首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the search for new antiarrhythmic agents, some active 2-methoxyphenylpiperazine derivatives of phenytoin were obtained as a chemical modification of compound AZ-99 (3-ethyl-1-[2-hydroxy-3-(4-phenylpiperazin-1-yl)-propyl]-2,4-dioxo-5,5-diphenylimidazolidine). These compounds possessed structural properties similar to those of alpha(1)-adrenoceptor antagonists. In the present study, the affinities of the 2-methoxyphenylpiperazine derivatives (1a-3a) for alpha(1)- and alpha(2)-adrenoceptors were evaluated using radioligand ([(3)H]prazosin, [(3)H]clonidine) binding assays. In the next step, a new series of phenylpiperazine derivatives of phenytoin (4a-16a) containing 2-methoxyphenyl-, 2-ethoxyphenyl-, 2-pyridyl- or 2-furoylpiperazine moiety, as well as, various ester or alkyl substituents at 3-position of hydantoin ring were synthesized. The newly synthesized compounds were tested for their affinity to alpha(1)- and alpha(2)-adrenoceptors. They have shown affinities for alpha(1)-adrenoceptors at nanomolar to submicromolar range. Some compounds were moderately selective ligands of alpha(1)-adrenoceptors. Selected compounds (3a-5a, 7a, 13a, 14a) were also evaluated for their alpha(1)-adrenoceptor antagonistic properties in functional bioassays. A SAR study indicated that the most active compounds contain 2-alkoxyphenylpiperazine moieties and methyl or 2-methylpropionate substituent at 3-N position in hydantoin. The exchange of 2-alkoxyphenyl moiety into 2-furoyl or 2-pyridyl group significantly decreased affinities for alpha(1)-adrenoceptors. Molecular modelling results obtained using conformational analysis CONFLEX and PM5 method for geometry optimization, allowed for comparison of the spatial properties of tested compounds with pharmacophore model created by Barbaro et al. for the ideal alpha(1)-adrenoceptor antagonist.  相似文献   

2.
For the study of genetic and physiological mechanisms of inherited stress-sensitive arterial hypertension, specific binding of ligands of alpha 1-, alpha 2- and beta-adrenoceptors was measured in 2 strains of rats: Wistar normotensive and ISSAH rats (rats with inherited stress-sensitive arterial hypertension). The maximal binding sites (Bmax) and apparent dissociation constants (Kd) were studied with the alpha 1-adrenergic antagonist 3H-prazosin, alpha 2-adrenergic agonist 3H-clonidine and 3H-dihydroalprenolol, a beta 1-receptor antagonist. Four brain regions were investigated: frontal cortex, hypothalamus, pons and medulla oblongata. In comparison with normotensive controls, hypertensive rats had significantly greater density of the alpha 1-adrenoceptors in the medulla oblongata. However, the number of hypothalamic alpha 1-adrenoceptors was significantly reduced in these animals. The same significantly lower alpha 2-adrenoreceptor density was found in the hypothalamus and the pons, and lower, beta-adrenoceptors density in the medulla oblongata. It was concluded that brain adrenoceptors are involved in the mechanisms of development of inherited stress-sensitive hypertensive syndrome.  相似文献   

3.
The pharmacological characteristics of postjunctional alpha-adrenoceptors in isolated canine internal carotid arteries were investigated by the use of selective agonists and antagonists for alpha 1- and alpha 2-adrenoceptors. Norepinephrine, phenylephrine, and xylazine caused concentration-dependent contractions in the helical strips. The contraction induced by 10(-4)M xylazine was significantly smaller than that produced by 10(-4)M norepinephrine or 10(-4)M phenylephrine. The contraction induced by 10(-4)M phenylephrine was almost the same value as that induced by 10(-4)M norepinephrine. Phentolamine (10(-8) and 10(-7)M) caused a parallel shift to the right of the concentration-response curve to norepinephrine. The contractile responses to low concentrations of norepinephrine were significantly suppressed by pretreatment with an alpha 2-antagonist such as yohimbine (10(-9) and 10(-8)M) or DG5128 (10(-7) and 10(-6)M). On the other hand, the responses to higher concentrations of norepinephrine were mainly reduced by low concentrations of an alpha 1-antagonist, prazosin (3 x 10(-10) and 3 x 10(-9)M). These results suggest that both alpha 1- and alpha 2-adrenoceptors are located on the plasma membrane of smooth muscle cells in canine internal carotid arteries and that the norepinephrine-induced contractions at low and high concentrations are mainly mediated by activation of alpha 2- and alpha 1-adrenoceptors, respectively.  相似文献   

4.
Since there exist some obscurities in the expression of mRNAs and their receptors in the heart, we have investigated the gene expression (mRNA levels) of adrenoceptors (alpha1A-, alpha1B-, beta1-, beta2-, beta3-) and muscarinic receptors (M2) and the density of receptor binding sites (alpha1A-, alpha1B-, beta1-, beta2-adrenoceptors, muscarinic receptors). Moreover, the heart regions consist of tissue rich in ganglion cells (that are of importance in heart neural circuits) and those virtually free of them (myocytes). Therefore, we have examined the differences in the distribution of mRNAs/receptor binding sites in the atrial samples of the heart rich in ganglion cells vs. those are virtually free of them. Binding sites and mRNAs of muscarinic receptors and alpha1B-adrenoceptors differ in their distribution in different heart regions. The mRNAs for beta1- and beta2-adrenoceptors were almost equally distributed herein, while the amount of beta-adrenoceptors significantly differs in the heart regions. The alpha1A- and beta3-adrenoceptors mRNAs were also found in all investigated heart regions, but at significantly lower level and have not shown region differences. This is a new finding, especially to beta3-adrenoceptors, as they were not regularly found in each heart regions. alpha1B-adrenoceptors have similar distribution of their mRNAs and binding sites in some heart parts. Thus, we can conclude that there are noticeable differences in the presence of receptors in heart regions that contain ganglion cells in comparison to those are virtually free of them.  相似文献   

5.
Isomers of octopamine were tested for in vitro alpha-adrenergic stimulation of aortic smooth muscle of spontaneously hypertensive rats (SHR). In order to test the response of alpha 1-adrenoceptors to meta-, para-, and ortho-octopamine, alpha 2-adrenoceptors were blocked with 10(-7) M yohimbine, and to measure the response of alpha 2-adrenoceptors the alpha 1-adrenoceptors were blocked with 10(-7) M prazosin. The contractile response of aortic smooth muscle of SHR to stimulation by phenylephrine, m-, p-, and o-isomers of octopamine in the presence of yohimbine was not appreciably altered. However, administration of prazosin severely attenuated the response of muscles of these compounds indicating that like phenylephrine, the isomers of octopamine stimulate mainly alpha 1-adrenoceptors. The attenuation of contractile response to isomers of octopamine in the presence of prazosin was not as pronounced as in the case of phenylephrine. The comparative potencies of phenylephrine, m-, p-, and o-octopamine in the presence of 10(-7) M prazosin were 1:1.2:2.5:0.75, respectively. Thus, it appears that the isomers of octopamine, especially para- and meta-octopamine, play a much more important role in the physiology of vascular smooth muscle than has been thus far perceived.  相似文献   

6.
Cerebral cortical slices from rat brain were incubated at 37 degrees C for 2 h in the presence of isoproterenol, noradrenaline, or adrenaline, and binding affinities and densities of adrenoceptor subtypes were subsequently examined in homogenized tissue. The density of alpha 2- and total beta-adrenoceptors was estimated using the radioligands [3H]rauwolscine and [3H]dihydroalprenolol (DHA), respectively. The percentages of beta 1- and beta 2-adrenoceptors were defined by inhibiting the binding of [3H]DHA with the beta 1-selective antagonist metoprolol. Exposure of slices to noradrenaline and adrenaline significantly decreased the maximal number of binding sites (Bmax) of alpha 2-adrenoceptors (48 and 37% respectively) without significantly affecting affinity; isoproterenol had no effect. Exposure to isoproterenol, noradrenaline, and adrenaline significantly decreased the Bmax of beta-adrenoceptors (by 60, 34, and 24%, respectively) but did not affect the affinity. Isoproterenol and adrenaline significantly decreased the density of beta 1-adrenoceptors by 75 and 24% and beta 2-adrenoceptors by 23 and 28%, respectively. Noradrenaline significantly decreased the density of beta 1-adrenoceptors by 42% without affecting the number of beta 2-adrenoceptors. These findings indicate that subtypes of adrenoceptors in rat cerebral cortex are differentially regulated by adrenergic agonists.  相似文献   

7.
Functional role of endothelial alpha(2)-adrenoceptor in coronary circulation remains unclear. Clonidine, an agonist of alpha(2)-adrenoceptors, was reported to induce coronary vasodilatation via stimulation of endothelial alpha(2)-adrenoceptors or coronary vasoconstriction involving vascular smooth muscle alpha(2)-adrenoceptors. Moreover, H(2) receptor-dependent responses to clonidine were described. Here, we reassess the contribution of endothelial alpha(2)-adrenoceptor and H(2) receptors to coronary flow and contractility responses induced by clonidine in the isolated guinea pig heart. We found that clonidine (10(-9) - 10(-6) M) produced concentration-dependent coronary vasoconstriction without a significant change in contractility. This response was inhibited by the alpha(1)/alpha(2)-adrenoceptor antagonist - phentolamine (10(-5) M) and the selective alpha(2)-adrenoceptor antagonist yohimbine (10(-6) M), but it was not changed by the selective alpha(1)-adrenoceptor antagonist prazosin (10(-6) M). In the presence of nitric oxide synthase inhibitor, L-NAME (10(-4) M) the clonidine-induced vasoconstriction was potentiated. Clonidine at high concentrations of 10(-5) - 3 x 10(-5) M produced coronary vasodilatation, and an increase in myocardial contractility. These responses were abolished by a selective H(2)-receptor antagonist, ranitidine (10(-5) M), but not by phentolamine (10(-5) M). We conclude that in the isolated guinea pig heart, clonidine-induced vasoconstriction is mediated by activation of smooth muscle alpha(2)-adrenoceptors whereas clonidine-induced coronary vasodilatation is mediated by activation of vascular H(2) histaminergic receptors. Accordingly, endothelial alpha(2)-adrenoceptors does not seem to play a major role in coronary flow response induced by clonidine.  相似文献   

8.
In addition to its effect on D2 dopamine receptor blockades, haloperidol is able to interact with multiple neurotransmitters (NTs). Its action on phosphoinositide (PI) turnover was studied on cerebral cortex preparations. It induces an increase in inositol phosphate (IP) accumulation, which was only blunted by the alpha1-adrenoceptor blocker prazosin. Haloperidol maximal effect (Emax) was less than the effect of the full agonist norepinephrine (NE), and dose-response curves for both NE in the presence of submaximal doses of haloperidol and haloperidol in the presence of Emax doses of NE showed that haloperidol behaves as a partial agonist of cerebral alpha1-adrenoceptors. Its effect on PI hydrolysis is mediated through phospholipase C activation, as 2-nitro-4-carboxyphenyl-N,N-diphenylcarbamate (NCDC) and 1-[6-([(17beta)-3-methoxyestra- 1,3,5(10)-trien-17-yl]amino)hexyl]-1H-pyrrole-2,5-dione) (U-73122) were able to abrogate both haloperidol and NE actions. Further, the typical neuroleptic exerts a direct activation of alpha1-adrenoceptors as its actions were not modified by cocaine and persisted in spite of chemical rat cerebral denervation with 6-hydroxydopamine (6-OHDA). The possibility that this agonistic action on alpha1-adrenoceptors would be involved in haloperidol side effects is also discussed.  相似文献   

9.
P T Horn  J D Kohli 《Life sciences》1992,51(10):757-764
Inhibitory alpha-adrenoceptors were studied in cardiac ganglia of pentobarbital-anesthetized dogs. Blockade of alpha 1- or alpha 2-adrenoceptors augmented preganglionic nerve stimulation induced tachycardia without altering the response to postganglionic nerve stimulation. The effect produced by blockade of ganglionic alpha 1-adrenoceptors with terazosin had different frequency-response characteristics from, was of smaller magnitude than, and was additive with the effect produced by blockade of ganglionic alpha 2-adrenoceptors with rauwolscine. The response to activation of ganglionic nicotinic cholinergic receptors in the absence of electrical stimulation of the preganglionic nerve was not affected by blockade of either alpha 1- or alpha 2-adrenoceptors. The response to nicotinic cholinergic receptor activation during periods of continuous preganglionic nerve stimulation was augmented following blockade of alpha 2-adrenoceptors but unaffected by alpha 1-adrenoceptor blockade. These results suggest that there are two different inhibitory pathways involving alpha-adrenoceptors in mammalian sympathetic ganglia and provide evidence that these inhibitory pathways are operative under the experimental conditions of ganglionic transmission.  相似文献   

10.
A series of beta-chloroethylamines 5--18, structurally related to the irreversible alpha(1)-adrenoceptor antagonist phenoxybenzamine [PB, N-benzyl-N-(2-chloroethyl)-N-(1-methyl-2-phenoxyethyl)amine hydrochloride, 1] and the competitive antagonist WB4101 [N-(2,3-dihydro-1,4-benzodioxin-2-ylmethyl)-N-[2-(2,6-dimethoxyphenoxy)ethyl]amine hydrochloride, 2], were synthesized and evaluated for their activity at alpha-adrenoceptors of the epididymal and the prostatic portion of young CD rat vas deferens. All compounds displayed irreversible antagonist activity. Most of them showed similar antagonism at both alpha(1)- and alpha(2)-adrenoceptors, whereas compounds 13 and 18, lacking substituents on both the phenoxy group and the oxyamino carbon chain, displayed a moderate alpha(1)-adrenoceptor selectivity (10--35 times), which was comparable to that of PB. Compounds 14 and 15, belonging to the benzyl series and bearing, respectively, a 2-ethoxyphenoxy and a 2-i-propoxyphenoxy moiety, were the most potent alpha(1)-adrenoceptor antagonists with an affinity value similar to that of PB (pIC(50) values of 7.17 and 7.06 versus 7.27). Interestingly, several compounds were able to distinguish two alpha(1)-adrenoceptor subtypes in the epididymal tissue, as revealed by the discontinuity of their inhibition curves. A mean ratio of 24:76 for these alpha(1)-adrenoceptors was determined from compounds 8--10, 12, and 15--17. Furthermore, compounds 9, 10, 12, 16a, and 16b showed higher affinity towards the minor population of receptors, whereas compounds 8, 15, and 17 preferentially inhibited the major population of alpha(1)-adrenoceptors. In addition, selected pharmacological experiments demonstrated the complementary antagonism of the two series of compounds and their different, preferential affinity for one of the two alpha(1)-adrenoceptor subtypes. In conclusion, we found beta-chloroethylamines that demonstrate a multiplicity of alpha(1)-adrenoceptors in the epididymal portion of young CD rat vas deferens and, as a consequence, they are possible useful tools for alpha(1)-adrenoceptor characterization.  相似文献   

11.
CYP1A2, a principal catalyst for metabolism of various therapeutic drugs and carcinogens, among others, is in part regulated by the stress response. This study was designed to assess whether catecholamines and in particular adrenergic receptor-dependent pathways, modulate benzo(alpha)pyrene (B(alpha)P)-induced hepatic CYP1A2. To distinguish between the role of central and peripheral catecholamines in the regulation of CYP1A2 induction, the effect of central and peripheral catecholamine depletion using reserpine was compared to that of peripheral catecholamine depletion using guanethidine. The effects of peripheral adrenaline and L-DOPA administration were also assessed. The results suggest that alterations in central catecholamines modulate 7-methoxyresorufin O-demethylase activity (MROD), CYP1A2 mRNA and protein levels in the B(alpha)P-induced state. In particular, central catecholamine depletion, dexmedetomidine-induced inhibition of noradrenaline release and blockade of alpha(1)-adrenoceptors with prazosin, up-regulated CYP1A2 expression. Phenylephrine and dexmedetomidine-induced up-regulation may be mediated, in part, via peripheral alpha(1)- and alpha(2)-adrenoceptors, respectively. On the other hand, the L-DOPA-induced increase in central dopaminergic activity was not followed by any change in the up-regulation of CYP1A2 expression by B(alpha)P. Central noradrenergic systems appeared to counteract up-regulating factors, most likely via alpha(1)- and alpha(2)-adrenoceptors. In contrast, peripheral alpha- and beta-adrenoceptor-related signaling pathways are linked to up-regulating processes. The findings suggest that drugs that bind to adrenoceptors or affect central noradrenergic neurotransmission, as well as factors that challenge the adrenoceptor-linked signaling pathways may deregulate CYP1A2 induction. This, in turn, may result in drug-therapy and drug-toxicity complications.  相似文献   

12.
Contractile responses to single or cumulative doses of alpha-adrenoceptor agonists were compared in the tail artery and the saphenous vein of the rat. In the rat tail artery, there were no differences in the dose-response relationships to noradrenaline, methoxamine, and KCl whether the agonists were applied as single or cumulative doses. However, the responses to single doses of clonidine and B-HT 920 were significantly larger than similar doses applied cumulatively. In the rat saphenous vein, responses to single doses of noradrenaline, clonidine, and B-HT 920 were also significantly larger than the corresponding cumulative doses. However, there was no difference in the responses to KCl. It was suggested that desensitization of alpha 2-adrenoceptors in these vessels may result in the diminished responses to cumulative doses of the agonists. Desensitization appeared to be specific to alpha 2-adrenoceptors, since the effect was not observed in responses mediated by the alpha 1-adrenoceptors and KCl.  相似文献   

13.
The median preoptic nucleus (MnPO) in the lamina terminalis receives a prominent catecholaminergic innervation from the dorsomedial and ventrolateral medulla. The present investigation used whole cell patch-clamp recordings in rat brain slice preparations to evaluate the hypothesis that presynaptic adrenoceptors could modulate GABAergic inputs to MnPO neurons. Bath applications of norepinephrine (NE; 20-50 microM) induced a prolonged and reversible suppression of inhibitory postsynaptic currents (IPSCs) and reduced paired-pulse depression evoked by stimulation in the subfornical organ and organum vasculosum lamina terminalis. These events were not correlated with any observed changes in membrane conductance arising from NE activity at postsynaptic alpha(1)- or alpha(2)-adrenoceptors. Consistent with a role for presynaptic alpha(2)-adrenoceptors, responses were selectively mimicked by an alpha(2)-adrenoceptor agonist (UK-14304) and blockable with an alpha(2)-adrenoceptor antagonist (idazoxan). Although the alpha(1)-adrenoceptor agonist cirazoline and the alpha(1)-adrenoceptor antagonist prazosin were without effect on these evoked IPSCs, NE was noted to increase (via alpha(1)-adrenoceptors) or decrease (via alpha(2)-adrenoceptors) the frequency of spontaneous and tetrodotoxin-resistant miniature IPSCs. Collectively, these observations imply that both presynaptic and postsynaptic alpha(1)- and alpha(2)-adrenoceptors in MnPO are capable of selective modulation of rapid GABA(A) receptor-mediated inhibitory synaptic transmission along the lamina terminalis and therefore likely to exert a prominent influence in regulating cell excitability within the MnPO.  相似文献   

14.
Endothelin-1 (ET-1) (10 pmol) microinjected into the superficial layer of superior colliculus induces decreases in blood pressure (control, 108 +/- 5 mmHg, n=6; ET-1, 71 +/- 4 mmHg, n=5). The effects on blood pressure induced by endothelin-1 were significantly (p<0.05) reduced by pre-administration into the superior colliculus of the alpha1-adrenoceptor agonist phenylephrine (1 nmol) (46 +/- 5%, n=5), beta1-adrenoceptor antagonist acebutolol (5 nmol) (51 +/- 6%, n=5) or beta1/beta2-adrenoceptor antagonist propranolol (3.4 nmol) (51 +/- 11%, n=5). In contrast, endothelin-1-induced effects were increased (p<0.05) by microinjections into the superior colliculus of prazosin (2.4 nmol) (49 +/- 7%, n=5), an alpha1-adrenoceptor antagonist; dobutamine (4 nmol) (51 +/- 9%, n=5), a beta1-adrenoceptor agonist or isoprenaline (1 nmol) (49 +/- 6%, n=5), a beta1/beta2-adrenoceptor agonist. No involvement of alpha2- or beta2-adrenoceptors has been detected. Therefore, ET-1 induces decreases in blood pressure with selective involvement of alpha1- and beta1-adrenoceptors.  相似文献   

15.
The effects of noradrenaline (NA) and its analogs on subfornical organ (SFO) neurons in rat slice preparations were investigated by using whole cell patch-clamp recording. In the current-clamp mode, the application of NA at 10-100 microM produced membrane depolarization (63%, 17 responsive neurons/27 neurons tested) and hyperpolarization (22%, 6/27 neurons). In the voltage-clamp mode, NA application at 1-100 microM produced inward currents (69%, 42/61 neurons) and outward currents (23%, 14/61 neurons). These currents remained in the presence of TTX or both glutamate and GABA receptor antagonists. In most of the neurons (25/31 neurons) showing inward currents in the presence of NA, the membrane conductance was not changed by voltage ramps or hyperpolarizing pulse stimulation. Similar responses were obtained by the application of the alpha1-agonist phenylephrine. The phenylephrine-induced inward currents were inhibited by the alpha1-antagonist prazosin. The alpha2-agonist clonidine decreased the frequency of spontaneous GABAergic inhibitory postsynaptic currents (4/10 neurons). In addition, RT-PCR assay and immunohistochemical staining showed the existence of alpha1-adrenoceptors in the SFO. The results suggest that SFO neurons in rats are activated postsynaptically through alpha1-adrenoceptors and that the activation is enhanced by suppressing GABAergic inhibitory synaptic inputs through presynaptic alpha2-adrenoceptors.  相似文献   

16.
In the pithed rat, (imidazolinyl-2)-2 dihydro 2,3 benzofuran or S 9871 and its stereoisomers were found to block alpha-adrenoceptors. In the present investigation the agonistic effect were studied in pithed rats. With (+/-) and (+) S 9871 this effect is compatible with a stimulation of alpha 1-adrenoceptors and the effect of (-) stereoisomer with a stimulation of alpha 1 and alpha 2 adrenoceptors.  相似文献   

17.
In the prostatic portion of rat vas deferens, activation of adenosine A 2B-receptors, beta2-adrenoceptors, adenylyl cyclase or protein kinase A caused a facilitation of noradrenaline release. Blockade of alpha2-adrenoceptors with yohimbine (1 microM) attenuated the facilitation mediated by adenosine A 2B-receptors and by direct activation of adenylyl cyclase with forskolin but not that mediated by beta2-adrenoceptors or by direct activation of protein kinase A with 8-bromoadenosine-3',5'-cyclicAMP. The adenosine A 2B- and the beta2-adrenoceptor-mediated facilitation was prevented by the adenylyl cyclase inhibitors, 2',5'-dideoxy-adenosine (3 microM) and 9-cyclopentyladenine (100 microM), at concentrations that also attenuated the release enhancing effect of forskolin, but were not changed by the phospholipase C inhibitor 1-[6-[((17beta)-3-methoxyestra-1,3,5[10]-trien-17-yl)amino]hexyl]-1H-pyrrole-2,5-dione (U-73122, 1 microM). Facilitation of noradrenaline release mediated by adenosine A 2B-receptors was also attenuated by activation of protein kinase C with the phorbol ester 12-myristate 13-acetate (1 microM) and by inhibition of Gbetagamma subunits with an anti-betagamma peptide; facilitation mediated by beta2-adrenoceptors was mainly attenuated by the calmodulin inhibitor calmidazolium (10 microM) and by the calmodulin kinase II inhibitor (N-[2-[N-(4-chlorocinnamyl)-N-methylaminomethyl]phenyl]-N-(2-hydroxyethyl)-4-methoxybenzene-sulfonamide phosphate (KN-93, 5 microM). The results suggest that adenosine A 2B- but not beta2-adrenoceptor-mediated facilitation of noradrenaline release is enhanced by an ongoing activation of alpha2-adrenoceptors. They further suggest that adenosine A 2B-receptors and beta2-adrenoceptors are coupled to distinct adenylyl cyclase isoforms what may explain the different influence of alpha2-adrenoceptor signalling pathway on the facilitatory effects mediated by the two adenylyl cyclase coupled receptors.  相似文献   

18.
Alpha-adrenoceptors: recent development and some comparative aspects   总被引:2,自引:0,他引:2  
On anatomical and functional bases, alpha-adrenoceptors have been divided into pre- and postsynaptic alpha-adrenoceptors. Recently, alpha-adrenoceptors have been classified as alpha 1 and alpha 2 according to their pharmacological responses, irrespective of their anatomical location. The presynaptic alpha-adrenoceptors, which have been recognized as alpha 2, determine the frequency of the nerve impulses travelling along the axon and also the amount of transmitter released per nerve impulse from the varicose terminal. Postsynaptic alpha-adrenoceptors have been recognized in various tissues including smooth muscle, pancreatic islets, fat cells, platelets and other tissues. Both alpha 1- and alpha 2-adrenoceptors have been located postsynaptically. alpha-Adrenoceptors have been found also in the central nervous system. Generally, they fall into the same categories (alpha 1 and alpha 2) as the peripheral alpha-adrenoceptors. A new class of drugs, the so called calcium blockers, inhibit the postsynaptic response to alpha 2 stimulation but not the alpha 1-mediated response, indicating that the alpha 2-adrenoceptors are dependent on Ca2+ ions for their function. In the most primitive group of vertebrates, the fishes, alpha-adrenoceptors seem to be different in as much as they do not respond to many of the classical drugs employed to distinguish between alpha-adrenoceptors in mammals. In reptiles and amphibians alpha 2-adrenoceptors have been shown to exist. These receptors are involved in the regulation of melanocytes. In the most advanced non-mammalian vertebrates (birds) both peripheral and central alpha-adrenoceptors seem to be qualitatively similar to the mammalian types.  相似文献   

19.
The adrenergic receptor subtypes mediating the response to sympathetic nerve stimulation in the pulmonary vascular bed of the cat were investigated under conditions of controlled blood flow and constant left atrial pressure. The increase in lobar vascular resistance in response to sympathetic nerve stimulation was reduced by prazosin and to a lesser extent by yohimbine, the respective alpha 1- and alpha 2-adrenoceptor antagonists. Moreover, in animals pretreated with a beta-adrenoceptor antagonist to prevent an interaction between alpha- and beta 2-adrenoceptors, responses to nerve stimulation were reduced by prazosin, but yohimbine had no significant effect. On the other hand, in animals pretreated with a beta-adrenoceptor antagonist, yohimbine had an inhibitory effect on responses to tyramine and to norepinephrine. Propranolol had no significant effect on the response to nerve stimulation, whereas ICI 118551, a selective beta 2-adrenoceptor antagonist, enhanced responses to nerve stimulation and injected norepinephrine. The present data suggest that neuronally released norepinephrine increases pulmonary vascular resistance in the cat by acting mainly on alpha 1-adrenoceptors and to a lesser extent on postjunctional alpha 2-adrenoceptors but that this effect is counteracted by an action on presynaptic alpha 2-receptors. The present studies also suggest that neuronally released norepinephrine acts on beta 2-adrenoceptors and that the response to sympathetic nerve stimulation represents the net effect of the adrenergic transmitter on alpha 1-, alpha 2-, and beta 2-adrenoceptors in the pulmonary vascular bed.  相似文献   

20.
R107474, 2-methyl-3-[2-(1,2,3,4-tetrahydrobenzo[4,5]furo[3,2-c]pyridin-2-yl)ethyl]-4H-pyrido[1,2-a]pyrimidin-4-one, was investigated using in vitro and in vivo receptor assays and proved to be a potent and relatively selective alpha(2)-adrenoceptor antagonist. Performed assays in vitro were inhibition of binding to a large number of neurotransmitter receptor sites, drug receptor binding sites, ion channel binding sites, peptide receptor binding sites, and the monoamine transporters in membrane preparations of brain tissue or of cells expressing the cloned human receptors. The compound has subnanomolar affinity for halpha(2A)- and halpha(2C)-adrenoceptors (K(i) = 0.13 and 0.15 nM, respectively) and showed nanomolar affinity for the halpha(2B)-adrenoceptors and 5-hydroxytryptamine(7) (h5-HT(7)) receptors (K(i) = 1 and 5 nM, respectively). R107474 interacted weakly (K(i) values ranging between 81 and 920 nM) with dopamine-hD(2L), -hD(3) and -hD(4), h5-HT(1D)-, h5-HT(1F)-, h5-HT(2A)-, h5-HT(2C)-, and h5-HT(5A) receptors. The compound, tested up to 10 microM, interacted only at micromolar concentrations or not at all with any of the other receptor or transporter binding sites tested in this study. In vivo alpha(2A)- and alpha(2C)-adrenoceptor occupancy was measured by ex vivo autoradiography 1h after subcutaneous (sc) administration of R107474. It was found that R107474 occupies the alpha(2A)- and alpha(2C)-adrenoceptors with an ED(50) (95% confidence limits) of 0.014 mg/kg sc (0.009-0.019) and 0.026 mg/kg sc (0.022-0.030), respectively. Radiolabeled 2-methyl-3-[2-([1-(11)C]-1,2,3,4-tetrahydrobenzo[4,5]furo[3,2-c]pyridin-2-yl)ethyl]-4H-pyrido[1,2-a]pyrimidin-4-one ([(11)C]R107474) was prepared and evaluated as a potential positron emission tomography (PET) ligand for studying central alpha(2)-adrenoceptors. [(11)C]R107474 was obtained via a Pictet-Spengler reaction with [(11)C]formaldehyde in 33 +/- 4% overall decay-corrected radiochemical yield. The total synthesis time was 55 min and the specific activity was 24-28 GBq/micromol. The biodistribution of [(11)C]R107474 in rats revealed that the uptake of [(11)C]R107474 after in vivo intravenous administration is very rapid; in most tissues (including the brain) it reaches maximum concentration at 5 min after tracer injection. In agreement with the known distribution of alpha(2)-adrenoceptors in the brain, highest uptake of radioactivity was observed in septum (3.54 +/- 0.52 ID/g, 5 min pi) and entorhinal cortex (1.57 +/- 0.10 ID/g, 5 min pi). Tissue/cerebellum concentration ratios for septum (5.38 +/- 0.45, 30 min pi) and entorhinal cortex (3.43+/-0.24, 30 min pi) increased with time due to rapid uptake followed by a slow washout. In vivo blocking experiments using the non-selective alpha(2)-adrenoceptor antagonist mirtazapine demonstrated specific inhibition of [(11)C]R107474 binding in selective brain areas. The receptor binding profile of mirtazapine is reported and the selectivity of inhibition of binding is discussed. These results suggest that [(11)C]R107474 deserves further investigation as a potential radioligand for studying alpha(2)-adrenoceptors using PET.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号