首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel multi-array immunoassay device based on the insert-plug model of piezoelectric (Pz) immunosensor fabricated with the screw clamp apparatus has been developed for quantitative detection of tumor markers such as alpha-fetoprotein (AFP), carcinoembryonic antigen (CEA), prostate specific antigen (PSA), and carcinoma antigen 125 (CA125) in serum, in which single immunosensor can oscillate independently with the frequency stability of +/-1 Hz (hertz) in air phase and +/-2 Hz in liquid phase. These response characteristics of Pz tumor marker multi-array immunoassay device such as time-cost, reproducibility and specificity, etc. were also investigated, respectively. The detection range for AFP, CEA, PSA and CA125 obtained by multi-array Pz immunosensor were 20-640 ng/ml, 1.5-30 microg/ml, 1.5-40 ng/ml and 5-150 IU/ml, respectively, with the coefficient of variance (CV) less than 5% and no cross-reactivates with other tumor markers in serum were observed. Application of the multi-array immunosensor to clinical samples demonstrated that results were in good agreement with chemiluminescence immunoassay (CLIA). Moreover, the multi-array Pz immunosensor could be regenerated to be reused for three cycles without appreciable loss of response activity. Therefore, the proposed multi-array immunoassay device based on Pz immunosensor provides a rapid, sensitive, specific, reusable, convenient and reliable alternative for the detection of tumor markers in clinical laboratory.  相似文献   

2.
A new simple immunoassay method for carcinoembryonic antigen (CEA) detection using a disposable immunosensor coupled with a flow injection system was developed. The immunosensor was prepared by coating CEA/colloid Au/chitosan membrane at a screen-printed carbon electrode (SPCE). Using a competitive immunoassay format, the immunosensor inserted in the flow system with an injection of sample and horseradish peroxidase (HRP)-labeled CEA antibody was used to trap the labeled antibody at room temperature for 35 min. The current response obtained from the labeled HRP to thionine-H(2)O(2) system decreased proportionally to the CEA concentration in the range of 0.50-25 ng/ml with a correlation coefficient of 0.9981 and a detection limit of 0.22 ng/ml (S/N=3). The immunoassay system could automatically control the incubation, washing and current measurement steps with good stability and acceptable accuracy. Thus, the proposed method proved its potential use in clinical immunoassay of CEA.  相似文献   

3.
A novel strategy for the fabrication of sensitive immunosensor to detect alpha-fetoprotein (AFP) in human serum has been proposed. The immunosensor was prepared by immobilizing AFP antigen onto the glassy carbon electrode (GC) modified by gold nanoparticles and carbon nanotubes doped chitosan (GNP/CNT/Ch) film. GNP/CNT hybrids were produced by one-step synthesis based on the direct redox reaction. The electrochemical properties of GNP/CNT/Ch films were characterized by impedance spectroscopy and cyclic voltammetry. It was indicated that GNP/CNT nanohybrid acted as an electron promoter and accelerated the electron transfer. Sample AFP, immobilized AFP, and alkaline phosphatase (ALP)-labeled antibody were incubated together for the determination based on a competitive immunoassay format. After the immunoassay reaction, the bound ALP label on the modified GC led to an amperometric response of 1-naphthyl phosphate (1-NP), which was changed with the different antigen concentrations in solution. Under the optimized experimental conditions, the resulting immunosensor could detect AFP in a linear range from 1 to 55 ng ml(-1) with a detection limit of 0.6 ng ml(-1). The proposed immunosensor, by using GNP/CNT/Ch as the immobilization matrix of AFP, offers an excellent amperometric response of ALP-anti-AFP to 1-NP. The immunosensor provided a new alternative to the application of other antigens or other bioactive molecules.  相似文献   

4.
A sensitive amperometric immunosensor for carcinoembryonic antigen (CEA) was prepared. Firstly, a porous nano-structure gold (NG) film was formed on glassy carbon electrode (GCE) by electrochemical reduction of HAuCl4 solution, then nano-Au/Chit composite was immobilized onto the electrode because of its excellent membrane-forming ability, and finally the anti-CEA was adsorbed onto the surface of the bilayer gold nanoparticles to construct an anti-CEA/nano-Au/Chit/NG/GCE immunosensor. The characteristics of the modified electrode at different stages of modification were studied by cyclic voltammetry (CV). The gold colloid, chitosan and nano-Au/Chit were characterized by transmission electron microscopy and UV–vis spectroscopy. In addition, the performances of the immunosensor were studied in detail. The resulting immunosensor offers a high-sensitivity (1310 nA/ng/ml) for the detection of CEA and has good correlation for detection of CEA in the range of 0.2 to 120.0 ng/ml with a detection limit of 0.06 ng/ml estimated at a signal-to-noise ratio of 3. The proposed method can detect the CEA through one-step immunoassay and would be valuable for clinical immunoassay.  相似文献   

5.
A novel amperometric immunosensor for the detection of the p24 antigen (p24Ag) from HIV-1 was constructed using gold nanoparticles (GNP), multi-walled carbon nanotubes (MWCNTs), and an acetone-extracted propolis film (AEP). First, amino-functionalized MWCNTs (MWCNTNH?) were prepared and dispersed in an HAuCl? solution to synthesize GNPs in situ. Next, the GNP/CNT/AEP nanocomposite was prepared by mixing an AEP solution and the GNP/CNT powder. The nanocomposite was dripped onto a gold electrode (GE), and then p24 antibody (anti-p24 Ab) was immobilized on the resulting modified gold electrode to construct the immunosensor. The assembly process was characterized using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The factors that were likely to influence the performance of the proposed immunosensor were studied in detail. Under optimal conditions, the proposed immunosensor exhibited good electrochemical sensitivity to the presence of p24 in a concentration range of 0.01 to 60.00 ng/mL, with a relatively low detection limit of 0.0064 ng/mL (S/N = 3). Moreover, the proposed immunosensor showed a rapid (≤ 18 s) and highly sensitive amperometric response (0.018 and 1.940 μA/ng/mL) to p24 with acceptable stability and reproducibility.  相似文献   

6.
A novel immunoaffinity column used as an immunosensor for flow-injection chemiluminescent (CL) immunoassay was prepared by immobilizing antibody on carboxylic resin beads. The immunosensor could fast recognize and trap the immunocomplex of horseradish peroxidase (HRP)-labeled antibody and antigen, which was firstly formed with a micro-bubble accelerated pre-incubation process, to produce a sandwich immunocomplex. The HRP introduced in the immunoaffinity column could catalyze the CL reaction to produce enzyme-enhanced emission. With alpha-fetoprotein (AFP) as a mode, a flow-injection CL immunoassay was proposed. The whole assay for one sample, including the pre-incubation and the regeneration of immunoaffinity column, could be performed within 16min. The linear range was 1.0-80ng/ml with a correlation coefficient of 0.998 and a detection limit of 0.1ng/ml at a signal/noise ratio of 3. The intra- and inter-assay coefficients of variation at 20ng/ml AFP were 1.2% and 8.5%, respectively. The storage stability of the immunoaffinity column and the accuracy for sample detection were acceptable. This flexible, sensitive, low-cost, and rapid method is valuable for clinical immunoassay.  相似文献   

7.
A label-free electrochemical immunoassay for neuron-specific enolase (NSE), a kind of lung cancer marker, was developed in this work via novel electrochemical catalysis for signal amplification. The new amplified strategy was based on the electrochemical catalysis of nickel hexacyanoferrates nanoparticles (NiHCFNPs) in the presence of dopamine (DA). NiHCFNPs, which were assembled on the porous gold nanocrystals (AuNCs) modified glassy carbon electrode (GCE), could exhibit a distinct pair of redox peaks corresponding to anodic and cathodic reactions of hexacyanoferrate (II/III). Subsequently, gold nanoparticles functionalized graphene nanosheets (Au-Gra) were coated on the surface of NiHCFNPs/AuNCs film. Then an enhanced amount of neuron-specific enolase antibody (anti-NSE) could be loaded to obtain a sensitive immunosensor of anti-NSE/Au-Gra/NiHCFNPs/AuNCs/GCE due to the strong adsorption capacity and large specific surface area of Au-Gra. More importantly, the oxidation peak current can be enormously enhanced towards the electrocatalytic oxidation of DA based on NiHCFNPs, resulting in the further improvement of the immunosensor sensitivity. Under optimal conditions, the electrochemical immunosensor exhibited a linear range of 0.001-100 ng/mL with a detection limit of 0.3 pg/mL (S/N=3). Thus, the proposed immunosensor provides a rapid, simple, and sensitive immunoassay protocol for NSE detection, which may hold a promise for clinical diagnosis.  相似文献   

8.
Development of an electrochemical immunosensor for alanine aminotransferase   总被引:1,自引:0,他引:1  
Alanine aminotransferase (ALT) has been regarded as one of the most sensitive indicators of hepatocellular damage. While ALT is widely used in the practice of medicine, few attempts have been made to develop biosensors applicable to the on-site diagnosis of liver diseases. In the hope of developing an immunosensor for measurement of ALT activity, we have generated monoclonal antibodies to human recombinant ALT and fabricated them for use in a sensor. The ALT immunosensor was composed of the followings: (1) anti-ALT antibody-immobilized outer membrane; (2) pyruvate oxidase-absorbed inner membrane; (3) a self assembled monolayer mediator-coated gold working electrode and an Ag/AgCl reference electrode. The chronoamperometric measurement of the immunosensor was performed with 40 microl of PBS containing substrates and ALT without a washing step in less than 5 min. The dynamic range of ALT immunosensor was presented as five orders of magnitude, ranging between 10 pg/ml and 1 microg/ml. The detection limit and the sensitivity were 10 pg/ml and 26.3 nA/(ng/ml), respectively. In the meantime, the enzyme sensor fabricated without anti-ALT antibody showed much poorer analytical values. The dynamic range, the detection limit, and the sensitivity were 10 ng/ml-100 microg/ml, 10 ng/ml and 11.4 nA/(ng/ml), respectively. The presented results indicated that the immunosensor system provided much better technical performance in all of the aspects evaluated than did the enzyme sensor without the immobilized-antibody.  相似文献   

9.
A direct, rapid, and label-free electrochemical immunoassay method for testosterone has been described based on encapsulating testosterone antibody into polyvinyl butyral sol–gel film doped with gold nanowires. Gold nanowires prepared by using nanopore polycarbonate membrane were used to conjugate testosterone antibody onto the probe surface. The presence of gold nanowires provided a biocompatible microenvironment for biomolecules, greatly amplified the immobilized amount of biomolecules on the electrode surface, and improved the sensitivity of the immunosensor. In comparison with gold nanoparticle-conjugating probe, the gold nanowire-functionalized probe could avoid the leakage of biomolecules from the composite film, and enhanced the stability of the sensor. The performance and factors influencing the performance of the resulting immunosensor were investigated in detail. Under optimal conditions, the developed immunosensor exhibited a good linear relationship with testosterone ranging from 1.2 to 83.5 ng mL− 1 with a detection limit of 0.1 ng mL− 1 (at 3δ). Moreover, the proposed immunosensor exhibited high sensitivity, good reproducibility and long-term stability. The as-prepared immunosensors were used to analyze testosterone in human serum specimens. Analytical results suggest that the developed immunoassay has a promising alternative approach for detecting testosterone in the clinical diagnosis. Compared with the conventional ELISAs, the proposed immunoassay method was simple and rapid without multiple labeling and separation steps. Importantly, the route provides an alternative approach to incorporate gold nanowires into the solid matrix for biosensing application.  相似文献   

10.
An amperometric immunosensor in the competitive format was developed for the detection of methamphetamine in urine. The electrodes consisted of carbon paste and Ag/AgCl screen printed on heat sealing film, respectively, and of monoclonal anti-methamphetamine antibody as the biorecognition element. Optimum amounts of methamphetamine- N -bovine serum albumin conjugate, monoclonal antibody and alkaline phosphatase-goat anti-mouse immunoglobulin G were 20, 10 ng and 1:10,000 dilution in 10 &#119 l each, respectively. Methamphetamine was detected by the conversion of p -aminophenyl phosphate to electroactive p -aminophenol in the range of 200 ng/ml (lower detection limit) to 1,500 ng/ml methamphetamine in a nearly linear dose response curve. Within amphetamine concentrations of 0-1,500 ng/ml cross-reaction with methamphetamine was not observed. Working with urine samples spiked with methamphetamine, the accuracy and precision of the assay were 91.5-104.4% and 15.8-24.4%, respectively. This is a proof of concept in the clinical perspective for an amperometric immunosensor whose electrodes are amenable to future mass production.  相似文献   

11.
An electrochemical immunosensor was developed for the detection of hepatitis B surface antigen (HBsAg). The biotinylated hepatitis B surface antibody was immobilized on streptavidin magnetic nanoparticles and used for targeting the HBsAg. By the addition of horseradish peroxidase conjugated with secondary antibody (HRP–HBsAb), a sandwich-type immunoassay format was formed. Aminophenol as substrate for conjugated HRP was enzymatically changed into 3-aminophenoxazone (3-APZ). This electroactive enzymatic production (3-APZ) was transferred into an electrochemical cell and monitored by cyclic voltammetry. Under optimal conditions, the cathodic current response of 3-APZ, which was proportional to the HBsAg concentration, was measured by a glassy carbon electrode. The immunosensor response was linear toward HBsAg in the concentration range from 0.001 to 0.015 ng/ml with a detection limit of 0.9 pg/ml at a signal/noise ratio of 3.  相似文献   

12.
An amperometric immunosensor in the competitive format was developed for the detection of methamphetamine in urine. The electrodes consisted of carbon paste and Ag/AgCl screen printed on heat sealing film, respectively, and of monoclonal anti-methamphetamine antibody as the biorecognition element. Optimum amounts of methamphetamine- N -bovine serum albumin conjugate, monoclonal antibody and alkaline phosphatase-goat anti-mouse immunoglobulin G were 20, 10 ng and 1:10,000 dilution in 10 μl each, respectively. Methamphetamine was detected by the conversion of p -aminophenyl phosphate to electroactive p -aminophenol in the range of 200 ng/ml (lower detection limit) to 1,500 ng/ml methamphetamine in a nearly linear dose response curve. Within amphetamine concentrations of 0-1,500 ng/ml cross-reaction with methamphetamine was not observed. Working with urine samples spiked with methamphetamine, the accuracy and precision of the assay were 91.5-104.4% and 15.8-24.4%, respectively. This is a proof of concept in the clinical perspective for an amperometric immunosensor whose electrodes are amenable to future mass production.  相似文献   

13.
A fluorescence-based continuous-flow immunosensor for sensitive, precise, accurate and fast determination of paclitaxel was developed. The sensor utilizes anti-paclitaxel antibody immobilized through its Fc region and crosslinked by dimethylpimelimidate to protein A attached covalently onto the silanized inner walls of a glass capillary column followed by saturation of the paclitaxel-binding sites with rhodamine-labeled paclitaxel. The assay is based on the displacement and detection downstream of the rhodamine-labeled paclitaxel, by a flow-through spectrofluorometer, as a result of the competition with paclitaxel introduced as a pulse into the stream of carrier buffer flowing through the system. The peak height of the fluorescence intensity profile of the displaced rhodamine-labeled paclitaxel was directly proportional to the concentration of paclitaxel applied and was a function of the carrier buffer flow rate. The sensitivity of the immunosensor response ranged from 0.31 relative fluorescence units (RFU)/ng/ml at a flow rate 0.1 ml/min to 0.52 RFU/ng/ml at 1 ml/min, while the lower detection limit ranged from 1 ng/ml at 0.1 ml/min to 4 ng/ml at 1 ml/min. The immunosensor response was very reproducible (RSD=4.8%; n=10) and linear up to 100 ng/ml. The assay time ranged from 2 min at 1 ml/min to 8 min at 0.1 ml/min. A technique developed to resaturate the antigen binding sites of the immobilized antibody with rhodamine-labeled paclitaxel was successful in regenerating the capillary column without affecting its performance, thus enhancing the economic viability of the immunosensor. The immunosensor was successfully applied for the determination of paclitaxel in human plasma.  相似文献   

14.
Label-free detection of bisphenol A based on the impedance measurement was achieved with an impedimetric immunosensor. The immunosensor was fabricated by the covalent bond formation between a polyclonal antibody and a carboxylic acid group functionalized onto a nano-particle comprised conducting polymer. By using a commercial reagent 4,4-bis(4-hydroxyphenyl) valeric acid (BHPVA), which has an analogous structure of BPA, we have prepared the antigen through the conjugation of BHPVA with bovine serum albumin (BSA) and then produced a specific polyclonal antibody. The immobilization of antibody and the interaction between antibody and antigen were studied using quartz crystal microbalance (QCM) and electrochemical impedance spectroscopic (EIS) techniques. The impedance and mass changes due to the specific immuno-interaction at the sensor surface were utilized to detect antigen and bisphenol A (BPA). The immunosensor showed specific recognition of BPA with less interference than 4.5% from other common phenolic compounds. Under an optimized condition, the linear dynamic range of BPA detection was between 1 and 100 ng/ml. The detection limit of bisphenol A was determined to be 0.3+/-0.07 ng/ml. The proposed immunosensor was applied to a human serum sample and the BPA concentration was determined by the standard addition method.  相似文献   

15.
An amperometric immunosensor for polycyclic aromatic hydrocarbons (PAHs) was developed. The immunosensor was based on disposable screen-printed carbon electrodes. The coating antigen used was phenanthrene-9-carboxaldehyde coupled to bovine serum albumin (BSA) via adipic acid dihydrazide. Antibodies were monoclonal mouse anti-phenanthrene. The enzyme alkaline phosphatase (AP) was used in combination with the substrate p-aminophenyl phosphate (pAPP) for detection at +300 mV (vs. Ag/AgCl). Various assay types were compared. Good results were achieved with an indirect co-exposure competition assay with a LOD of 0.8 ng/ml (800 ppt) and an IC(50) of 7.1 ng/ml (7.1 ppb) for phenanthrene. An indirect competition assay could detect phenanthrene with a LOD of 2 ng/ml (IC(50): 15 ng/ml) and an indirect displacement assay with a LOD of 2 ng/ml (IC(50): 11 ng/ml) at a 5 microl surface coating of 8.8 microg/ml phenanthrene-BSA conjugate. A coating concentration of 2.2 microg/ml allowed detection with a LOD of 0.25 ng/ml (250 ppt) with the indirect competition assay. The influence of the coating concentration on the sensor performance was investigated. Cross-reactivities were tested for 16 important PAHs. Anthracene and chrysene showed strong cross-reactivity, whereas benzo[g,h,i]perylene and dibenzo[a,h]anthracene showed no cross-reactivity.  相似文献   

16.
A highly hydrophobic and non-toxic colloidal silica nanoparticle/polyvinyl butyral sol–gel composite membrane was prepared on a platinum wire electrode. With diphtheria-toxoid (D-Ag) as a model antigen and encapsulation of diphtheria antibody (D-Ab) in the composite architecture, this membrane could be used for reagentless electrochemical immunoassay. It displayed a porous and homogeneous composite architecture without the aggregation of the immobilized protein molecules. The formation of immunoconjugate by a simple one-step immunoreaction between D-Ag in sample solution and the immobilized D-Ab introduced the change in the potential. Under optimal conditions, the D-Ag analyte could be determined in the linear ranges from 10 to 800 ng ml−1 with a relatively low detection limit of 2.3 ng ml−1 at 3δ. The D-Ag immunosensor exhibited good precision, high sensitivity, acceptable stability, accuracy, and reproducibility. This composite membrane could be used efficiently for the entrapment of different biomarkers and clinical applications.  相似文献   

17.
Hyaluronan-binding proteins (HABPs), the important structural components of extracellular matrices, served important structural and regulatory functions during development and in maintaining adult tissue homestats. A sensitive, specific and rapid-responsing immunosensor to probe hyaluronan-binding cartilage protein was presented in this work. The novel immunosensor supplied a label-free detection method for HABP, which was based on measuring the capacitance change in-between the unlabeled HABP (antigen) and rabbit-anti-HABP (Ra-HABP, antibody). The HABP immunosensor was prepared by covalently coupling Ra-HABP on an amine-self-assembled gold surface with glutaraldehyde. The capacitance change corresponding to the concentration of HABP, the target antigen, was evaluated by an electrochemical approach called potentiostatic-step in microseconds. The immunosensor showed a specific response to HABP in the range 10-1000 ng/ml. The presented work supplied a promising clinical screening method.  相似文献   

18.
A novel label free electrochemiluminescence (ECL) immunosensor based on the ECL of peroxydisulfate solution for detection of α-1-fetoprotein (AFP) has been developed. For this proposed immunosensor, L-cysteine was firstly electrodeposited on the gold electrode surface, which promoted the electron transfer and largely enhanced the ECL of peroxydisulfate solution. Subsequently, gold nanoparticles (nano-Au) were assembled onto the L-cysteine film modified electrode to improve the absorption capacity of antibody and further amplify the ECL signal. Then, antibody was immobilized onto the electrode through nano-Au. At last bovine serum albumin (BSA) was employed to block the nonspecific binding sites. As a result, a novel ECL immunosensor was firstly obtained by applying the ECL of peroxydisulfate solution without conventional luminescent reagents. The AFP was determined in the range of 0.01-100 ng mL(-1), with a low detection limit of 3.3 pg mL(-1) (S/N=3). The proposed ECL immunosensor provides a rapid, simple, and sensitive immunoassay protocol for protein detection, which might hold a promise for clinical application. Moreover, this work would open up a new field in the application of peroxydisulfate solution ECL for highly sensitive bioassays.  相似文献   

19.
We have examined the sensing characteristics of a surface plasmon resonance (SPR) immunoassay for the detection of 2,4,6-trinitrotoluene (TNT) using an immunoreaction between 2,4,6-trinitrophenol-ovalbumin (TNP-OVA) conjugate and anti-2,4,6-trinitrophenol antibody (anti-TNP antibody). TNP-OVA conjugate was attached to a SPR-gold sensing surface by means of physical immobilization, which undergoes binding interaction with anti-TNP antibody. Both the immobilization and binding processes were studied from a change in the SPR-resonance angle. The quantification of TNT is based on the principle of indirect competitive immunoassay, in which the immunoreaction between the TNP-OVA conjugate and anti-TNP antibody was inhibited in the presence of free TNT in solution. The decrease in the resonance angle shift is proportional to an increase in concentration of TNT used for incubation. The immunoassay exhibited excellent sensitivity for the detection of TNT in the concentration range from 0.09 to 1000 ng/ml with good stability and reproducibility. The immunosensor developed could detect TNT as low as 0.09 ng/ml, within a response time of approximately 22 min. The sensor surface was regenerated by a brief flow of pepsin solution, which disrupts the antigen-antibody complex without destroying the conjugate biofilm. Cross-reactivity of the SPR sensor to some structurally related nitroaromatic derivative and the detection of TNT in the presence of these nitroaromatic compounds were investigated. The cross-reactivity of the SPR sensor to 2,4-dinitrotoluene (2,4-DNT), 1,3-dinitrobenzene (1,3-DNB), 2-amino-4,6-dinitrotoluene (2A-4,6-DNT) and 4-amino-2,6-dinitrotoluene (4A-2,6-DNT) were very low (< or =1.1%). The analytical characteristics of the proposed immunosensor are highly promising for the development of new field-portable sensors for on-site detection of landmines.  相似文献   

20.
A simple and sensitive method for in situ amplified electrochemical immunoassay of human serum IgG has been developed by using double-codified nanosilica particles as labels based on horseradish peroxidase-doped nanosilica particles (HRP-SiO(2)) with the conjugation of anti-IgG antibodies (anti-IgG-SiO(2)-HRP). With the sandwich-type immunoassay format, the linear range of the developed immunosensor by using anti-IgG-SiO(2)-HRP as tracer and hydrogen peroxide (H(2)O(2)) as enzyme substrate is 0.01-15 nmol/L IgG with a detection limit of 5.0 pmol/L, while the assay sensitivity by directly using HRP-labeled anti-IgG as secondary antibodies is 1.0-10 nmol/L with a detection limit of 0.1 nmol/L IgG. The reproducibility, stability and specificity of the proposed immunoassay method were acceptable. The IgG concentrations of the clinical serum specimens assayed by the developed immunosensor show consistent results in comparison with those obtained by commercially available enzyme-linked immunosorbent assay (ELISA) method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号