout the mammalian kingdom. If true, this should result in comparable systemic plasma nitrite levels in different species. Using three different analytical approaches we determined plasma nitrite concentration to be in a nanomolar range in a variety of species: humans (305 +/- 23 nmol/l), monkeys (367 +/- 62 nmol/l), minipigs (319 +/- 24 nmol/l), dogs (305 +/- 50 nmol/l), rabbits (502 +/- 21 nmol/l), guinea pigs (412 +/- 44 nmol/l), rats (191 +/- 43 nmol/l), and mice (457 +/- 51 nmol/l). Application of different NOS-inhibitors in humans, minipigs, and dogs decreased NOS-activity and thereby increased vascular resistance. This was accompanied by a significant, up to 80%, decrease in plasma nitrite concentration. A comparison of plasma nitrite concentrations between eNOS(-/-) and NOS-inhibited wild-type mice revealed that 70 +/- 5% of plasma nitrite is derived from eNOS. These results provide evidence for a uniform constitutive vascular NOS-activity across mammalian species.  相似文献   

7.
Inorganic nitrite (NO(2)(-)) is emerging as a regulator of physiological functions and tissue responses to ischemia, whereas the more stable nitrate anion (NO(3)(-)) is generally considered to be biologically inert. Bacteria express nitrate reductases that produce nitrite, but mammals lack these specific enzymes. Here we report on nitrate reductase activity in rodent and human tissues that results in formation of nitrite and nitric oxide (NO) and is attenuated by the xanthine oxidoreductase inhibitor allopurinol. Nitrate administration to normoxic rats resulted in elevated levels of circulating nitrite that were again attenuated by allopurinol. Similar effects of nitrate were seen in endothelial NO synthase-deficient and germ-free mice, thereby excluding vascular NO synthase activation and bacteria as the source of nitrite. Nitrate pretreatment attenuated the increase in systemic blood pressure caused by NO synthase inhibition and enhanced blood flow during post-ischemic reperfusion. Our findings suggest a role for mammalian nitrate reduction in regulation of nitrite and NO homeostasis.  相似文献   

8.
A Zohner  E Broda 《Origins of life》1979,9(4):291-298
In experiments on the prebiotic formation of nitric oxides, anoxic mixtures of N2 and water vapour were sparked in contact with phosphate buffer solutions at various pH values. Nitrite was found in the aqueous phase, and nitrate grew from it, presumably by reaction with H2O2. In acid solutions, these anions were reduced and destroyed by Fe2+, and the same was true of nitrite in solutions kept at a pH value similar to that of the contemporary ocean (8.2) with HEPES buffer. Nitrate was not destroyed in short-term experiments, but as in sparking nitrate is formed only vianitrite, neither anion could accumulate. In further sparking experiments with alkaline sulphide, both nitrite and nitrate were reduced entirely. It is concluded that it is unlikely that the primeval ocean contained appreciable concentrations of nitrite or nitrate either at the reducing or at the redox-neutral stage.  相似文献   

9.
In this work, we demonstrate that endothelial nitric oxide synthase is capable of anoxic reduction of nitrite anions to nitric oxide at physiological pH by absorption and EPR spectroscopy and electrochemical measurements. The nitrite reduction is achieved at the oxygenase domain of the protein and proceeds even in the absence of the tetrahydrobiopterin cofactor. The nitrite pathway increases by sixfold the NO production with respect to the regular arginine pathway under hypoxia, which is largely blocked. Therefore, basal levels of NO release could be sustained by anoxic nitrite reduction. The reaction suggests a new pathway for fast NO delivery under hypoxia, precisely when the vasodilating properties of nitric oxide are most needed.  相似文献   

10.
Nitric oxide (NO) is an important mediator in ischemia-reperfusion injury during human orthotopic liver transplantation (OLT). The perioperative kinetics of nitrite/nitrate plasma levels in 25 patients undergoing uncomplicated OLT were studied. A uniform pattern with significant increases of nitrite/nitrate levels immediately after reperfusion was seen in all patients, followed by a decrease to pretransplant levels within 24h. Peak levels 30 min after reperfusion were correlated to the indocyanine green plasma disappearance rate (PDR(ICG)), suggesting an association of early released NO with graft perfusion in OLT.  相似文献   

11.
12.
Prostaglandins and NO. are important mediators of inflammation and other physiological and pathophysiological processes. Continuous production of these molecules in chronic inflammatory conditions has been linked to development of autoimmune disorders, coronary artery disease, and cancer. There is mounting evidence for a biological relationship between prostanoid biosynthesis and NO. biosynthesis. Upon stimulation, many cells express high levels of nitric oxide synthase (NOS) and prostaglandin endoperoxide synthase (PGHS). There are reports of stimulation of prostaglandin biosynthesis in these cells by direct interaction between NO. and PGHS, but this is not universally observed. Clarification of the role of NO. in PGHS catalysis has been attempted by examining NO. interactions with purified PGHS, including binding to its heme prosthetic group, cysteines, and tyrosyl radicals. However, a clear picture of the mechanism of PGHS stimulation by NO. has not yet emerged. Available studies suggest that NO. may only be a precursor to the molecule that interacts with PGHS. Peroxynitrite (from O2.-+NO.) reacts directly with PGHS to activate prostaglandin synthesis. Furthermore, removal of O2.- from RAW 267.4 cells that produce NO. and PGHS inhibits prostaglandin biosynthesis to the same extent as NOS inhibitors. This interaction between reactive nitrogen species and PGHS may provide new approaches to the control of inflammation in acute and chronic settings.  相似文献   

13.
The production of NO by heart mitochondria was 0.7-1.1 nmol NO/min.mg protein, an activity similar to the ones observed in mitochondrial membranes from other organs. Heart mtNOS seems to contribute with about 56% of the total cellular NO production. The immunological nature of the mtNOS isoform of cardiac tissue remains unclear; in our laboratory, heart mtNOS reacted with an anti-iNOS anti-body. Heart mtNOS expression and activity are regulated by physiological and pharmacological effectors. The state 4/state 3 transition regulates heart mtNOS activity and NO release in intact respiring mitochondria: NO production rates in state 3 were 40% lower than in state 4. Heart mtNOS expression was selectively regulated by O(2) availability in hypobaric conditions and the activity was 20-60% higher in hypoxic rats than in control animals, depending on age. In contrast, NADH-cytochrome c reductase and cytochrome oxidase activities were not affected by hypoxia. The activity of rat heart mtNOS decreased 20% on aging from 12 to 72 weeks of age. On the pharmacological side, mitochondrial NO production was increased after enalapril treatment (the inhibitor of the angiotensin converting enzyme) with modification of heart mtNOS functional activity in the regulation of mitochondrial O(2) uptake and H(2)O(2) production. Thus, heart mtNOS is a highly regulated mitochondrial enzyme, which in turn, plays a regulatory role through mitochondrial NO steady state levels that modulate O(2) uptake and O(2)(-) and H(2)O(2) production rates. Nitric oxide and H(2)O(2) constitute signals for metabolic control that are involved in the regulation of cellular processes, such as proliferation and apoptosis.  相似文献   

14.
This review presents some aspects of a concept of cellular evolution bearing a relationship to nitrate--nitrite respiration, the endosymbiosis theory, and the origin of NO synthase and nitrite reductase activity in heme-containing proteins. Analysis of structural and functional unity of the NO synthase and nitrite reductase systems suggests that these systems did not arise without any relation to evolutionarily ancient energetic systems of cells. The use of symmetry principles reveals commonalities among many electron transport chains which in the language of physics is called "invariance". This work also comparatively analyzes the nitric oxide cycle and the known nitrogen cycle. The ideas about evolution of the NO synthase and nitrite reductase systems developed here are clearly compatible with the endosymbiotic theory and the hypothesis that nitrate--nitrite respiration was a precursor of oxygen-dependent respiration.  相似文献   

15.
Previous studies have shown that murine macrophages immunostimulated with interferon gamma and Escherichia coli lipopolysaccharide synthesize NO2-, NO3-, and citrulline from L-arginine by oxidation of one of the two chemically equivalent guanido nitrogens. The enzymatic activity for this very unusual reaction was found in the 100,000g supernatant isolated from activated RAW 264.7 cells and was totally absent in unstimulated cells. This activity requires NADPH and L-arginine and is enhanced by Mg2+. When the subcellular fraction containing the enzyme activity was incubated with L-arginine, NADPH, and Mg2+, the formation of nitric oxide was observed. Nitric oxide formation was dependent on the presence of L-arginine and NADPH and was inhibited by the NO2-/NO3- synthesis inhibitor NG-monomethyl-L-arginine. Furthermore, when incubated with L-[guanido-15N2]arginine, the nitric oxide was 15N-labeled. The results show that nitric oxide is an intermediate in the L-arginine to NO2-, NO3-, and citrulline pathway. L-Arginine is required for the activation of macrophages to the bactericidal/tumoricidal state and suggests that nitric oxide is serving as an intracellular signal for this activation process in a manner similar to that very recently observed in endothelial cells, where nitric oxide leads to vascular smooth muscle relaxation [Palmer, R. M. J., Ashton, D. S., & Moncada, S. (1988) Nature (London) 333, 664-666].  相似文献   

16.
In experiments on the prebiotic formation of nitric oxides, anoxic mixtures of N2 and water vapour were sparked in contact with phosphate buffer solutions at various pH values. Nitrite was found in the aqueous phase, and nitrate grew from it, presumably by reaction with H2O2. In acid solutions, these anions were reduced and destroyed by Fe2+, and the same was true of nitrite in solutions kept at a pH value similar to that of the contemporary ocean (8.2) with HEPES buffer. Nitrate was not destroyed in short-term experiments, but as in sparking nitrate is formed only via nitrite, neither anion could accumulate. In further sparking experiments with alkaline sulphide, both nitrite and nitrate were reduced entirely. It is concluded that it is unlikely that the primeval ocean contained appreciable concentrations of nitrite or nitrate either at the reducing or at the redox-neutral stage.  相似文献   

17.
An excessive production of nitric oxide (NO) by NO synthase (NOS) is considered to contribute to circulatory disturbance, tissue damage, and refractory hypotention, which are often observed in septic disorders. It is anticipated that a selective inducible NOS (iNOS) inhibitor with excellent pharmacokinetics may be potentially effective as a novel and potent therapeutic intervention in sepsis. We examined whether or not a selective iNOS inhibitor shows iNOS selectivity at the tissue level, when administered systemically. The effects of four NOS inhibitors on plasma nitrite/nitrate (NOx) and tissue NOS levels were compared in major organs (lungs, liver, heart, kidneys, and brain) 6 hr after the injection of E. coli lipopolysaccharide (LPS) into male Wistar-King rats. The rats treated with the three iNOS inhibitors (N-(3-(aminomethyl)benzyl)acetamidine (1400W), (1 S, 5 S, 6 R, 7 R )-2-aza-7-chloro-3-imino-5-methylbicyclo [4.1.0] heptane hydrochloride (ONO-1714), and aminoguanidine) administered 1 hr after LPS injection, showed dose-dependent decreases in plasma NOx levels and NOS activity in the lungs. The non-selective NOS inhibitor (N(G)-methyl-L-arginine (L-NMMA)) had an effect only at the maximum dose. The differences in in vitro iNOS selectivity among these drugs did not correlate with iNOS selectivity at the tissue level. The relationship between plasma NOx levels and NOS activity in the lungs showed a linear relationship with or without the NOS inhibitors. In conclusion, the iNOS selectivity of these drugs does not seem to differ at the tissue level. Plasma NOx levels may be a useful indicator of lung NOS activity.  相似文献   

18.
We previously reported that even low-intensity, short-duration acute aerobic exercise decreases arterial stiffness. We aimed to test the hypothesis that the exercise-induced decrease in arterial stiffness is caused by the increased production of NO in vascular endothelium with exercise. Nine healthy men (age: approximately 22-28 yr) performed a 5-min single-leg cycling exercise (30 W) in the supine position under an intravenous infusion of NG-monomethyl-L-arginine (L-NMMA; 3 mg/kg during the initial 5 min and subsequent continuous infusion of 50 mug.kg(-1).min(-1) in saline) or vehicle (saline) in random order on separate days. The pulse wave velocity (PWV) from the femoral to posterior tibial artery was measured on both legs before and after the infusion at rest and 2 min after exercise. Under the control condition, exercised leg PWV significantly decreased after exercise (P <0.05), whereas nonexercised leg PWV did not show a significant change throughout the experiment. Under L-NMMA administration, exercised leg PWV was increased significantly by the infusion (P <0.05) but decreased significantly after the exercise (P <0.05). Nonexercised leg PWV increased with L-NMMA administration and maintained a significantly higher level during the administration compared with baseline (before the infusion, all P <0.05). The NO synthase blockade x time interaction on exercised leg PWV was not significant (P=0.706). These results suggest that increased production of NO is not a major factor in the decrease of regional arterial stiffness with low-intensity, short-duration aerobic exercise.  相似文献   

19.
研究了不同施氮量对冬小麦分蘖到抽穗期叶片硝酸还原酶(NR)活性、一氧化氮(NO)含量、气体交换参数和籽粒产量的影响.结果表明:叶片光合速率(Pn)、蒸腾速率(Tr)、瞬时水分利用效率(IWUE)和产量均随施氮量的增加呈先升高后降低的趋势,在180 kg·hm-2氮处理时达到最高.随施氮量的增加,叶片NR活性提高; 在分蘖期和拔节期,叶片NR活性与NO含量呈显著线性相关(R2≥0.68,n=15),NO含量和气孔导度(Gs)呈显著正二次相关(R2≥0.43,n=15);低氮处理下,NR活性较低使叶片NO含量维持在较低水平,促进气孔开放,高氮处理下,NR活性较高使叶片NO含量增加,诱导气孔关闭;在抽穗期叶片NR活性和NO含量无显著相关关系,虽然NO含量和Gs也呈显著正二次相关(R2≥0.36,n=15),但不能通过施氮提高NR活性来影响叶片NO含量,进而调节叶片气孔行为.合理施氮使小麦叶片NO含量维持在较低水平,可提高叶片Gs、Tr和IWUE,增强作物抗旱能力,促进光合作用,提高小麦产量.  相似文献   

20.
昆虫一氧化氮及其合酶的研究进展   总被引:5,自引:0,他引:5  
王晓安  郑哲民 《昆虫知识》2003,40(2):112-118
一氧化氮作为一种重要的信息分子 ,参与调节昆虫嗅觉、视觉、机械感受、发育、机体防御及学习行为。该文从生理、生化、形态定位以及信号转导几方面综述了有关昆虫一氧化氮及其合酶的最新研究进展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号