首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
We have previously described a methotrexate-resistant cell line (MTX M) characterized by amplified dihydrofolate reductase (DHFR) genes, cytoplasmic p53 localization, and p53 stable tetramers. To investigate the p53 functionality in MTX M, the effect of chemical/physical agents was studied. In MTX M cells, DNA damage did not induce p53 or mdm-2 protein, while in the parental V79 cells, a residual p53 activity was found. cDNA sequencing showed that V79 and MTX M cells share the same mutations, indicating that the complete loss of p53 function in MTX M cells was due to cytoplasmic sequestration of a mutated p53 with residual activity. In Chinese hamster, both p53 and DHFR genes map on short arm of chromosome 2 suggesting that p53 itself might be amplified. However, fluorescence in situ hybridization with a hamster p53 probe showed only a single signal. Thus, the presence of p53 stable tetramers in MTX M cells, although correlated with DNA amplification, could not be the consequence of either p53 or DHFR gene amplification. Expression of a C-terminal human p53 peptide does not induce p53 nuclear accumulation, indicating that the cytoplasmic localization is due to a mechanism different from that already described in cancer cell lines. Treatments with Sodium Butyrate induced beta-tubulin polymerization, but did not apparently organize a normal microtubule network, which is shown to be important for the p53 localization. Our data indicated that in MTX M cells, p53 is sequestered in the cytoplasm by a novel mechanism that abrogates p53 residual function.  相似文献   

5.
Cadmium resistant (Cdr) variants with coordinately amplified metallothionein I and II (MTI and MTII) genes have been derived from both Chinese hamster ovary and near-euploid Chinese hamster cell lines. Cytogenetic analyses of Cdr variants consistently revealed breakage and rearrangement involving chromosome 3p. In situ hybridization with a Chinese hamster MT-encoding cDNA probe localized amplified MT gene sequences near the translocation breakpoint involving chromosome 3p. These observations suggested that both functionally related, isometallothionein loci are linked on Chinese hamster chromosome 3. Southern blot analyses of DNAs isolated from a panel of Chinese hamster X mouse somatic cell hybrids which segregate hamster chromosomes confirmed that both MTI and MTII are located on chromosome 3. We speculate that rearrangement of chromosome 3p could be causally involved with the amplification of MT genes in Cdr hamster cell lines.  相似文献   

6.
Expression of human interleukin 2 (IL-2) at high levels has been achieved in Chinese hamster ovary (CHO) cells by amplification of transfected sequences. Plasmids containing the human IL-2 cDNA or genomic DNA and mouse dihydrofolate reductase (DHFR) cDNA were transfected into DHFR-negative CHO cells. Transformants expressing DHFR were selected in media lacking nucleosides, and cells which amplified both DHFR and IL-2 genes were obtained by exposure to increasing methotrexate (MTX) concentrations. These cell lines constitutively expressed elevated levels of IL-2 at a concentration of 2 mg/liter. These cell lines continued to produce IL-2 stably through at least 1 month, even in the absence of MTX.  相似文献   

7.
Transfection of a mouse dihydrofolate reductase (DHFR) cDNA contained in a plasmid "expression vector" into DHFR deficient Chinese hamster cells, followed by progressive selection of cells in increasing concentrations of methotrexate (MTX), leads to marked amplification of the exogenous DHFR sequences in the recipient hamster cells. This gene amplification is evident at the cytological level, in the form of homogeneously staining chromosomal regions (HSRs), at a gene expression level, in the form of fluorescein-methotrexate binding, and at the DNA level. Flow sorting, based on variable fluorescein-MTX binding, or direct cellular cloning, followed by chromosome analysis, revealed intercellular heterogeneity of HSRs in size and distribution. This suggested that there was a rapid evolution of HSRs in MTX-resistant transfectants. Chromosomal analysis of HSR evolution in situ, by examining individual colonies presumably derived from one or a few cells, underscored this impression of chromosome structural fluidity. Rates of HSR change in excess of 0.01 per cell division, increased by low doses of the recombinogen, mitomycin C, were detected. The Chinese hamster DHFR transfectants described should be amenable to detailed, coordinate cytological and molecular characterization. Such an analysis should contribute to an understanding of processes such as homologous recombination in mediating HSR evolution in mammalian chromosomes.  相似文献   

8.
9.
Expression of human tissue-type plasminogen activator (t-PA) at high levels has been achieved in Chinese hamster ovary (CHO) cells by cotransfection and subsequent coamplification of the transfected sequences. Expression vectors containing the t-PA cDNA gene and dihydrofolate reductase (DHFR) cDNA gene were cotransfected into CHO DHFR-deficient cells. Transformants expressing DHFR were selected by growth in media lacking nucleosides and contained low numbers of t-PA genes and DHFR genes. Stepwise selection of the DHFR+ transformants in increasing concentrations of methotrexate generated cells which had amplified both DHFR genes and t-PA genes over 100-fold. These cell lines expressed elevated levels of enzymatically active t-PA. To optimize both t-PA sequence amplification and t-PA expression, various modifications of the original procedure were used. These included alterations to the DHFR expression vector, optimization of the molar ratio of t-PA to DHFR sequences in the cotransfection, and modification of the methotrexate resistance selection procedure. The structure of the amplified DNA, its chromosomal location, and its stability during growth in the absence of methotrexate are reported.  相似文献   

10.
Plasmids containing a dihydrofolate reductase (DHFR) expression unit were transfected into DHFR-deficient Chinese hamster ovary (CHO) cells. Methotrexate exposure was used to select cells with amplified DHFR sequences. Three cell lines were isolated containing amplified copies of transfected DNA that had integrated into the Chinese hamster genome. Plasmid DNA was found to co-amplify with flanking hamster sequences that were repetitive (2 cell lines) and unique (1 cell line). Fragments comprising the junctions of amplified plasmid and CHO DNA were found to exist as inverted duplications in all three cell lines. These observations provide evidence that inverted duplication occurred prior to DNA amplification, thus underscoring the importance of inverted duplication in the DNA amplification process.  相似文献   

11.
Summary Transfection of a mouse dihydrofolate reductase (DHFR) cDNA contained in a plasmid expression vector into DHFR deficient Chinese hamster cells, followed by progressive selection of cells in increasing concentrations of methotrexate (MTX), leads to marked amplification of the exogenous DHFR sequences in the recipient hamster cells. The gene amplification is evident at the cytological level, in the form of homogeneously staining chromosomal regions (HRSs), at a gene expression level, in the form of fluorescein-methotrexate binding, and at the DNA level. Flow sorting, based on variable fluorescein-MTX binding, or direct cellular cloning, followed by chromosome analysis, revealed intercellular heterogeneity of HSRs in size and distribution.This suggested that there was a rapid evolution of HSRs an MTX-resistant transfectants. Chromosomal analysis of HSR evolution in situ, by examining individual colonies presumably derived from one or a few cells, underscored this impression of chromosome structural fluidity. Rates of HSR change in excess of 0.01 per cell division, increased by low doses of the recombinogen, mitomycin C were detected. The Chinese hamster DHFR transfectants described should be amenable to detailed, coordinate cytological and molecular characterization. Such an analysis should contribute to an understanding of processes such as homologous recombination in mediating HSR evolution in mammalian chromosomes.  相似文献   

12.
13.
Several higher eukaryotic replication origins appear to be composed of broad zones of potential nascent strand start sites, while others are more circumscribed, resembling those of yeast, bacteria, and viruses. The most delocalized origin identified so far is approximately 55 kb in length and lies between the convergently transcribed dihydrofolate reductase (DHFR) and the 2BE2121 genes on chromosome 2 in the Chinese hamster genome. In some of our studies, we have utilized the rhodopsin origin as an early replicating internal standard for assessing the effects of deleting various parts of the DHFR locus on DHFR origin activity. However, it had not been previously established that the rhodopsin locus was located at a site far enough away to be immune to such deletions, nor had the mechanism of initiation at this origin been characterized. In the present study, we have localized the rhodopsin domain to a pair of small metacentric chromosomes and have used neutral/neutral 2-D gel replicon mapping to show that initiation in this origin is also highly delocalized, encompassing a region more than 50 kb in length that includes the nontranscribed rhodopsin gene itself. The initiation zone is flanked at least on one end by an actively transcribed gene that does not support initiation. Thus, the DHFR and rhodopsin origins belong to a class of complex, polydisperse origins that appears to be unique to higher eukaryotic cells.  相似文献   

14.
Mini-chromosome maintenance (MCM) proteins were originally identified in yeast, and homologues have been identified in several other eukaryotic organisms, including mammals. These findings suggest that the mechanisms by which eukaryotic cells initiate and regulate DNA replication have been conserved throughout evolution. However, it is clear that many mammalian origins are much more complex than those of yeast. An example is the Chinese hamster dihydrofolate reductase (DHFR) origin, which resides in the spacer between the DHFR and 2BE2121 genes. This origin consists of a broad zone of potential sites scattered throughout the 55-kb spacer, with several subregions (e.g. ori-beta, ori-beta', and ori-gamma) being preferred. We show here that antibodies to human MCMs 2-7 recognize counterparts in extracts prepared from hamster cells; furthermore, co-immunoprecipitation data demonstrate the presence of an MCM2-3-5 subcomplex as observed in other species. To determine whether MCM proteins play a role in initiation and/or elongation in Chinese hamster cells, we have examined in vivo protein-DNA interactions between the MCMs and chromatin in the DHFR locus using a chromatin immunoprecipitation (ChIP) approach. In synchronized cultures, MCM complexes associate preferentially with DNA in the intergenic initiation zone early in S-phase during the time that replication initiates. However, significant amounts of MCMs were also detected over the two genes, in agreement with recent observations that the MCM complex co-purifies with RNA polymerase II. As cells progress through S-phase, the MCMs redistribute throughout the DHFR domain, suggesting a dynamic interaction with DNA. In asynchronous cultures, in which replication forks should be found at any position in the genome, MCM proteins were distributed relatively evenly throughout the DHFR locus. Altogether, these data are consistent with studies in yeast showing that MCM subunits localize to origins during initiation and then migrate outward with the replication forks. This constitutes the first evidence that mammalian MCM complexes perform a critical role during the initiation and elongation phases of replication at the DHFR origin in hamster cells.  相似文献   

15.
We have examined the pattern of dihydrofolate reductase (DHFR) enzyme and mRNA levels in cell cycle stage-specific populations obtained by centrifugal elutriation in Chinese hamster ovary cells and in a derivative line in which the dihydrofolate reductase gene is amplified approximately 50-fold. On a per cell basis, we observed a 2-fold increase in DHFR activity as cells progressed from G1 to G2/M with a concomitant 2-fold increase in the rate of protein synthesis and steady state level of mRNA. Analysis of DHFR mRNA levels in cell cycle stage-specific mouse 3T6 and human 143 tk- cells gave a similar pattern. We also demonstrate that simple alterations in growth conditions prior to elutriations can dramatically increase the levels of DHFR mRNA in all cell cycle states, thereby indicating that growth response associated with the DHFR gene functions independent of the cell cycle. We conclude that during periods of exponential growth the increases in dihydrofolate reductase activity, rate of protein synthesis, and steady state levels of mRNA parallel the general increases in cell volume and protein content associated with normal progression through the cell cycle, and therefore DHFR cannot be considered a cell cycle-regulated enzyme.  相似文献   

16.
We have examined the timing of replication of the amplified dihydrofolate reductase genes in the methotrexate-resistant Chinese hamster ovary cell line CHOC 400 using two synchronization procedures. DNA replicated in the presence of 5-bromodeoxyuridine was collected from cells of various times during the DNA synthesis phase and the extent of replication for defined sequences was determined by Southern blotting analysis of CsCl density gradient fractions. We report that under these conditions the DHFR gene replicates throughout the course of S phase in a mode similar to the bulk of the replicated genomic DNA. This contrasts with previous data that shows the non-amplified DHFR gene replicates during the first quarter of S phase. Therefore, we conclude that gene amplification alters the replication timing of the DHFR gene in CHOC 400 cells.  相似文献   

17.
MuNTS2, a 423 bp sequence isolated from the non-transcribed spacer of murine rDNA stimulates the amplification of cis-linked plasmid DNA in mouse cells under selective conditions. Here we demonstrate that a 180 bp subdomain of muNTS2 is highly homologous (approximately 70%) to three domains of the first well-characterized origin of replication of mammalian chromosomes, i.e. the origin of bidirectional replication (OBR) of the dihydrofolate reductase (DHFR) locus in Chinese hamester ovary (CHO) cells. When subcloned, the 180 bp homology region of muNTS2 was revealed to be essential for the amplification promoting activity of muNTS2. Fragments of the initiation zone of DNA replication from the DHFR locus of hamster cells containing the domains of homology to the mouse muNTS2 element proved also to promote DNA amplification. Thus, the screening system for amplification promoting elements turned out to detect an origin of bidirectional replication.  相似文献   

18.
New sublines of BFFR1 and BFFR3 cells were obtained as a result of prolonged cultivation of Chinese hamster cells of Blld-ii-FAF 28 line (clone 431) in the presence of increasing concentrations of methotrexate (MTX). The lines obtained were resistant to 200 and 300 mcM of MTX, respectively. Amplification of the gene for dihydrofolate reductase (DHFR), similar to normal DHFR gene in restriction patterns, was proved by blot-hybridization of the resistant cells' DNA with 32P-labeled plasmid DHFR-26. Correlation is shown between the extent of gene amplification and resistance of the cell lines. In situ hybridization of the metaphase chromosomes of resistant cells with 3H-DHFR-26 results in preferential binding of the label with the regions of marker chromosomes 2 and 5, containing long, so called differential staining regions which are known to be the places of localization of amplified genes.  相似文献   

19.
4beta-Phorbol 12-myristate 13-acetate (TPA) increases the number of colonies resistant to methotrexate (MTX), mainly by amplification of the dihydrofolate reductase (dhfr) locus. We showed previously that inhibition of protein kinase C (PKC) prevents this resistance. Here, we studied the molecular changes involved in the development of TPA-mediated MTX resistance in Chinese hamster ovary (CHO) cells. TPA incubation increased the expression and activity of DHFR. Because Sp1 controls the dhfr promoter, we determined the effect of TPA on the expression of Sp1 and its binding to DNA. TPA incubation increased Sp1 binding and the levels of Sp1 protein. The latter effect was due to an increase in Sp1 mRNA. Dephosphorylation of nuclear extracts from control or TPA-treated cells reduced the binding of Sp1. Stable transfectants of PKCalpha showed increased Sp1 binding, and when treated with MTX, developed a greater number of resistant colonies than control cells. Seventy-five percent of the isolated colonies showed increased copy number for the dhfr gene. Transient expression of PKCalpha increased DHFR activity. Over-expression of Sp1 increased resistance to MTX, and inhibition of Sp1 binding by mithramycin decreased this resistance. We conclude that one mechanism by which TPA enhances MTX resistance, mainly by gene amplification, is through an increase in Sp1 expression which leads to DHFR activation.  相似文献   

20.
A repetitive mammalian genetic element, HSAG-1, has been shown to promote the amplification of the vector, pSV2-DHFR, containing the functional cDNA for dihydrofolate reductase (DHFR). LR-73 cells, a line of Chinese hamster ovary cells, were transfected with this recombinant construct or with the parent vector, then subjected to culture in selective medium containing steadily increasing concentrations of methotrexate, a drug which specifically inhibits DHFR. Cultures transfected with the HSAG-1-containing construct acquired drug resistance faster than those transfected with the parent vector. This acceleration of acquisition of drug resistance was due to an increased probability of the generation and subsequent selection of cellular variants with increased copy numbers of the vector. The effect has also been observed in CHO(DHFR-) and HeLa cell lines. Possible mechanisms for the effect of the HSAG-1 element on gene amplification are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号