首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A theoretical framework for evaluating the approximate energy and dynamic properties associated with the folding of DNA into nucleosomes and chromatin is presented. Experimentally determined elastic constants of linear DNA and a simple fold geometry are assumed in order to derive elastic constants for extended and condensed chromatin. The model predicts the Young s modulus of extended and condensed chromatin to within an order of magnitude of experimentally determined values. Thus we demonstrate that the elastic properties of DNA are a primary determinant of the elastic properties of the higher order folded states. The derived elastic constants are used to predict the speed of propagation of small amplitude waves that excite an extension(sound), twist, bend or shear motion in each folded state. Taken together the results demonstrate that folding creates a hierarchy of time, length and energy scales.  相似文献   

2.
Sedimentation measurements and electron microscopy at a series of ionic strengths suggest that chromatin from neurons of the cerebral cortex is able to form condensed structures in vitro that are probably several turns of a solenoid with about six nucleosomes per turn. Since neuronal chromatin has a short nucleosomal repeat (approximately 165 bp) allowing virtually no linker DNA between nucleosomes, and yet forms apparently 'normal' elements of solenoid, the packing of nucleosomes in the solenoid must be highly constrained. This permits only a limited number of possible models, and enables tentative suggestions to be made about the location of the linker DNA in the typical solenoid.  相似文献   

3.
Consideration has been given to possible sequences of nucleosomes which can produce a ‘thick fibre’-like structure. Only a few basic requirements were imposed: (i) the thick fibre is a regular single helix with about 7 nucleosomes per turn; (ii) the nucleosomes are equidistant along the polynuclesome chain; (iii) the helix is flexible having variable pitch. It was found that in addition to the straightforward sequential arrangement there is only one other nonsequential arrangement which satisfies these requirements. This is a helix with around 8 nucleosomes per turn in which all nucleosomes are identically placed. It is possible in the region of 200 to 218 ± 10 base pairs (b.p.) DNA repeats lengths. The linker DNA is straight or almost straight and crosses the internal ‘hollow’ cylinder which is not occupied by nucleosomes. This structure satisfies the experimental data for the distance distribution function, and the observed mass per unit length and changes noted in the mass per unit length. Further, if it is assumed that the core particle axis of symmetry is in the plane of the two linkers and bisects them then this makes the core particles oblique to the thick fibre radii with alternate angles of ± 20 to 30°. This orientation of the nucleosomes can explain the DNA digestion patterns obtained with DNase II and with DNase I.  相似文献   

4.
5.
Neutron scatter and diffraction techniques have made substantial contributions to our understanding of the structure of the nucleosome, the structure of the 10-nm filament, the "10-nm----30-nm" filament transition, and the structure of the "34-nm" supercoil or solenoid of nucleosomes. Neutron techniques are unique in their properties, which allows for the separation of the spatial arrangements of histones and DNA in nucleosomes and chromatin. They have equally powerful applications in structural studies of any complex two-component biological system. A major success for the application of neutron techniques was the first clear proof that DNA was located on the outside of the histone octamer in the core particle. A full analysis of the neutron-scatter data gave the parameters of Table 3 and the low-resolution structure of the core particle in solution shown in Fig. 6. Initial low-resolution X-ray diffraction studies of core particle crystals gave a model with a lower DNA pitch of 2.7 nm. Higher-resolution X-ray diffraction studies now give a structure with a DNA pitch of 3.0 nm and a hole of 0.8 nm along the axis of the DNA supercoil. The neutron-scatter solution structure and the X-ray crystal structure of the core particle are thus in full agreement within the resolution of the neutron-scatter techniques. The model for the chromatosome is largely based on the structural parameters of the DNA supercoil in the core particle, nuclease digestion results showing protection of a 168-bp DNA length by histone H1 and H1 peptide, and the conformational properties of H1. The path of the DNA outside the chromatosome is not known, and this information is crucial for our understanding of higher chromatin structure. The interactions of the flexible basic and N- and C-terminal regions of H1 within chromatin and how these interactions are modulated by H1 phosphorylation are not known. The N- and C-terminal regions of H1 represent a new type of protein behavior, i.e., extensive protein domains that are designed not to fold up into secondary and tertiary protein structures. This behavior is increasingly observed in DNA and chromatin binding proteins, and in the case of the high-mobility group proteins HMG 14 and 17, the entire polypeptide chain is a flexible random coil over a wide range of solution, ionic, and pH conditions. It follows that the native conformations are probably imposed on these flexible domains and molecules by their binding sites in chromatin.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
25 years after the nucleosome model: chromatin modifications   总被引:28,自引:0,他引:28  
  相似文献   

7.
A major question in chromatin biology is to what extent the sequence of DNA directly determines the genetic and chromatin organization of a eukaryotic genome? We consider two aspects to this question: the DNA sequence-specified positioning of nucleosomes and the determination of NDRs (nucleosome-depleted regions) or barriers. We argue that, in budding yeast, while DNA sequence-specified nucleosome positioning may contribute to positions flanking the regions lacking nucleosomes, DNA thermodynamic stability is a major component determinant of the genetic organization of this organism.  相似文献   

8.
Atomic force microscopy (AFM) is a technique that can directly image single molecules in solution and it therefore provides a powerful tool for obtaining unique insights into the basic properties of biological materials and the functional processes in which they are involved. We have used AFM to analyze basic features of nucleosomes in arrays, such as DNA-histone binding strength, cooperativity in template occupation, nucleosome stabilities, nucleosome locations and the effects of acetylation, to compare these features in different types of arrays and to track the response of array nucleosomes to the action of the human Swi-Snf ATP-dependent nucleosome remodeling complex. These experiments required several specific adaptations of basic AFM methods, such as repetitive imaging of the same fields of molecules in liquid, the ability to change the environmental conditions of the sample being imaged and detection of specific types of molecules within compositionally complex samples. Here, we describe the techniques that allowed such analyses to be carried out.  相似文献   

9.
10.
A model chromatin assembly system. Factors affecting nucleosome spacing   总被引:14,自引:0,他引:14  
Poly[d(A-T)].poly[d(A-T)], when reconstituted with chicken erythrocyte core histones and subsequently incubated with sufficient histone H5 in a solution containing polyglutamic acid, forms structures resembling chromatin. H5 induces nucleosome alignment in about two hours at physiological ionic strength and 37 degrees C. The nucleosome spacing and apparent linker heterogeneity in the assembled nucleoprotein are very similar to those in chicken erythrocyte chromatin. Also, condensed chromatin-like fibers on the polynucleotide can be visualized. The binding of one mole of H5 per mole of core octamer is necessary to generate the physiological nucleosome spacing, which remains constant with the addition of more H5. The nucleosome repeat length is not a function of the core histone to poly[d(A-T)] ratio for values lower than the physiological ratio. With increasing ratios, in excess of the physiological value, nucleosome spacing first becomes non-uniform, and then takes on the close packing limit of approximately 165 base-pairs. In addition to eliminating possible base sequence effects on nucleosome positioning, poly[d(A-T)] allows nucleosomes to slide more readily than does DNA, thereby facilitating alignment. Evidence is presented that polyglutamic acid facilitates the nucleosome spacing activity of histone H5, primarily by keeping the nucleoprotein soluble. This model system should be useful for understanding how different repeat lengths arise in chromatin.  相似文献   

11.
12.
There is a good deal of evidence that transcribing RNA polymerase may translocate across nucleosomes without their displacement and (or) rearrangement. A topological model for RNA chain elongation on a nucleosome is considered here. A new mechanism of RNA polymerase translocation is suggested in order to avoid the steric hindrances inherent in the model. It is shown that a transcribed nucleoprotein fiber should be interrupted by protein-free DNA stretches (nucleosome linkers) to allow release of nascent RNA. Possible verifications and consequences of the model are discussed.  相似文献   

13.
The effects of VirTis shearing on chromatin subunit structure were investigated by enzymatic digestion, thermal denaturation, and electron microscopy. While initial rates of micrococcal nuclease and DNase I digestion were greater postshearing, limit digest values were similar to those for unsheared chromatin. Fractionated chromatin digestion kinetics varied with sedimentation. Digestion of all chromatins produced monomer and dimer DNA fragment lengths, but only unsheared chromatins exhibited higher order nucleosome oligomer lengths. Mononucleosomes and core particles were resolved in digests of sheared and gradient fractions analyzed by electrophoresis. All chromatins exposed to DNase I showed discrete 10-base pair nicking patterns. The presence of nucleosomes was confirmed by electron microscopy. Electron microscopy and histone content of gradient fractions showed that nucleosome density along the chromatin axis increased in rapidly sedimenting fractions. Thermal denaturation detected no appreciable generation of protein-free DNA fragments as a result of shearing. The results indicate that VirTis blending conserves subunit structure with loss of less than 12–15% of nucleosome structure.  相似文献   

14.
15.
Yen K  Vinayachandran V  Batta K  Koerber RT  Pugh BF 《Cell》2012,149(7):1461-1473
How chromatin remodelers cooperate to organize nucleosomes around the start and end of genes is not known. We determined the genome-wide binding of remodeler complexes SWI/SNF, RSC, ISW1a, ISW1b, ISW2, and INO80 to individual nucleosomes in Saccharomyces, and determined their functional contributions to nucleosome positioning through deletion analysis. We applied ultra-high-resolution ChIP-exo mapping to Isw2 to determine its subnucleosomal orientation and organization on a genomic scale. Remodelers interacted with selected nucleosome positions relative to the start and end of genes and produced net directionality in moving nucleosomes either away or toward nucleosome-free regions at the 5' and 3' ends of genes. Isw2 possessed a subnucleosomal organization in accord with biochemical and crystallographic-based models that place its linker binding region within promoters and abutted against Reb1-bound locations. Together, these findings reveal a coordinated position-specific approach taken by remodelers to organize genic nucleosomes into arrays.  相似文献   

16.
The flexibility of chromatin that enables translation of environmental cues into changes in genome utilisation, relies on a battery of enzymes able to modulate chromatin structure in a highly targeted and regulated manner. The most dynamic structural changes are brought about by two kinds of enzymes with different functional principles. Changes in the acetylation status of histones modulate the folding of the nucleosomal fibre. The histone-DNA interactions that define the nucleosome itself can be disrupted by ATP-dependent remodelling factors. This review focuses on recent developments that illustrate various strategies for integrating these disparate activities into complex regulatory schemes. Synergies may be brought about by consecutive or parallel action during the stepwise process of chromatin opening or closing. Tight co-ordination may be achieved by direct interaction of (de-)acetylation enzymes and remodelling ATPases or even permanent residence within the same multi-enzyme complex. The fact that remodelling ATPases can be acetylated by histone acetyltransferases themselves suggests exciting possibilities for the co-ordinate modulation of chromatin structure and remodelling enzymes.  相似文献   

17.
Theory of H1-mediated control of higher orders of structure in chromatin   总被引:1,自引:0,他引:1  
G S Manning 《Biopolymers》1979,18(12):2929-2942
It is known that the lysine-rich histone H1 induces both higher orders of folding in chromatin and donut shapes in DNA. However, these phenomena occur only on the high-salt side of a narrow transition range located at about 0.02M salt. Previous theoretical analyses of the ionic-strength dependencies of DNA persistence length and denaturation rate have provided the information that the basic rigid-rod unit in high-molecular-weight DNA is a segment 60 base pairs in length and that if the phosphate charge is neutralized, this segment will spontaneously adopt a bent conformation with radius of curvature 170 Å. On the assumption that an H1 molecule does not completely neutralize the DNA charge in its vicinity, the theory has been extended here to determine the onset of spontaneous bending as a function of salt concentration and extent of phosphate neutralization. A salt transition of the kind observed has been found for the realistic value of 82% charge neutralization, with the actual value likely to be in the neighborhood of 90%, as suggested by the measurements of Wilson and Bloomfield.1 It is recalled that the spacer DNA length in chromatin is of about the same length as the DNA rigid-rod unit. If binding of H1 to the spacer induces, as predicted, a bent conformation of radius about 170 Å, then the observed value of about 150 Å for the outer radius of the solenoid presently thought to be the basic mode of folding for a nucleosome chain can be understood as a reflection of the inherent maximum curvature of DNA in aqueous salt solution.  相似文献   

18.
19.
  1. Download : Download high-res image (389KB)
  2. Download : Download full-size image
  相似文献   

20.
A model for chromatin structure.   总被引:2,自引:5,他引:2       下载免费PDF全文
A model for chromatin structure is presented. (a) Each of four histone species, H2A (IIbl or f2a2), H2B (IIb2 or f2b), H3 (III or f3) and H4 (IV or f2al) can form a parallel dimer. (b) These dimers can form two tetramers, (H2A)2(H2b)2 and (H3)2(H4)2. (C) These two tetramers bind a segment of DNA and condense it into a "C" segments. (d) The adjacent segments, termed extended or "E" segments, are bound by histone H1 (I or fl) for the major fraction of chromatin; the other "E" regions can be either bound by non-histone proteins or free of protein binding. (e) The binding of histones causes a structural distortion of the DNA which, depending upon the external conditions, may generate the formation of either an open structure with a heterogeneous and non-uniform supercoil or a compact structure with a string of beads. The model is supported by experimental data on histone-histone interaction, histone-DNA interaction and histone subunit-DNA interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号