首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
张春艳  庞肖杰 《植物学报》2021,56(5):594-604
光谱技术已广泛应用于光合研究领域,如光吸收信号P515和P700氧化还原动力学以及叶绿素荧光等,可快速、准确地检测植物的光合活性。P515信号广泛存在于高等植物和藻类中,是类囊体膜上的色素分子吸收光能后,其吸收光谱发生位移造成。利用光诱导的P515快速和慢速动力学,可检测PSI和PSII反应中心的比值、ATP合酶的质子...  相似文献   

2.
利用不同剂量的137Cs-γ射线对毛竹(Phyllostachys heterocycla ‘Pubescens’)种子进行辐射, 测定实生苗叶片中的光合色素含量和叶绿素荧光参数等指标, 探讨辐射对毛竹幼苗生长的影响, 为筛选有利的突变单株奠定良好基础。结果表明:30或60 Gy的137Cs-γ射线辐射后, 毛竹幼苗的光合色素含量以及最大荧光强度(Fm)、可变荧光强度(Fv)、PSII最大光化学效率(Fv/Fm)、PSII的潜在活性(Fv/Fo)、PSII实际光化学效率(Yield)和表观光合电子传递速率(ETR)等荧光参数值均高于90 Gy辐射处理, 说明较低剂量辐射后PSII反应中心的能量捕获效率高, 且具有较强的光合能力; 而90 Gy的137Cs-γ射线辐射对毛竹的影响则与之相反。不同处理剂量之间叶片光能耗散程度以及表观光合电子传递速率-光合有效辐射(ETR-PAR)响应曲线的分析结果也进一步证实了以上结论。  相似文献   

3.
比较研究了‘早美’和‘春蕾’2个早熟桃品种夏季叶色转红对太阳光能的利用和光系统Ⅱ的叶绿素荧光特征的影响。结果表明:早熟桃叶片色素组成的变化会显著影响其光合和叶绿素荧光特性。叶色转红后,早熟桃净光合速率(Pn)日均值、PSII最大光化学效率(Fv/Fm)、PSII实际光化学效率(ФPSII)均上升,无显著光抑制,而绿叶对照‘红花碧桃’的电子传递速率(ETR)、Fv/Fm和ФPSII值均显著下降,7月光合明显受抑制。叶色转红程度较深的‘早美’在夏季高温强光下表现优于‘春蕾’和对照。淬灭分析表明:叶片花色素苷的积累能在短时间内增加PSII天线色素吸收的光能用于光化学反应的份额(P)与用于反应中心热耗散的相对份额(D)。转红后的叶片光化学淬灭系数(qp)显著高于绿叶,PSII光化学效率较高,但耗散过剩激发能的能力显著低于绿叶对照。  相似文献   

4.
对温室栽培的油桃中油5号(Prunus persica var. nectarina cv.‘Zhongyou5’)适量补充UV-B,分析其对桃叶片光合功能及叶绿体超微结构的影响。结果表明,UV-B处理下各色素含量均有不同程度的增加,其中叶绿素b的含量和净光合速率(Pn)提升幅度较大。相较于未补充UV-B的桃树(对照), UV-B处理的Fv/Fm无显著变化, Fv’/Fm’比值、光化学猝灭系数(qP)、非光化学猝灭系数(qN)以及PSII实际光化学量子效率(ΦPSII)均有显著或极显著升高。透射电镜结果显示,UV-B处理下叶绿体基质片层空隙小,堆叠紧密,叶绿体外膜边缘清晰。可见,温室内适量补充UV-B可快速改善叶片叶绿体的超微结构,提升叶绿素分子捕获光能及向PSII传递的能力,增大PSII反应中心的开放程度,提高实际光能转化效率和PSII电子传递量子效率,提高叶片的光合功能。该研究为设施果树光合性能改善和UV-B合理利用提供了理论依据。  相似文献   

5.
光强度对小麦幼苗光合特性的影响   总被引:2,自引:0,他引:2  
研究了在两种不同光强下水培5-7天的小麦(Triticum aestivum)“农大139”幼苗的光合特性,观察到生长期间的不同光强度对麦幼苗的光合膜一些成分和光合特性有明显影响,单位叶面积或单位鲜重中的Chl含量,Chl a/b比值,单位鲜重中的Car含量,以及光合膜中CPIa和CPI的含量,在低光强(2×10^3lx)下生长的幼苗都低,而光合膜中的LHCP的含量则高于在高光强(2×10^4lx)下生长的小麦幼苗,荧光诱导动力学测定结果表明,在高光强下生长的小麦其光合单位较小,而PSII活性和PSII原初光能转化效率都较高,同时,它们的叶绿体的PSII,PSI和全链电子传递速率也较高。  相似文献   

6.
运用叶绿素a荧光诱导动力学技术检测水稻生产潜力   总被引:8,自引:0,他引:8  
运用叶绿素a荧光诱导动力学技术,检测水稻叶片和叶绿体的PSII原初光转化效率(F_v/F_m)或与此相关可代表PSII潜在活性(F_v/F_o)的参数,结果表明,不同产量水平的水稻品种之间,其叶片和叶绿体的F_v/F_m(或F_v/F_o)的比值,以及光合电子传递速率均有明显差异.此外,在外源Mg~(2+)的存在下,高产水稻品种叶绿体有更高的原初光能转化效率,同时Mg~(2+)对高产品种叶绿体PSII和PSI之间激发能分配的调节能力也较低产品种者高.实验说明Chl a荧光诱导动力学的技术,能够作为一种快速、灵敏和简便的有效方法用于早期检测水稻(或其他作物)的生产潜力.  相似文献   

7.
赵佳琳  陈军  崔玉琳  于淑贤  陈高  秦松 《微生物学报》2018,58(10):1732-1742
丝氨酸/苏氨酸激酶是蓝藻感知和转导外界刺激的重要元件,但至今蓝藻中很多丝氨酸/苏氨酸激酶的功能尚属未知。【目的】研究集胞藻PCC6803中的丝氨酸/苏氨酸激酶Spk C是否参与对高温胁迫的响应。【方法】本研究采用同源重组的方法构建spC基因完全敲除突变株,检测突变株与野生株在高温胁迫下的生长状况、色素组成,并对高温胁迫下叶绿素荧光参数差异进行分析,比较光合系统Ⅱ活性差异。此外,通过测定生长速率来判断高温胁迫后藻株的恢复情况。【结果】经过42℃高温胁迫后,与野生株相比,突变株ΔspkC生长减缓,光合色素(叶绿素、类胡萝卜素和藻胆色素)的含量降低;45℃高温胁迫下突变株ΔspkC的光合系统Ⅱ活性下降幅度更大;经过5 d 42℃高温处理后,突变株生长几乎停滞,存活率较野生株明显降低。【结论】集胞藻PCC 6803中spkC基因的缺失导致突变株对高温胁迫响应出现缺陷,提示丝氨酸/苏氨酸激酶SpkC参与响应高温胁迫。  相似文献   

8.
快速叶绿素荧光动力学可以在无损情况下探知叶片光合机构的损伤程度, 快速叶绿素荧光测定和分析技术(JIP-test)将测量值转化为多种具有生物学意义的参数, 因而被广泛应用于植物光合机构对环境的响应机制研究。该文研究了超大甜椒(Capsicum annuum)幼苗在强光及不同NaCl浓度胁迫下的荧光响应情况。与单纯强光胁迫相比, NaCl胁迫引起了叶绿素荧光诱导曲线的明显改变, 光系统II (PSII)光抑制加重, 同时PSII反应中心和受体侧受到明显影响, 而且高NaCl浓度胁迫下PSII供体侧受伤害明显, 同时PSI反应中心活性(P700+)在盐胁迫下明显降低。这些结果表明, NaCl胁迫会增强强光对超大甜椒光系统的光抑制, 并且浓度越高抑制越明显, 但对PSI的抑制作用低于PSII。高NaCl浓度胁迫易对PSII供体侧造成破坏, 且PSI光抑制严重。  相似文献   

9.
外源甜菜碱对盐胁迫下枸杞光合功能的改善   总被引:59,自引:4,他引:59  
研究了外源甜菜碱对盐胁迫下枸杞扦插苗叶片光合功能的影响。结果表明,外源甜菜碱能使盐胁迫下的枸杞叶片叶绿素荧光动力学参数Fo、Fm、Fv、Fv/Fm、Fm/Fo和Fv/Fo增高,使光合色素叶绿素a(Chla)、叶绿素b(Chlb)和类胡萝卜素(Car)含量明显增加,叶绿素a与b的比值(Chla/Chlb)升高,类胡萝卜素与叶绿素的比值(Car/Chl)降低,说明外源甜菜碱有利于植物对光能的捕获、吸收、传递和转换,提高叶片的光合活性,降低盐胁迫对植物的抑制作用。  相似文献   

10.
随着气候条件的改变, 人口和载畜量的日益增加, 塔克拉玛干沙漠南缘策勒绿洲主要植物种群花花柴(Karelinia caspia)和骆驼刺(Alhagi sparsifolia)正遭受日益严重的虫噬、放牧等机械损伤的影响, 干扰因子对花花柴和骆驼刺的影响日趋明显。以塔克拉玛干南缘沙漠策勒绿洲主要建群种花花柴和骆驼刺为材料, 测量了韧皮部环割处理10天后, 光合色素含量和光系统II (PSII)叶绿素荧光的变化。结果表明: (1)在韧皮部半割处理下, 花花柴、骆驼刺的光合色素含量和叶绿素荧光变化都不明显。(2)在韧皮部全割处理下, 花花柴、骆驼刺的光合色素含量和叶绿素荧光各参数变化较大, 在该处理下, 两种植物光合原初反应被抑制, PSII结构和功能遭到损害, 活性降低, 光合器官对光能的吸收、传递、转化和电子捕获等过程被抑制。(3)韧皮部全割对花花柴和骆驼刺各生理状况产生较大影响, 相比而言, 环割对花花柴的影响更为持久。对于单个植株而言, 机械损伤对花花柴的破坏损伤更为显著。(4)在环割对花花柴和骆驼刺光合速率的影响中, 存在着依赖于碳水化合物(carbohydrate-dependent)的机制。  相似文献   

11.
The features of the two types of short-term light-adaptations of photosynthetic apparatus, State 1/State 2 transitions, and non-photochemical fluorescence quenching of phycobilisomes (PBS) by orange carotene-protein (OCP) were compared in the cyanobacterium Synechocystis sp. PCC 6803 wild type, CK pigment mutant lacking phycocyanin, and PAL mutant totally devoid of phycobiliproteins. The permanent presence of PBS-specific peaks in the in situ action spectra of photosystem I (PSI) and photosystem II (PSII), as well as in the 77 K fluorescence excitation spectra for chlorophyll emission at 690 nm (PSII) and 725 nm (PSI) showed that PBS are constitutive antenna complexes of both photosystems. The mutant strains compensated the lack of phycobiliproteins by higher PSII content and by intensification of photosynthetic linear electron transfer. The detectable changes of energy migration from PBS to the PSI and PSII in the Synechocystis wild type and the CK mutant in State 1 and State 2 according to the fluorescence excitation spectra measurements were not registered. The constant level of fluorescence emission of PSI during State 1/State 2 transitions and simultaneous increase of chlorophyll fluorescence emission of PSII in State 1 in Synechocystis PAL mutant allowed to propose that spillover is an unlikely mechanism of state transitions. Blue–green light absorbed by OCP diminished the rout of energy from PBS to PSI while energy migration from PBS to PSII was less influenced. Therefore, the main role of OCP-induced quenching of PBS is the limitation of PSI activity and cyclic electron transport under relatively high light conditions.  相似文献   

12.
Compensating changes in the pigment apparatus of photosynthesis that resulted from a complete loss of phycobilisomes (PBS) were investigated in the cells of a PAL mutant of cyanobacterium Synechocystis sp. PCC 6803. The ratio PBS/chlorophyll calculated on the basis of the intensity of bands in the action spectra of photosynthetic activity of two photosystems in the wild strain was 1: 70 for PSII and 1: 300 for PSI. Taking into consideration the number of chlorophyll molecules per reaction center in each photosystem, these ratios could be interpreted as association of PBS with dimers of PSII and trimers of PSI as well as greater dependence of PSII as compared with PSI on light absorption by PBS. The ratio PSI/PSII determined by photochemical cross-section of the reactions of two photosystems was 3.5: 1.0 for wild strain of Synechocystis sp. PCC 6803 and 0.7: 1.0 for the PAL mutant. A fivefold increase in the relative content of PSII in pigment apparatus corresponds to a 5-fold increase in the intensity of bands at 685 and 695 nm as related to the band of PSI at 726 nm recorded in low-temperature fluorescence spectrum of the PAL mutant. Inhibition of PSII with diuron resulted in a pronounced stimulation of chlorophyll fluorescence in the PAL mutant as compared to the wild strain of Synechocystis sp. PCC 6803; these data suggested an activation of electron transfer between PSII and PSI in the mutant cells. Thus, the lack of PBS in the mutant strain of Synechocystis sp. PCC 6803 was compensated for by the higher relative content of PSII in the pigment apparatus of photosynthesis and by a rise in the rate of linear electron transport.  相似文献   

13.
Z Zhang  G Li  H Gao  L Zhang  C Yang  P Liu  Q Meng 《PloS one》2012,7(8):e42936
The net photosynthetic rate, chlorophyll content, chlorophyll fluorescence and 820 nm transmission were investigated to explore the behavior of the photosynthetic apparatus, including light absorption, energy transformation and the photoactivities of photosystem II (PSII) and photosystem I (PSI) during senescence in the stay-green inbred line of maize (Zea mays) Q319 and the quick-leaf-senescence inbred line of maize HZ4. The relationship between the photosynthetic performance and the decrease in chlorophyll content in the two inbred lines was also studied. Both the field and laboratory data indicated that the chlorophyll content, net photosynthetic rate, and the photoactivities of PSII and PSI decreased later and slower in Q319 than in HZ4, indicating that Q319 is a functional stay-green inbred line. In order to avoid the influence of different development stages and environmental factors on senescence, age-matched detached leaf segments from the two inbred lines were treated with ethephon under controlled conditions to induce senescence. The net photosynthetic rate, light absorption, energy transformation, the activities of PSII acceptor side and donor side and the PSI activities decreased much slower in Q319 than in HZ4 during the ethephon-induced senescence. These results suggest that the retention of light absorption, energy transformation and activity of electron transfer contribute to the extended duration of active photosynthesis in Q319. Although the chlorophyll content decreased faster in HZ4, with decrease of chlorophyll content induced by ethephon, photosynthetic performance of Q319 deteriorated much more severely than that of HZ4, indicating that, compared with Q319, HZ4 has an advantage at maintaining higher photosynthetic activity with decrease of chlorophyll although HZ4 is a quick-leaf-senescence inbred line. We conclude that attention should be paid to two favorable characteristics in breeding long duration of active photosynthesis hybrids: 1) maintaining more chlorophyll content during senescence and 2) maintaining higher photosynthetic activity during the loss of chlorophyll.  相似文献   

14.
The after effects of a short exposure of intact barley leaves to moderately elevated temperature (40°C, 5 min) on the induction transients and the irradiance dependencies of photosynthesis and chlorophyll fluorescence are presented. This mild heat treatment strongly reduced the oscillations in the rate of photosynthesis and in the yield of chlorophyll fluorescence. However, only a 25% irreversible inhibition of maximum photosynthetic capacity of photosystem II (PSII) measured by oxygen evolution was produced and the intrinsic quantum yield of PSII measured by the chlorophyll fluorescence ratio (Fm‐ Fo)/Fm decreased by only 15%. In contrast, the above treatment increased radiationless dissipation processes in PSII by a factor of two. In heat‐treated leaves, photosynthesis was not saturated even by strong light. Both ΔpH‐dependent quenching of excitons in PSII (including formation of zeaxanthin) and state 1/state 2 transition were found to be stimulated. Heat exposure enhanced the control of PSII activity by PSI, as evidenced by a significant increase in the quenching effect of far‐red light on the maximum yield of chlorophyll fluorescence. It was deduced that after mild heat treatment, the photosynthetic apparatus in leaves lacks the precise coordinating control of electron transport and carbon metabolism owing to the inability of PSII to support electron transport at a level adequate for carbon metabolism. This effect was not related to the small irreversible thermal damage to PSII, but was rather due to a significant increase in non‐photochemical quenching of excitation energy.  相似文献   

15.
The acclimation of the photosynthetic apparatus to growth irradiance in a mutant strain of Synechococcus sp. PCC 7942 lacking detectable iron superoxide dismutase activity was studied. The growth of the mutant was inhibited at concentrations of methyl viologen 4 orders of magnitude smaller than those required to inhibit the growth of the wild-type strain. An increased sensitivity of photosynthetic electron transport near photosystem I (PSI) toward photooxidative stress was also observed in the mutant strain. In the absence of methyl viologen, the mutant exhibited similar growth rates compared with those of the wild type, even at high growth irradiance (350 [mu]E m-2 s-1) where chronic inhibition of photosystem II (PSII) was observed in both strains. Under high growth irradiance, the ratios of PSII to PSI and of [alpha]-phycocyanin to chlorophyll a were less than one-third of the values for the wild type. In both strains, cellular contents of chlorophyll a, [alpha]-phycocyanin, and [beta]-carotene, as well as the length of the phycobilisome rods, declined with increasing growth irradiance. Only the cellular content of the carotenoid zeaxanthin seemed to be independent of growth irradiance. These results suggest an altered acclimation to growth irradiance in the sodB mutant in which the stoichiometry between PSI and PSII is adjusted to compensate for the loss of PSI efficiency occurring under high growth irradiance. Similar shortening of the phycobilisome rods in the sodB mutant and wild-type strain suggest that phycobilisome rod length is regulated independently of photosystem stoichiometry.  相似文献   

16.
The stability of chlorophyll-protein complexes of photosystem I (PSI) and photosystem II (PSII) was investigated by chlorophyll (Chl) fluorescence spectroscopy, absorption spectra and native green gel separation system during flag leaf senescence of two rice varieties (IIyou 129 and Shanyou 63) grown under outdoor conditions. During leaf senescence, photosynthetic CO(2) assimilation rate, carboxylase activity of Rubisco, chlorophyll and carotenoids contents, and the chlorophyll a/b ratio decreased significantly. The 77 K Chl fluorescence emission spectra of thylakoid membranes from mature leaves had two peaks at around 685 and 735 nm emitting mainly from PSII and PSI, respectively. The total Chl fluorescence yields of PSI and PSII decreased significantly with senescence progressing. However, the decrease in the Chl fluorescence yield of PSI was greater than in the yield of PSII, suggesting that the rate of degradation in chlorophyll-protein complexes of PSI was greater than in chlorophyll-protein complexes of PSII. The fluorescence yields for all chlorophyll-protein complexes decreased significantly with leaf senescence in two rice varieties but the extents of their decrease were significantly different. The greatest decrease in the Chl fluorescence yield was in PSI core, followed by LHCI, CP47, CP43, and LHCII. These results indicate that the rate of degradation for each chlorophyll-protein complex was different and the order for the stability of chlorophyll-protein complexes during leaf senescence was: LHCII>CP43>CP47>LHCI>PSI core, which was partly supported by the green gel electrophoresis of the chlorophyll-protein complexes.  相似文献   

17.
Recent reports have indicated a considerably inactivated PSII in twig cortices, in spite of the low light transmittance of overlying periderms. Corresponding information for more deeply located and less illuminated tissues like xylem rays and pith are lacking. In this investigation we aimed to characterize the efficiency of PSII and its light sensitivity along twig depth, in conjunction with the prevailing light quantity and quality. To that aim, optical methods (spectral reflectance and transmittance, chlorophyll fluorescence imaging, low temperature fluorescence spectra) and photoinhibitory treatments were applied in cut twig sections of four tree species, while corresponding leaves served as controls. Compared to leaves, twig tissues displayed lower chlorophyll (Chl) levels and dark-adapted PSII efficiency, with strong decreasing gradients towards the twig center. The low PSII efficiencies in the inner stem were not an artifact due to an actinic effect of measuring beam or to an enhanced contribution of PSI fluorescence. In fact, the PSII/PSI ratios in cortices were higher and those in the xylem rays similar to that of leaves. Inner twig tissues were quite resistant to photoinhibitory treatments, tolerating irradiation levels several-fold higher than those encountered in their microenvironment. Moreover, the extent of high light tolerance was similar in naturally exposed and shaded twig sides. The results indicate an increasing, inherent and light-independent inactivation of PSII along twig depth. The findings are discussed on the basis of a recently proposed model for photosynthetic electron flow in twigs, taking into account the specific atmospheric and light microenvironment as well as the possible metabolic needs of such bulky organs.  相似文献   

18.
We hypothesized that cyclic electron flow around photosystem I (CEF-PSI) participates in the induction of non-photochemical quenching (NPQ) of chlorophyll (Chl) fluorescence when the rate of photosynthetic linear electron flow (LEF) is electron-acceptor limited. To test this hypothesis, the relationships among photosynthesis rate, electron fluxes through both PSI and PSII [Je(PSI) and Je(PSII)] and Chl fluorescence parameters were analyzed simultaneously in intact leaves of tobacco plants at several light intensities and partial pressures of ambient CO2 (Ca). At low light intensities, decreasing Ca lowered the photosynthesis rate, but Je(PSI) and Je(PSII) remained constant. Je(PSI) was larger than Je(PSII), indicating the existence of CEF-PSI. Increasing the light intensity enhanced photosynthesis and both Je(PSI) and Je (PSII). Je(PSI)/Je(PSII) also increased at high light and at high light and low Ca combined, showing a strong, positive relationship with NPQ of Chl fluorescence. These results indicated that CEF-PSI contributed to the dissipation of photon energy in excess of that consumed by photosynthesis by driving NPQ of Chl fluorescence. The main physiological function of CEF-PSI in photosynthesis of higher plants is discussed.  相似文献   

19.
Wu F  Yang Z  Kuang T 《Plant physiology》2006,141(4):1274-1283
Phosphatidylglycerol (PG) is a ubiquitous phospholipid in thylakoid membranes of cyanobacteria and chloroplasts and plays an important role in the structure and function of photosynthetic membranes. The last step of the PG biosynthesis is dephosphorylation of phosphatidylglycerophosphate (PGP) catalyzed by PGP phosphatase. However, the gene-encoding PGP phosphatase has not been identified and cloned from cyanobacteria or higher plants. In this study, we constructed a PG-deficient mutant from cyanobacterium Anabaena sp. PCC7120 with a disrupted gene (alr1715, a gene for Alr1715 protein, GenBank accession no. BAB78081) encoding a putative PGP phosphatase. The obtained mutant showed an approximately 30% reduction in the cellular content of PG. Following the reduction in the PG content, the photoautotrophical growth of the mutant was restrained, and the cellular content of chlorophyll was decreased. The decreases in net photosynthetic and photosystem II (PSII) activities on a cell basis also occurred in this mutant. Simultaneously, the photochemical efficiency of PSII was considerably declined, and less excitation energy was transferred toward PSII. These findings demonstrate that the alr1715 gene of Anabaena sp. PCC7120 is involved in the biosynthesis of PG and essential for photosynthesis.  相似文献   

20.
The two reaction-centre proteins of the photosystem I (PSI) complex are encoded by two adjacent genes named psaA and psaB. We have performed targeted mutagenesis to insertionally inactivate each of these genes in the filamentous cyanobacterium Anabaena variabilis ATCC 29413. The resulting mutant strains, termed psaA:: NmR and psaB:: NmR, were blue because of a high ratio of phycobilin to chlorophyll and were unable to grow in light. These mutant cells also lacked chemically reducible P700 (the reaction-centre chlorophylls of PSI) and as a consequence did not exhibit any PSI-mediated photochemical activity. However, their photosystem II (PSII) complexes were fully active. The loss of the PsaA and PsaB proteins and their associated chlorophyll molecules resulted in a five- to sevenfold decrease in the chlorophyll/PSII ratio in the mutant cells relative to the wild-type cells. Interestingly, the psaS:: NmR and not the psaA:: NmR mutant strain retained a small fluorescence peak (77K) at 721 nm originating from chlorophyll molecule(s) presumably bound to a small amount of the PsaA protein present in the psaB mutant. These results demonstrate that this organism is suitable for the manipulation of PSI reaction-centre proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号