首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The uptake of [3H]dopamine was studied with a synaptosomal preparation of the corpus striatum. The accumulation of dopamine was found to be temperature-dependent and very rapid, but linear over time for at least 5 min. at 37°C with characteristics of saturable kinetics. The optimum concentrations for Na+ and K+ were 150–160 mM and 2.5–4.8 mM, respectively, while uptake was progressively inhibited at concentrations of K+ greater than 5 mM. Rubidium was capable of substituting for potassium whereas cesium was a much less effective replacement. The uptake of DA was blocked by the antibiotics, valinomycin and gramicidin-D which bind K+ or both Na+ and K+, respectively, and thereby might interfere with the transport of cations across neuronal membranes. Similarly, ouabain which blocks the active transport of Na+ markedly antagonized the accumulation of DA into striatal homogenates. In contrast, tetrodotoxin which does not prevent the active transport of Na+, had no effect. Uptake appeared not to require Ca++ and it was not inhibited by increasing total osmolarity to 400 mosM. In general, the cationic requirements for DA-uptake in striatal tissue and its responses to several inhibition of ionic transport, do not appear to be greatly different from those reported for NE with synaptosomes prepared from whole brain.  相似文献   

3.
4.
M R Kilbourn 《Life sciences》1988,42(14):1347-1353
Regional rat brain uptake of [18F]GBR 13119, a high specific activity, positron-emitter labeled derivative of the potent dopamine uptake antagonist GBR 12935, is reported. Striatum to cerebellum ratios of 3 are obtained at 90 minutes post injection. Specific binding in striatum can be blocked by pretreatment with dopamine uptake system antagonists (mazindol, nomifensine) but not with receptor antagonists (spiperone, flupenthixol). [18F]GBR 13119 is proposed as a new positron-emitting radioligand for in vivo PET studies of the pre-synaptic dopamine uptake system.  相似文献   

5.
Nootropics increase the overflow of dopamine from rat striatum slices in a concentration dependent manner, but without relation to their clinical effectiveness. The influence of a nootropic drugs and of amphetamine on the stimulus induced dopamine release points to a relationship between nootropic and nooanaleptic activity, on the one hand, and transmitter release, on the other. Dopamine re-uptake is not altered by nootropics like piracetam.  相似文献   

6.
7.
H R Bürki 《Life sciences》1978,23(5):437-441
Rats were pretreated with haloperidol, clothiapine, loxapine, chlorpromazine, thioridazine, NT 104-252, clozapine or perlapine. The animals were decapitated at various times after drug administration, the striata removed and homogenized in tris buffer containing pargyline, ascorbic acid, EGTA and various salts. After centrifugation the homogenates were incubated with 3H-haloperidol, and total and unspecifically bound 3H-haloperidol were measured. Excellent correlations were found between inhibition of specific 3H-haloperidol binding and increases in the striatal concentration of DOPAC induced by the neuroleptics, confirming that DA-receptor blockade provokes an increase in DA-metabolism. No correlation, however, was found with neutoleptic-induced changes in the concentrations of MOPEG-SO4 in the brain stem or of 5-HIAA in the cortex, re-affirming that inhibition of specific 3H-haloperidol binding is due to drug effects on DA-receptors only.  相似文献   

8.
9.
We present the original synthesis of two halogenated analogues of the diphenyl piperazine GBR, bromo-GBR and iodo-GBR, as new dopamine uptake carrier ligands. The derivatives were purified by HPLC and chemically characterized. Bromo-GBR and iodo-GBR are potent inhibitors of [3H]GBR 12935 binding to rat striatal membrane, with Ki values of 116 and 113 nM, respectively. We prepared iodo-GBR labeled with iodide-125 from the brominated derivative and concluded that [123I]iodo-GBR could be a potential tool to explore the in vivo dopamine uptake carrier.  相似文献   

10.
Chen JC  Su HJ  Huang LI  Hsieh MM 《Life sciences》1999,64(5):343-354
Rats receiving amphetamine (5 mg/kg, i.p. once daily) for 14 continuous days develop behavioral sensitization to a subsequent amphetamine challenge (1 mg/kg) at withdrawal days 8 to 10. The present study was aimed at investigating whether there are changes in binding or functions of striatal D2 dopamine receptors in amphetamine-sensitized rats. The results indicated that the Bmax value of D2 receptors in the ventral striatum decreased 40% and 52% 7 and 10 days after amphetamine withdrawal, respectively, without changes in their binding affinities (Kd). During this withdrawal period, the D(2/3) receptor agonist-induced (a) locomotor activation (bromocriptine, 5 mg/kg, i.p. or quinpirole, 1 mg/kg, i.p.) and (b) inhibition of forskolin-enhanced adenylyl cyclase activity (bromocriptine, 50 or 150 microM) in the ventral striatum were both suppressed as compared with saline controls. The decreases in D2 receptor function were unrelated to the coupled G-proteins, since none of the G alpha i-3, G alpha o or G alpha q in the ventral striatum exhibited quantitative differences between control and amphetamine sensitized rats. Collectively, these results demonstrate that intermittent amphetamine administration for a period of 14 days leads to diminished D2 receptor expression and functions in the ventral striatum at late withdrawal periods. The decrease of D2 receptors might reflect cellular mechanisms underlying the expression of amphetamine sensitization.  相似文献   

11.
The role of dopamine (DA) input on the activity of glutamate neurons was investigated on rat striatal and cortical tissue using the measurement of sodium-dependent high affinity glutamate uptake (HAGU) as an index. Incubation of the tissue in the presence of DA, apomorphine or bromocriptine produced marked inhibition of 3H-glutamate uptake from rat striatal homogenates. No change occurred with samples from the frontal cortex. Dopaminergic inhibition of HAGU in striatal homogenates was shown to be reversed in the presence of haloperidol or domperidone which act by blocking dopaminergic receptor sites. These results are consistent with the existence of an inhibitory control of the neuronal activity of the glutamatergic neurons in the striatum by the nigro-striatal dopaminergic input. The effects could be due to the activation of D2-like DA receptors located at pre-synaptic levels on cortico-striatal glutamatergic nerve endings.  相似文献   

12.
The present study examined the mechanisms by which 3,4-methylenedioxymethamphetamine (MDMA) produces long-term neurotoxicity of striatal dopamine neurones in mice and the protective action of the dopamine uptake inhibitor GBR 12909. MDMA (30 mg/kg, i.p.), given three times at 3-h intervals, produced a rapid increase in striatal dopamine release measured by in vivo microdialysis (maximum increase to 380 +/- 64% of baseline). This increase was enhanced to 576 +/- 109% of baseline by GBR 12909 (10 mg/kg, i.p.) administered 30 min before each dose of MDMA, supporting the contention that MDMA enters the terminal by diffusion and not via the dopamine uptake site. This, in addition to the fact that perfusion of the probe with a low Ca(2+) medium inhibited the MDMA-induced increase in extracellular dopamine, indicates that the neurotransmitter may be released by a Ca(2+) -dependent mechanism not related to the dopamine transporter. MDMA (30 mg/kg x 3) increased the formation of 2,3-dihydroxybenzoic acid (2,3-DHBA) from salicylic acid perfused through a probe implanted in the striatum, indicating that MDMA increased free radical formation. GBR 12909 pre-treatment attenuated the MDMA-induced increase in 2,3-DHBA formation by approximately 50%, but had no significant intrinsic radical trapping activity. MDMA administration increased lipid peroxidation in striatal synaptosomes, an effect reduced by approximately 60% by GBR 12909 pre-treatment. GBR 12909 did not modify the MDMA-induced changes in body temperature. These data suggest that MDMA-induced toxicity of dopamine neurones in mice results from free radical formation which in turn induces an oxidative stress process. The data also indicate that the free radical formation is probably not associated with the MDMA-induced dopamine release and that MDMA does not induce dopamine release via an action at the dopamine transporter.  相似文献   

13.
Cocaine inhibits tritium-labeled dopamine ([3H]DA) uptake in rat (IC50 approximately 400 nM) and sheep (IC50 approximately 1 microM) striatum. GBR 12909, a selective DA uptake inhibitor, potently inhibits [3H]DA uptake in rat (IC50 less than 10 nM), but is less effective (only 60% of the uptake is inhibited at a concentration of 10 microM) and less potent (IC50 approximately 300 nM) in sheep. [3H]DA release from slices of rat or sheep striatum is stimulated by potassium (15-50 mM). In the presence of nomifensine (10 microM), cocaine (10 microM) had no effect on potassium-stimulated [3H]DA release in either species. [3H]DA release is increased by N-methyl-D-aspartate (NMDA) (10-1000 microM) in rat striatum but NMDA did not stimulate [3H]DA release in sheep striatum. These findings suggest that NMDA receptors either are absent from or do not regulate release of preloaded [3H]DA in sheep striatum.  相似文献   

14.
The effect of neurotensin on binding characteristics of dopamine D1 receptors was examined in the rat striatal membranes through radioreceptor assay. Neurotensin or its analogs were added to incubation medium of[3H]SCH 23390 saturation or dopamine/[3H]SCH 23390 inhibition experimental systems. Neurotensin did not modulate D1 antagonist binding but converted a part of D1 agonist high affinity binding sites to a low affinity state. Neurotensin8–13 had the same potency as neurotensin itself, whereas neurotensin1–8 had only weak activity in modulating D1 agonist binding. GTP and neurotensin had the same effect on D1 agonist binding. However, when both neurotensin and GTP were added, the result was the same as with either alone.

These data suggest that neurotensin modulates the functional state of D1 receptors probably via a GTP binding protein in the rat striatum.  相似文献   


15.
16.
A high affinity (KD 35 nM) binding site for [3H]cocaine is detected in rat brain striatum present at 2-3 pmol/mg protein of synaptic membranes. This binding is displaced by cocaine analogues with the same rank order as their inhibition of [3H]dopamine ([3H]DA) uptake into striatal synaptosomes (r = 0.99), paralleling the order of their central stimulant activity. The potent DA uptake inhibitors nomifensine, mazindol, and benztropine are more potent inhibitors of this high affinity [3H]cocaine binding than desipramine and imipramine. Cathinone and amphetamine, which are more potent central stimulants than cocaine, displace the high affinity [3H]cocaine binding stereospecifically, but with lower potency (IC50 approximately equal to 1 microM) than does cocaine. It is suggested that the DA transporter in striatum is the putative "cocaine receptor." Binding of [3H]cocaine, measured in 10 mM Na2HPO4-0.32 M sucrose, pH 7.4 buffer, is inhibited by physiologic concentrations of Na+ and K+ and by biogenic amines. DA and Na+ reduce the affinity of the putative "cocaine receptor" for [3H]cocaine without changing the Bmax, suggesting that inhibition may be competitive. However, TRIS reduces [3H]cocaine binding noncompetitively while Na+ potentiates it in TRIS buffer. Binding of [3H]mazindol is inhibited competitively by cocaine. In phosphate-sucrose buffer, cocaine and mazindol are equally potent in inhibiting [3H]mazindol binding, but in TRIS-NaCl buffer cocaine has 10 times lower potency. It is suggested that the cocaine receptor in the striatum may be an allosteric protein with mazindol and cocaine binding to overlapping sites, while Na+ and DA are allosteric modulators, which stabilize a lower affinity state for cocaine.  相似文献   

17.
Characteristics of 3H-cis-flupenthixol binding in rat striatum   总被引:1,自引:0,他引:1  
L C Murrin 《Life sciences》1983,33(22):2179-2186
Characteristics of membrane receptor binding by 3H-cis-flupenthixol were examined in rat striatum. Using modifications of standard dopamine receptor binding techniques, it was possible to obtain 70% specific binding with 3H-cis-flupenthixol. Association and dissociation rates were very rapid, with equilibrium reached in 2 min and half-time of dissociation being 1 min. Analysis of saturation and competition studies using cis-flupenthixol and spiroperidol indicated that cis-flupenthixol binds to two striatal receptors with apparent KD's of 0.7 and 4.8 nM. It is suggested these represent D1 and D2 dopamine receptors respectively. The further characterization of the properties of cis-flupenthixol binding presented here should enable more detailed studies of multiple dopamine receptors to be designed.  相似文献   

18.
19.
The binding of [3H]forskolin to a homogeneous population of binding sites in rat striatum was enhanced by NaF, guanine nucleotides and MgCl2. These effects of NaF and guanylylimidodiphosphate (Gpp(NH)p) were synergistic with MgCl2, but NaF and Gpp(NH)p together elicited no greater enhancement of [3H]forskolin binding. These data suggest that [3H]forskolin may label a site which is modulated by the guanine nucleotide regulatory subunit which mediates the stimulation of adenylate cyclase (NS). The D1 dopamine receptor is known to stimulate adenylate cyclase via NS. In rat striatum, the Bmax of [3H]forskolin binding sites in the presence of MgCl2 and NaF was approximately two fold greater than the Bmax of [3H]SCH23390-labeled D1 dopamine receptors. Incubation of striatal homogenates with the protein modifying reagent EEDQ elicited a concentration-dependent decrease in the binding of both [3H]SCH23390 and [3H]forskolin, although EEDQ was approximately 14 fold more potent at inactivating the D1 dopamine receptor. Following in vivo administration of EEDQ there was no significant effect on [3H]forskolin binding sites using a dose of EEDQ that irreversibly inactivated greater than 90% of D1 dopamine receptors. These data suggest that EEDQ is a suitable tool for investigating changes in the stoichiometry of receptors and their second messenger systems.  相似文献   

20.
Methods for measuring 3H-SCH 23390 binding and dopamine (DA) stimulated adenylate cyclase (AC) were established in identical tissue preparations and under similar experimental conditions. Pharmacological characterization revealed that both assays involved interaction with the D1 receptor or closely associated sites. In order to investigate whether the binding sites for 3H-SCH 23390 and DA in fact are identical, the antagonistic effects of a variety of pharmacologically active compounds were examined. Surprisingly, the Ki-values obtained from Schild-plot analysis of the antagonism of DA-stimulated AC, were 80-240 times higher than the Ki-values obtained from competition curves of 3H-SCH 23390 binding. Since both assays were performed under identical conditions, the differences in Ki-values indicate the possibility of different binding sites for DA and 3H-SCH 23390 or, that DA and 3H-SCH 23390 label different states of the same receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号