首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Parasitism by Cuscuta and Orobanche on Petunia hybrida resulted in decreased choline kinase activity and phospholipids in the host shoots. The Cuscuta-infected host roots suffered a decline in phospholipid concentration with no appreciable change in enzyme activity, whereas the roots of the Orobanche-infected plants exhibited a substantial increase in phospholipid concentration despite a marked lowering in enzymic activity. Superimposition of infection by Cuscuta on Orobanche-infected plants resulted in an increase in both enzyme activity and phospholipid in host shoots; the host roots recorded a decline in phospholipid, although enzyme activity was increased. As compared to the filaments infecting singly, Cuscuta, in sequential infection, registered an increase in phospholipid concomitant with a fall in enzyme activity, whereas the root parasite revealed a lowered enzyme activity and a slight decrease in phospholipid. It is hypothesized that a physiological response to infection by root parasite was an accumulation of phospholipids at the region under infection, and to that by shoot parasite was an uptake of phospholipids by the parasite from the host; this was effected not by de novo synthesis but rather by mobilization from distal regions.  相似文献   

2.

Background

Sporotrichosis is a fungal infection caused by the Sporothrix schenckii complex. The adhesion of the fungus to the host tissue has been considered the key step in the colonization and invasion, but little is known about the early events in the host–parasite interaction.

Aims

To evaluate the proteolytic activity of S. schenckii on epithelial cells.

Methods

The proteolytic system (at pH 5 and 7) was evaluated using azocoll and zymograms. The host–parasite interaction and epithelial cell response were also analyzed by examining the microfilament cytoskeleton using phalloidin-FITC and transmission electron microscopy. Finally, the metabolic activity was determined using an XTT assay.

Results

The zymograms showed that S. schenckii yeast cells possess high intracellular and extracellular proteolytic activities (Mr  200, 116, 97, and 70 kDa) that are pH dependent and are inhibited by PMSF and E64, which act on serine and cysteine-type proteases. During the epithelial cell–protease interaction, the cells showed alterations in the microfilament distribution, as well as in the plasma membrane structure. Moreover, the metabolic activity of the epithelial cells decreased 60% without a protease inhibitor.

Conclusions

Our data demonstrate the complexity of the cellular responses during the infection process. This process is somehow counteracted by the action of proteases inhibitors. Furthermore, the results provide critical information for understanding the nature of host–fungus interactions and for searching a new effective antifungal therapy, which includes protease inhibitors.  相似文献   

3.
Chlamydia trachomatis infection in the lower genital tract, if untreated, can ascend to the upper genital tract, potentially leading to complications such as tubal factor infertility. The ascension involves cell-to-cell spreading, which may require C. trachomatis organisms to overcome mucosal extracellular effectors such as antimicrobial peptides. We found that among the 8 antimicrobial peptides tested, the cathelicidin LL-37 that is produced by both urogenital epithelial cells and the recruited neutrophils possessed a most potent antichlamydial activity. Interestingly, this antichlamydial activity was completely inhibited by CPAF, a C. trachomatis-secreted serine protease. The inhibition was dependent on CPAF's proteolytic activity. CPAF selectively degraded LL-37 and other antimicrobial peptides with an antichlamydial activity. CPAF is known to secrete into and accumulate in the infected host cell cytoplasm at the late stage of chlamydial intracellular growth and may be released to confront the extracellular antimicrobial peptides before the intra-inclusion organisms are exposed to extracellular environments during host cell lysis and chlamydial spreading. Thus, the finding that CPAF selectively targets host antimicrobial peptides that possess antichlamydial activities for proteolysis suggests that CPAF may contribute to C. trachomatis pathogenicity by aiding in ascending infection.  相似文献   

4.
Protein bodies were prepared from the cotyledons of pumpkin (Cucurbita sp.) seeds by employing a nonaqueous isolation method. Both light micrographic examination and the marker enzyme assays have shown that the isolated protein bodies were intact and contamination with other cell organelles or cytoplasmic components was negligible. A proteolytic enzyme catalyzing the limited hydrolysis of carboxymethylated γ′ chain of globulin was found to be present in the protein bodies. The specific activity in the protein body (18 units per milligram protein) was higher than that in the whole cell extract (13 units per milligram protein), indicating that the limited proteolytic enzyme was localized in the protein body.

After lysis of the protein bodies using hypotonic buffer solution, the suborganellar components (matrix, membranes, and crystalloids) were separated by sucrose density gradient centrifugation. The crystalloid was composed of only globulin, a major seed protein. The major proteins of matrix and membrane fractions were shown to have mol wt of approximately 10,000. About 90% of the limited proteolytic activity was found in the matrix region.

  相似文献   

5.
Thymidylate synthetase, which appears after infection of Escherichia coli with bacteriophage T4, has been partially purified. The phage enzyme is immunologically distinct from the host enzyme and has a molecular weight of 50,000 in comparison to 68,000 for the host enzyme. A system has been developed to characterize T4 td mutants previously known to have impaired expression of phage thymidylate synthetase. For this system, an E. coli host lacking thymidylate synthetase was isolated. Known genetic suppressors were transduced into this host. The resulting isogenic hosts were infected with phage T4 td mutants. The specific activities and amounts of cross-reacting material induced by several different types of phage mutants under conditions of suppression or non-suppression have been examined. The results show that the phage carries the structural gene specifying the thymidylate synthetase which appears after phage infection, and that the combination of plaque morphology, enzyme activity assays, and an assay for immunologically cross-reacting material provides a means for identifying true amber mutants of the phage gene.  相似文献   

6.
Many viruses express proteins which prevent the host cell death that their infection would otherwise provoke. Some insect viruses suppress host apoptosis through the expression of caspase inhibitors belonging to the P35 superfamily. Although a number of P35 relatives have been identified, Autographa californica (Ac) P35 and Spodoptera littoralis (Spli) P49 have been the most extensively characterized. AcP35 was found to inhibit caspases via a suicide substrate mechanism: the caspase cleaves AcP35 within its ‘reactive site loop'' then becomes trapped, irreversibly bound to the cleaved inhibitor. The Maruca vitrata multiple nucleopolyhedrovirus encodes a P35 family member (MaviP35) that exhibits 81% identity to AcP35. We found that this relative shared with AcP35 the ability to inhibit mammalian and insect cell death. Caspase-mediated cleavage within the MaviP35 reactive site loop occurred at a sequence distinct from that in AcP35, and the inhibitory profiles of the two P35 relatives differed. MaviP35 potently inhibited human caspases 2 and 3, DCP-1, DRICE and CED-3 in vitro, but (in contrast to AcP35) only weakly suppressed the proteolytic activity of the initiator human caspases 8, 9 and 10. Although MaviP35 inhibited the AcP35-resistant caspase DRONC in yeast, and was sensitive to cleavage by DRONC in vitro, MaviP35 failed to inhibit the proteolytic activity of bacterially produced DRONC in vitro.  相似文献   

7.
8.
9.
New Deoxyribonuclease Activity After Bacteriophage P22 Infection   总被引:1,自引:1,他引:0       下载免费PDF全文
Extracts from P22-infected and uninfected cultures of Salmonella typhimurium were subjected to deoxyribonucleic acid (DNA)-cellulose and diethylaminoethyl-cellulose chromatography. Comparison of the elution patterns revealed that in infected cells there is a decrease in the amount of nuclease activity specific for denatured DNA and an increase in the amount of nuclease activity specific for native DNA. The latter activity was shown to differ from a similar host enzyme in Mg2+, Mn2+, and pH optima. This new activity is not found after infection of a lysogen with a nonvirulent phage or after infection under nonpermissive conditions with P22ts25.1 (a mutant in gene 25 that carries out no known functions other than adsorption and injection) and thus appears to be specified by the phage genome.  相似文献   

10.
Sock J  Rohringer R  Kang Z 《Plant physiology》1990,94(3):1376-1389
Endo-β-1,3-glucanase activity in intercellular washing fluid (IWF) from leaves of wheat (Triticum aestivum) increased 10-fold 4 days after leaves were infected with the wheat stem rust fungus (Puccinia graminis f.sp. tritici), while exo-β-1,3-glucanase activity remained unchanged at a low level. Heat and ethylene stress had no effect, whereas mercury treatment resulted in a 2-fold increase in endo-β-1,3-glucanase activity. With a new method of activity staining using laminarin-Remazol brilliant blue as substrate in overlay gels, 18 electrophoretic forms of endo-β-1,3-glucanase were detected in IWF from unstressed leaves and up to 24 forms in IWF from stem rust-infected leaves. Most of the increase in β-1,3-glucanase activity and in the number of β-1,3-glucanases after rust infection was due to a nonspecific, stress-related effect on the plant, but two major forms of the enzyme probably originated from the fungus. β-1,3-Glucanase was localized cytochemically with anti-barley-β-1,3-glucanase antibodies. With preembedding labeling, the enzyme was demonstrated on the outside of host and fungal cell walls. Postembedding labeling localized the enzyme in the host plasmalemma and in the domain of host cell walls adjoining the plasmalemma, throughout walls of intercellular hyphal cells and haustoria, in the fungal cytoplasm, and in the extrahaustorial matrix. Cross-reactivity of β-1,3-glucanases from wheat and germinated uredospores of the rust fungus with the anti-barley-β-1,3-glucanase antibodies was confirmed in dot blot assays and on Western blots.  相似文献   

11.
Human dipeptidylpeptidase IV (hDPPIV) is an enzyme that is in hydrolase class and has various roles in different parts of human body. Its deficiency may cause some disorders in the gastrointestinal, neurologic, endocrinological and immunological systems of humans. In the present study, hDPPIV enzyme was expressed on Spodoptera frugiperda (Sf9) cell lines as a host cell, and the expression of hDPPIV was obtained by a baculoviral expression system. The enzyme production, optimum multiplicity of infection, optimum transfection time, infected and uninfected cell size and cell behavior during transfection were also determined. For maximum hDPPIV (269 mU mL−1) enzyme, optimum multiplicity of infection (MOI) and time were 0.1 and 72 h, respectively. The size of infected cells increased significantly (P < 0.001) after 24 h post infection. The results indicated that Sf9 cell line was applicable to the large scale for hDPPIV expression by using optimized parameters (infection time and MOI) because of its high productivity (4.03 mU m L−1 h−1).  相似文献   

12.
ASP is a serine protease secreted by Aeromonas sobria, a sepsis-causing bacterium, and induces sepsis-mimicking disorders through plasma protein cleavage. The pathogen also secretes nASP that has a nick in the carboxy-terminal region. Compared with single-chain ASP (sASP), nASP had near-equivalent activity for small peptide substrates but was less proteolytic. Surprisingly, nASP cleaved proteins more in plasma and was inhibited by human α2-macroglobulin more slowly than sASP. Retarded inhibition by α2-macroglobulin allows nASP to keep proteolytic activity for longer in the host and exacerbate disorders at Aeromonas sobria infection sites. nASP may be an evolutional form to augment ASP virulence.  相似文献   

13.
The proteolytic system of Bifidobacterium animalis subsp. lactis was analyzed, and an intracellular endopeptidase (PepO) was identified and characterized. This work reports the first complete cloning, purification, and characterization of a proteolytic enzyme in Bifidobacterium spp. Aminopeptidase activities (general aminopeptidases, proline iminopeptidase, X-prolyl dipeptidylaminopeptidase) found in cell extracts of B. animalis subsp. lactis were higher for cells that had been grown in a milk-based medium than for those grown in MRS. A high specific proline iminopeptidase activity was observed in B. animalis subsp. lactis. Whole cells and cell wall-bound protein fractions showed no caseinolytic activity; however, the combined action of intracellular proteolytic enzymes could hydrolyze casein fractions rapidly. The endopeptidase activity of B. animalis subsp. lactis was examined in more detail, and the gene encoding an endopeptidase O in B. animalis subsp. lactis was cloned and overexpressed in Escherichia coli. The deduced amino acid sequence for B. animalis subsp. lactis PepO indicated that it is a member of the M13 peptidase family of zinc metallopeptidases and displays 67.4% sequence homology with the predicted PepO protein from Bifidobacterium longum. The recombinant enzyme was shown to be a 74-kDa monomer. Activity of B. animalis subsp. lactis PepO was found with oligopeptide substrates of at least 5 amino acid residues, such as met-enkephalin, and with larger substrates, such as the 23-amino-acid peptide αs1-casein(f1-23). The predominant peptide bond cleaved by B. animalis subsp. lactis PepO was on the N-terminal side of phenylalanine residues. The enzyme also showed a post-proline secondary cleavage site.  相似文献   

14.
In this study, the cell-associated and extracellular peptidases of Trypanosoma cruzi grown in modified Roitman’s complex (MRC) medium were analyzed by measuring peptidase activity in gelatin-containing zymograms. Our results showed that the cell-associated peptidases as well as peptidases extracellularly released by T. cruzi displayed two distinct proteolytic classes: cysteine and metallopeptidase activities. The major cysteine peptidase, cruzipain, synthesized by T. cruzi cells was detected in cellular parasite content, as a 50 kDa reactive polypeptide, after probing with anti-cruzipain antibody. In addition, metallo-type peptidases belonging to the matrix metallopeptidase-9 (MMP-9) family were revealed, after Western blotting, as a 97 kDa protein band in cellular extract and an 85 kDa polypeptide in both cellular and secreted parasite extracts. The MMP-9-like activity present in cells and spent culture medium was immunoprecipitated by an anti-MMP-9 polyclonal antibody. The surface location of MMP-9-like proteins in T. cruzi was also evidenced by means of flow cytometry analysis. Furthermore, doxycycline that has direct MMP-9 inhibiting properties in vitro, inhibited MMP-9-like activities in gel zymography, immunoprecipitation and flow cytometry analyses. This is the first report of the presence of MMP-9-like molecules in T. cruzi. The presence of a matrix extracellular-degrading enzyme may play a role in the T. cruzi-host cell interaction, making this enzyme a potential target for future drug development against this pathogenic trypanosomatid.  相似文献   

15.
The somatic extract of L. intestinalis plerocercoids reveals hydrolytic activity against N-Benzoyl-l-tyrosine ethyl ester (BTEE) and Azocoll, and inactivates the esterolysis by mammalian trypsin and chymotripsin. The proteolytic enzyme activity and the inhibitory effect were completely separated by Sephadex G-100 column chromatography. Gel chromatography of the somatic extract revealed two peaks of proteolytic activity : one is bound to macromolecular substances, the other appears to be in free form and has a molecular weight of approx 60,000–65,000. The proteolytic activity showed the following characteristics : Tris-HCl buffer provided the highest activity against BTEE, the pH optimum was 7·4–7·8; the enzyme was activated by 10?5m-Ca2+, Mg2+ or Mn2+, it was inhibited by 10?5m-Cu2+, but not by 10?5m-Zn2+. 0.001% soybean trypsin inhibitor, 2 × 10?3m-EDTA, 1 mm-tosyl-l-phenylalanyl chloromethane, 1000 KIU/ml Trasylol did not inhibit the proteolytic activity, but it was inhibited by 1 mm-phenylmethyl-sulphonyl fluoride. The enzyme activity completely ceased upon 5 % TCA treatment or incubation at 56°C for 30 min. The trypsin and chyrnotrypsin inhibitor activities were eluted from the Sephadex G-100 column in a single peak with an estimated molecular weight of 6700–7200. The inhibitory effect was not sensitive to pH changes, and treatment by 5% TCA or incubation at 80°C for 15 min was ineffective. The proteolytic activity of plerocercoid extract was not effected ‘in vitro’ by the inhibitors isolated from this parasite.  相似文献   

16.
Contaminating fungi, such as Fusarium species, produce metabolites that may interfere with normal barley grain proteolysis pattern and consequently, affect malt and beer quality. Protein compositional changes of an initial mixture of 20 % Fusarium culmorum infected and 80 % noninfected mature barley grains and respective malt are reported here. Proteolytic activity of infected barley grains (IBG) and respective malt, with controls (uninfected grains), were characterized using protease inhibitors from each class of this enzyme, including metallo-, cysteine, serine, and aspartic proteases, as well as uninhibited protease fractions. The proteins were extracted according to the Osborne fractionation and separated by size exclusion chromatography. Additionally, two-dimensional (2D) gel electrophoresis (GE) was used to analyze hydrophobic storage proteins isolated from the control and IBG. Analyses revealed that F. culmorum IBG had a twofold increase of proteolytic activity compared to the control sample, which showed an increase in all protease classes with aspartic proteases dominating. Infected and control malt grains were comparable with cysteine proteases representing almost 50 % of all proteolytic enzymes detected. Protein extractability was 31 % higher in IBG compared to the control barley. The albumin fraction showed that several metabolic proteins decreased and increased at different rates during infection and malting, thus showing a complex F. culmorum infection interdependence. Prolamin storage proteins were more hydrophobic during barley fungal infection. F. culmorum interfered with the grain hydrolytic protein profile, thereby altering the grain's protein content and quality.  相似文献   

17.
《Process Biochemistry》2010,45(7):1156-1162
The present work reports exopeptidase activity existing in cacao (Theobroma cacao L.) during germination. Aminopeptidase (APE), carboxypeptidase (CP) and Xaa-Prolyl dipeptidyl aminopeptidase (Xaa-Pro-DAP) membrane-bound enzymes have been identified. The Xaa-Pro-DAP enzyme (E.C. 3.4.14.5) had not been previously detected in germinating cacao seeds. Xaa-Pro-DAP was partially purified and characterized, and the highest activity was found after 10 days of germination. Xaa-Pro-DAP was isolated by precipitation with 40% ammonium sulfate and partially purified with two chromatographic steps. The enzyme had a relative molecular weight of 80 kDa as determined by Native-PAGE and was, able to use Ala-Pro-4μβNA as substrate. In the presence of SDS, this enzyme did not show activity because it must be in a trimer to be functional. Its activity was inhibited 44% by the chelating agent EDTA and 48% by the serine peptidase inhibitor PMSF at 0.1 mM, indicating that the partially purified Xaa-Pro-DAP is a serine metallopeptidase. The cations Cu2+ and Cd2+ caused 44% and 67% inhibition, respectively, while the other divalent cations tested had no significant effect on the activity of the partially purified enzyme. The enzyme showed a high specificity for Ala-Pro-pNA as a proteolytic substrate.  相似文献   

18.
《Experimental mycology》1993,17(3):182-190
Persson, Y., and Friman, E. 1993. Intracellular proteolytic activity in mycelia of Arthrobotrys oligospora bearing mycoparasitic or nematode trapping structures. Experimental Mycology 17, 182-190. The fungus Arthrobotrys oligospora parasitizes other fungi with the aid of coils and captures and digests nematodes by means of adhesive traps. We have compared proteolytic activities of mycelial extracts from coils and traps with those of vegetative hyphae. A. oligospora produced a number of proteases active at both alkaline and acidic pH. Coil extract had significantly higher proteolytic activity than extracts of vegetative hyphae. Several coil culture-specific bands were found after substrate gel electrophoresis. Pepstatin-sensitive proteolytic activity at acidic pH was higher in coil extract than in normal mycelial extracts, although the total proteolytic activity was the same. No proteolytic activity was connected solely to mycelial extracts with traps and no enhancement of proteolytic activity was observed during infection of nematodes.  相似文献   

19.
Nearly all the amino group-producing activity of the autolysate of cells of Saccharomyces sake was recovered in the cell wall fraction obtained from the autolysis residue. The activity of the cell wall fraction was not lost even after repeated use.

The proteolytic activity of the fraction was not solubilized by incubation with detergents, disruption with cell mill or by freezing and thawing method, but was solubilized to some extent by incubation with a commercial yeast cell-lytic enzyme preparation.

The cell wall fraction hydrolysed casein to about 50%. When casein was previously treated with certain proteinases, more than 60% was digested. The activity of the fraction was significantly increased by the addition of Zn2+ while it was decreased by several proteolytic enzyme inhibitors. The interesting fact was that in the presence of EDTA the cell wall fraction showed only carboxypeptidase-like activity, and attacked the oxidized insulin B-chain to release two amino acids from the carboxyl terminal in known order.  相似文献   

20.
Active defense in plants is associated with marked metabolic alterations, but little is known about the exact role of the reported changes in specific activity of several enzymes in infected plant tissues. β-Fructosidase (invertase), the enzyme that converts sucrose into glucose and fructose, increases upon infection by fungi and bacteria. To understand the relationship between fungal growth and β-fructosidase accumulation, we used an antiserum raised against a purified deglycosylated carrot cell wall β-fructosidase to study by immunogold labeling the spatial and temporal distribution of the enzyme in susceptible and resistant tomato (Lycopersicon esculentum) root tissues infected with the necrotrophic fungus, Fusarium oxysporum f. sp. racidis-lycopersici. In susceptible plants, the enzyme started to accumulate in host cell walls about 72 hours after inoculation. Accumulation occurred only in colonized cells and was mainly restricted to areas where the walls of both partners contacted each other. In resistant plants, accumulation of β-fructosidase was noticeable as soon as 48 hours after inoculation and appeared to reach an optimum by 72 hours after inoculation. Increase in wall-bound β-fructosidase was not restricted to infected cells but occurred also, to a large extent, in tissues that remained uncolonized during the infection process. The enzyme also accumulated in wall appositions (papillae) and intercellular spaces. This pattern of enzyme distribution suggests that induction of β-fructosidase upon fungal infection is part of the plant's defense response. The possible physiological role(s) of this enzyme in infected tomato plants is discussed in relation to the high demand in energy and carbon sources during pathogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号