首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We performed a meta‐analysis of 31 lake mesocosm experiments to investigate differences in the responses of pelagic food chains and food webs to nutrient enrichment and fish presence. Trophic levels were divided into size‐based functional groups (phytoplankton into highly edible and poorly edible algae, and zooplankton into small herbivores, large herbivores and omnivorous zooplankton) in the food webs. Our meta‐analysis shows that 1) nutrient enrichment has a positive effect on phytoplankton and zooplankton, while fish presence has a positive effect on phytoplankton and a negative effect on zooplankton in the food chains; 2) nutrient enrichment has a positive effect on highly edible algae and small herbivores, but no effect on poorly edible algae, large herbivores and omnivorous zooplankton in the food webs. Planktivorous fish have a positive effect on highly edible algae and small herbivores, a negative effect on large herbivores and omnivorous zooplankton, and no effect on poorly edible algae. Our meta‐analysis confirms that nutrient enrichment and planktivorous fish affect functional groups differentially within trophic levels, revealing important changes in the functioning of food webs. The analysis of fish effects shows the well‐described trophic cascade in the food chain and reveals two trophic cascades in the food web: one transmitted by large herbivores that benefit highly edible phytoplankton, and one transmitted by omnivorous zooplankton that benefit small herbivores. Comparison between the responses of food webs and simple food chains also shows consistent biomass compensation between functional groups within trophic levels.  相似文献   

2.
Vladimir Matveev 《Oikos》2003,100(1):149-161
Several predictions of the theory developed for pelagic food webs of the Northern Hemisphere were tested on water bodies of Eastern Australia. Eleven reservoirs, representing trophic and latitudinal gradients were sampled for nutrients, phytoplankton, zooplankton and pelagic fish. Two models of regression analysis, which analysed possible interactions between trophic levels were based on different sets of data. In one, each reservoir was represented by only one pair of observations – annual mean or single observation (“regional model”). In the other, seasonal means of four frequently sampled reservoirs similar in productivity were used (“temporal model”). Significant variation in total phytoplankton biovolume (TPB) was predicted by total phosphorus concentration (TP), total nitrogen concentration (TN), mean crustacean length and acoustic biomass of planktivorous fish in both models. This suggested that nutrient limitation, zooplankton grazing and positive effects of fish were probably important in controlling the biomass of primary producers at both regional and temporal scales. In the regional model, the biomass of fish was also negatively correlated with Daphnia biomass and mean crustacean length, suggesting that the trophic cascade hypothesis may be applicable to Eastern Australia for the considered range of reservoir productivities. The biovolume of cyanobacteria was not correlated to any variables tested in the regional model. In contrast, nutrient and food web variables had significant effects on cyanobacterial biovolume in the temporal model. This suggested that factors governing seasonal succession were probably more important for cyanobacteria than variation in reservoir productivity or location. Contrary to previous views, no negative relationship between total biomass of zooplankton and TPB was found in both models, suggesting that the community structure of zooplankton rather than its total biomass mediates top‐down effects. Many predictions of the food web theory remained robust in spite of substantial differences in animal taxonomy and physical environment of Australian ecosystems.  相似文献   

3.
The impact of the toxic cyanobacterium Microcystis aeruginosa on estuarine food web production in San Francisco Estuary is unknown. It is hypothesized that Microcystis contributed to a recent decline in pelagic organisms directly through its toxicity or indirectly through its impact on the food web after 1999. In order to evaluate this hypothesis, phytoplankton, cyanobacteria, zooplankton, and fish were collected biweekly at stations throughout the estuary in 2005. Concentrations of the tumor-promoting Microcystis toxin, microcystin, were measured in water, plankton, zooplankton, and fish by a protein phosphatase inhibition assay, and fish health was assessed by histopathology. Microcystis abundance was elevated in the surface layer of the western and central delta and reached a maximum of 32 × 109 cells l−1 at Old River in August. Its distribution across the estuary was correlated with a suite of phytoplankton and cyanobacteria species in the surface layer and 1 m depth including Aphanizomenon spp., Aulacoseira granulata, Bacillaria paradoxa, Rhodomonas spp., and Cryptomonas spp. Shifts in the phytoplankton community composition coincided with a decrease in the percentage of diatom and green algal carbon and increase in the percentage of cryptophyte carbon at 1 m depth. Maximum calanoid and cyclopoid copepod carbon coincided with elevated Microcystis abundance, but it was accompanied by a low cladocera to calanoid copepod ratio. Total microcystins were present at all levels of the food web and the greater total microcystins concentration in striped bass than their prey suggested toxins accumulated at higher trophic levels. Histopathology of fish liver tissue suggested the health of two common fish in the estuary, striped bass (Morone saxatilis), and Mississippi silversides (Menidia audens), was impacted by tumor-promoting substances, particularly at stations where total microcystins concentration was elevated. This study suggests that even at low abundance, Microcystis may impact estuarine fishery production through toxic and food web impacts at multiple trophic levels.  相似文献   

4.
5.
1. Nutrient and fish manipulations in mesocosms were carried out on food‐web interactions in a Mediterranean shallow lake in south‐east Spain. Nutrients controlled biomass of phytoplankton and periphyton, while zooplankton, regulated by planktivorous fish, influenced the relative percentages of the dominant phytoplankton species. 2. Phytoplankton species diversity decreased with increasing nutrient concentration and planktivorous fish density. Cyanobacteria grew well in both turbid and clear‐water states. 3. Planktivorous fish increased concentrations of soluble reactive phosphorus (SRP). Larger zooplankters (mostly Ceriodaphnia and copepods) were significantly reduced when fish were present, whereas rotifers increased, after fish removal of cyclopoid predators and other filter feeders (cladocerans, nauplii). The greatest biomass and diversity of zooplankton was found at intermediate nutrient levels, in mesocosms without fish and in the presence of macrophytes. 4. Water level decrease improved underwater light conditions and favoured macrophyte persistence. Submerged macrophytes (Chara spp.) outcompeted algae up to an experimental nutrient loading equivalent to added concentrations of 0.06 mg L?1 PO4‐P and 0.6 mg L?1 NO3‐N, above which an exponential increase in periphyton biomass and algal turbidity caused characean biomass to decline. 5. Declining water levels during summer favoured plant‐associated rotifer species and chroococcal cyanobacteria. High densities of chroococcal cyanobacteria were related to intermediate nutrient enrichment and the presence of small zooplankton taxa, while filamentous cyanobacteria were relatively more abundant in fishless mesocosms, in which Crustacea were more abundant, and favoured by dim underwater light. 6. Benthic macroinvertebrates increased significantly at intermediate nutrient levels but there was no relationship with planktivorous fish density. 7. The thresholds of nutrient loading and in‐lake P required to avoid a turbid state and maintain submerged macrophytes were lower than those reported from temperate shallow lakes. Mediterranean shallow lakes may remain turbid with little control of zooplankton on algal biomass, as observed in tropical and subtropical lakes. Nutrient loading control and macrophyte conservation appear to be especially important in these systems to maintain high water quality.  相似文献   

6.
Two water bodies, which are quite different with respect to nutrient load and hydrophysical conditions, are used to perform long-term experiments in the whole water on the manipulation of the pelagic food web. Experimental water 1: Bautzen Reservoir (Dresden County, GDR); hypereutrophic, mean depth=7.4 m; extremely exposed to wind. Experimental water 2: Small pond in a former quarry (Dresden County); mesotrophic; mean depth=7.0 m; extremely protected against wind. Only the results of Experiment 2 are given in detail. Experiment 1 is not yet finished. Experimental water 2 was investigated in 1979 and 1980 when no predatory fish species were present, and in 1981 after introduction of predators (mainly Salmo gairdneri). The response of the ecosystem can be summarized as follows: (1) The biomass of the zooplankton-eating fish (mainly Leucaspius delineatus) decreases rapidly. (2) The biomass of the herbivorous zooplankton increases to nearly 400%. (3) This finding reveals that the dense population of an invertebrate predator (Chaoborus flavicans) is not able to compensate for the feeding pressure of the small fish. But the intensive feeding activity of the young larvae of Chaoborus leads to a strong increase (200 to 300%) in the mean individual body size of the crustaceans during late summer and autumn, which supports the “balanced predation hypothesis”. (4) The remarkable enhanced grazing pressure of the herbivorous zooplankton on the phytoplankton does not exert any effect on the total phytoplankton biomass. This result is interpreted as a consequence of growth limitation of the algae due to low nutrient (Fe, P) supply in that mesotrophic water body. But the phytoplankton composition does reveal a strong response to the enhanced grazing pressure. The Secchi depth increases as a consequence of this change in the phytoplankton composition. The conclusion is drawn that, when using biomanipulation as a means of water quality management, it is obviously necessary to take into account the complex interrelationships between fish stocks, predacious invertebrates, herbivorous zooplankton, phytoplankton as well as nutrient load and hydrophysical processes in the particular water.  相似文献   

7.
1. Two enclosure experiments were carried out in Laguna Bufeos, a neotropical várzea lake located in the floodplain of River Ichilo (Bolivia). The experiments aimed (i) to assess the relative importance of bottom‐up and top‐down control on the plankton community, (ii) to assess the relative impact of direct and indirect effects of planktivorous fish on the zooplankton, and (iii) to attempt to identify the mechanisms responsible for these effects. 2. During the first experiment, bottom‐up control seemed to dominate the planktonic food web. Compared with fishless enclosures, oxygen concentrations, chlorophyll a levels and the population densities of all cladoceran zooplankton taxa increased in enclosures with fish. Birth rates of Moina minuta, the dominant taxon, were substantially higher in the presence than in the absence of fish, whereas death rates did not differ between treatments. These results are the first to suggest that the positive effects of fish on crustacean zooplankton via effects on nutrient cycling and the enhancement of primary production can compensate for losses because of fish‐related mortality. 3. During the second experiment, the direction of control appeared to vary between trophic levels: the phytoplankton appeared to be bottom‐up controlled whereas the zooplankton was mainly top‐down controlled. Chlorophyll a concentrations were enhanced by both fish and nutrient additions. The majority of the zooplankton taxa were reduced by the presence of fish. Birth rates of most cladoceran taxa did not differ between treatments, whereas death rates were higher in the enclosures with fish than in the fishless enclosures. Bosminopsis deitersi reached higher densities in the presence of fish, probably because of a release from predation by Chaoborus. 4. We convincingly showed strong deviations from trophic cascade‐based expectations, supporting the idea that trophic cascades may be weak in tropical lakes.  相似文献   

8.
Both temperature and terrestrial organic matter have strong impacts on aquatic food‐web dynamics and production. Temperature affects vital rates of all organisms, and terrestrial organic matter can act both as an energy source for lower trophic levels, while simultaneously reducing light availability for autotrophic production. As climate change predictions for the Baltic Sea and elsewhere suggest increases in both terrestrial matter runoff and increases in temperature, we studied the effects on pelagic food‐web dynamics and food‐web efficiency in a plausible future scenario with respect to these abiotic variables in a large‐scale mesocosm experiment. Total basal (phytoplankton plus bacterial) production was slightly reduced when only increasing temperatures, but was otherwise similar across all other treatments. Separate increases in nutrient loads and temperature decreased the ratio of autotrophic:heterotrophic production, but the combined treatment of elevated temperature and terrestrial nutrient loads increased both fish production and food‐web efficiency. CDOM: Chl a ratios strongly indicated that terrestrial and not autotrophic carbon was the main energy source in these food webs and our results also showed that zooplankton biomass was positively correlated with increased bacterial production. Concomitantly, biomass of the dominant calanoid copepod Acartia sp. increased as an effect of increased temperature. As the combined effects of increased temperature and terrestrial organic nutrient loads were required to increase zooplankton abundance and fish production, conclusions about effects of climate change on food‐web dynamics and fish production must be based on realistic combinations of several abiotic factors. Moreover, our results question established notions on the net inefficiency of heterotrophic carbon transfer to the top of the food web.  相似文献   

9.
1. Mesocosm experiments were carried out to examine the relative importance of top down (fish predation) and bottom up (nutrient addition) controls on phytoplankton abundance in a small shallow lake, Little Mere, U.K., in 1998 and 1999. These experiments were part of a series at six sites across Europe. 2. In the 1998 experiment, top‐down processes (through grazing of large Cladocera) were important in determining phytoplankton biomass. The lack of plant refugia for zooplankton was probably important in causing an increasing chlorophyll a concentration even at intermediate fish density. Little Mere normally has abundant macrophytes but they failed to develop substantially during both years. Bottom‐up control was not important in 1998, most probably because of high background nutrient concentrations, as a result of nutrient release from the sediments. 3. In 1999 neither top‐down nor bottom‐up processes were significant in determining phytoplankton biomass. Large cladoceran grazers were absent even in the fish‐free enclosures, probably because dominance of cyanobacteria and high phytoplankton biomass made feeding conditions unsuitable. As in 1998, bottom‐up control of phytoplankton was not important, owing to background nutrient concentrations that were even higher in 1999 than in 1998, perhaps because of the warmer, sunnier weather. 4. The differing outcomes of the two experiments in the same lake with similar experimental designs highlight the importance of starting conditions. These conditions in turn depended on overall weather conditions prior to the experiments.  相似文献   

10.
1. In view of the paucity of data on the response of warm shallow lakes to reductions in nutrient loading, this paper presents a long‐term limnological data set to document changes in the food‐web of a shallow Mediterranean lake (Lake Albufera, Valencia, Spain) that has experienced reductions in phosphorus (P) (77%) and nitrogen (N) (24%) loading following sewage diversion. 2. Nine years after sewage diversion, P concentration in the lake was reduced by 30% but remained high (TP = 0.34 mg L?1), although the mean water retention time in the lake was only 0.1 years. Nitrate concentrations did not significantly change, probably because the lake continued to receive untreated effluents from ricefields. 3. Chlorophyll a concentration was reduced by half (annual mean of 180 μg L?1). Cyanobacteria abundance remained high but its composition changed towards smaller species, both filamentous and chroococcal forms. 4. Cladocera abundance increased and reached peaks twice a year (December to March and July to September). After nutrient reduction, short‐term clear‐water phases (up to 5 weeks) occurred during February to March in several years, concomitant with annual flushing of the lake and lower fish densities. The abundance of Cladocera in winter contrasted with the spring peaks observed in northern restored shallow lakes. The zooplankton to phytoplankton biomass ratio remained lower than in northern temperate shallow lakes, probably because of fish predation on zooplankton. 5. Improvement of the water quality of Lake Albufera remained insufficient to counteract littoral reed regression or improve underwater light allowing submerged plants re‐colonise the lake. 6. Sewage diversion from Lake Albufera impacted the food web through the plankton, but higher trophic levels, such as fish and waterfowl, were affected to a lesser degree. Although the fish species present in the lake are mainly omnivorous, long‐term data on commercial fish captures indicated that fish communities changed in response to nutrient level and trophic structure as has been observed in restored shallow lakes at northern latitudes. 7. Phosphorus concentrations produced similar phytoplankton biomass in Lake Albufera as in more northern shallow lakes with abundant planktivorous fish and small zooplankton. However, in Lake Albufera, high average concentrations were maintained throughout the year. Overall, results suggest that nutrient control may be a greater priority in eutrophicated warm shallow lakes than in similar lakes at higher latitudes.  相似文献   

11.
Stocking of filter-feeding fish is a common tool used in Chinese reservoirs to increase fish production because of low natural recruitment. Whether such stocking has important negative effects on zooplankton with cascading effects on phytoplankton is debated. We compared the zooplankton communities in fourteen reservoirs with different nutrient concentrations and fish densities. Both chlorophyll a (Chla) and fish catch were positively related with total phosphorus (TP), whereas zooplankton biomass did not show a similar relationship with TP. Zooplankton seemed to be influenced by fish as high fish catches coincided with a low proportion of calanoids of the total copepod biomass, a high proportion of rotifers of the total zooplankton biomass, a low zooplankton:phytoplankton biomass ratio, and the absence of Daphnia irrespective of TP concentration. Both zooplankton biomass and most of the zooplankton:phytoplankton biomass ratios were among the lowest reported in the literature for the nutrient range studied. Furthermore, the Chla:TP ratio was higher than what is typically observed in temperate lakes. We conclude that top-down control of zooplankton is of key importance in reservoirs in South China where frequent stocking of filter-feeding fish seems to contribute to poor water quality in the form of higher algal biomass and reduced clarity.  相似文献   

12.
1. The major aim of this study was to test the hypothesis that nutrient enrichment and the introduction of the Nile tilapia (Oreochromis niloticus), an exotic omnivorous filter‐feeding fish, operate interdependently to regulate plankton communities and water transparency of a tropical reservoir in the semi‐arid northeastern Brazil. 2. A field experiment was performed for 5 weeks in 20 enclosures (9.8 m3) to which four treatments were randomly allocated: tilapia addition (F), nutrient addition (N), tilapia and nutrient addition (F + N) and a control treatment with no tilapia or nutrient addition (C). A two‐way repeated measures anova was undertaken to test for time, tilapia and nutrient effects and their interactions on water transparency, total phosphorus and total nitrogen concentrations, phytoplankton biovolume and zooplankton biomass. 3. Nutrient addition had no effect except on rotifer biomass, but there were significant fish effects on the biomass of total zooplankton, copepod nauplii, rotifers, cladocerans and calanoid copepods and on the biovolume of total phytoplankton, large algae (GALD ≥ 50 μm), Bacillariophyta and Zygnemaphyceae and on Secchi depth. In addition, we found significant interaction effects between tilapia and nutrients on Secchi depth and rotifers. Overall, tilapia decreased the biomass of most zooplankton taxa and large algae (diatoms) and decreased water transparency, while nutrient enrichment increased the biomass of rotifers, but only in the absence of tilapia. 4. In conclusion, the influence of fish on the reservoir plankton community and water transparency was significant and even greater than that of nutrient loading. This suggests that biomanipulation of filter‐feeding tilapias may be of importance for water quality management of eutrophic reservoirs in tropical semi‐arid regions.  相似文献   

13.
Mátyás  Kálmán  Oldal  Imre  Korponai  János  Tátrai  István  Paulovits  Gábor 《Hydrobiologia》2003,504(1-3):231-239

Effects of different fish communities on the proportion of different nitrogen and phosphorous forms and the amount of phytoplankton (chlorophyll a) were examined in two consecutive years (1992–1993) in three Hungarian shallow water reservoirs (Cassette and outer reservoir of the Kis–Balaton Water Protection System, and Marcali reservoir). Possible interactions between nutrient concentrations and the amount of phytoplankton in these reservoirs were also examined. Considerable differences in the proportions of different nutrient forms were observed between the three test sites, which could be explained by the presence of different fish stocks in these reservoirs. In the Cassette, the fish biomass necessary for a water quality improvement was around 50 kg ha−1. Phytoplankton biomass was controlled by the zooplankton, consequently chlorophyll a concentrations decreased considerably, while those of dissolved nutrients significantly increased. In the outer reservoir, phytoplankton was controlled bottom-up, since the 250 kg ha−1 fish biomass was larger than the critical value due to the high proportion of planktivorous species. Chlorophyll a concentrations were high, and nutrients were mainly in particulate form (in algal cells). In the Marcali reservoir, the recently introduced silver carp population could not control fully the phytoplankton. The biomass of phytoplankton decreased only slightly, while its composition changed considerably. Although biomanipulation with silver carp is suitable for ceasing cyanobacterial blooms, reduction of the amount of planktivorous fish seems to be a more adequate method for increasing water transparency, rather than introduction of phytoplankton feeding fish.

  相似文献   

14.
1. A 2‐year study was carried out on the roles of nutrients and fish in determining the plankton communities of a shallow lake in north‐west Spain. Outcomes were different each year depending on the initial conditions, especially of macrophyte biomass. In 1998 estimated initial ‘per cent water volume inhabited’ (PVI) by submerged macrophytes was about 35%. Phytoplankton biomass estimated as chlorophyll a was strongly controlled by fish, whereas effects of nutrient enrichment were not significant. In 1999 estimated PVI was 80%, no fish effect was observed on phytoplankton biomass, but nutrients had significant effects. Water temperatures were higher in 1998 than in 1999. 2. In the 1998 experiment, cladoceran populations were controlled by fish and cyanobacteria were the dominant phytoplankton group. There were no differences between effects of low (4 g fresh mass m?2) and high (20 g fresh mass m?2) fish density on total zooplankton biomass, but zooplankton biomass was higher in the absence of fish. With the high plant density in 1999, fish failed to control any group of the zooplankton community. 3. Total biovolume of phytoplankton strongly decreased with increased nutrient concentrations in 1998, although chlorophyll a concentrations did not significantly change. At higher nutrient concentrations, flagellate algae became more abundant with likely growth rates that could have overcompensated cladoceran feeding rates. This change in phytoplankton community composition may have been because of increases in the DIN : SRP ratio. Both chlorophyll a concentration and total phytoplankton biovolume increased significantly with nutrients in the 1999 experiment. 4. A strong decline of submerged macrophytes was observed in both years as nutrients increased, resulting in shading by periphyton. This shading effect could account for the plant decline despite lower water turbidity at the very high nutrient levels in 1998.  相似文献   

15.
  • 1 The vertical and horizontal distribution of phytoplankton, zooplankton and fish in Loch Ness, Scotland, were monitored during one day‐time and one night‐time survey in July 1992. The vertical samples were collected at a site located at the northern end of the loch and the horizontal samples along a longitudinal transect.
  • 2 The vertical distribution surveys demonstrated that the phytoplankton, the zooplankton and the fish were concentrated in the top 30 m of water above the seasonal thermocline. Within this layer, Cyclops stayed much closer to the surface than Eudiaptomus but both species moved towards the surface at night.
  • 3 The most important factor influencing the horizontal distribution of the phytoplankton was the north‐ south gradient in productivity. The sub‐catchments surrounding the north basin contain a greater proportion of arable land than those to the south and the concentrations of nitrate‐nitrogen and phytoplankton chlorophyll increased systematically from south to north.
  • 4 Zooplankton distribution patterns were influenced by wind‐induced water movements and the dispersion of allochthonous material from the main inflows. The highest concentrations of Cyclops were recorded in the north, where there was more phytoplankton, and the highest concentrations of Eudiaptomus in the south, where there were higher concentrations of non‐algal particulates.
  • 5 There was no spatial correlation between total zooplankton and total fish abundance but the highest concentrations of small (1–5 cm) fish were recorded in the south where there was a large patch of Eudiaptomus. The number of Eudiaptomus at specific locations within this patch were, however, negatively correlated with the numbers of small fish. These results suggest that the fish were actively foraging within the patch and were depleting their zooplankton prey in the areas where they were most abundant.
  相似文献   

16.
In laboratory experiments we tested the hypothesis that nutrients supplied by fish and zooplankton affect the structure and dynamics of phytoplankton communities. As expected from their body size differences, fish released nutrients at lower mass-specific rates than Daphnia. On average, these consumers released nutrients at similar N:P ratios, although the ratios released by Daphnia were more variable than those released by fish. Nutrient supply by both fish and Daphnia reduced species richness and diversity of phytoplankton communities and increased algal biomass and dominance. However, nutrient recycling by fish supported a more diverse phytoplankton community than nutrient recycling by Daphnia. We conclude that nutrient recycling by zooplankton and fish have different effects on phytoplankton community structure due to differences in the quality of nutrients released. Received: 21 December 1998 / Accepted: 31 May 1999  相似文献   

17.
1. Subtropical reservoirs of Australia are commonly subject to summer blooms of cyanobacteria. The potential for food web manipulation to control cyanobacterial blooms was investigated in Lake Maroon, south east Queensland using enclosures in which the density of the Australian gudgeon Hypseleotris spp. was manipulated. 2. Zooplankton biomass and community structure were strongly affected by fish density. A size dependent predation effect of Hypseleotris on zooplankton was observed at ambient fish densities, and the community shifted towards a dominance of copepod juveniles and nauplii. Substantial increases in the populations of Ceriodaphnia and calanoid copepods were observed at low fish densities and in the absence of fish. 3. At ambient fish densities total phytoplankton and the proportion of cyanobacteria were maintained at levels similar to those prevailing at day 0. Total phytoplankton and the proportion of cyanobacteria decreased substantially at low fish densities and in the absence of fish. Chlorophytes became dominant in the ‘no fish’ treatment and the grazing‐resistant species Oocystis and Dictyosphaerium were significantly higher than at ambient fish densities. 4. The experiment demonstrated a strong positive relationship between Hypseleotris density and cyanobacteria, and the results suggest that subtropical reservoirs may be suited to food web manipulation as a means of controlling summer cyanobacterial blooms.  相似文献   

18.
The stoichiometry of trophic interactions has mainly been studied in simple consumer–prey systems, whereas natural systems often harbour complex food webs with abundant indirect effects. We manipulated the complexity of trophic interactions by using simple laboratory food webs and complex field food webs in enclosures in Lake Erken. In the simple food web, one producer assemblage (periphyton) and its consumers (benthic snails) were amended by perch, which was externally fed by fish food. In the complex food web, two producer assemblages (periphyton and phytoplankton), their consumers (benthic invertebrates and zooplankton) and perch feeding on zooplankton were included. In the simple food web perch affected the stoichiometry of periphyton and increased periphyton biomass and the concentration of dissolved inorganic nitrogen. Grazers reduced periphyton biomass but increased its nutrient content. In the complex food web, in contrast to the simple food web, perch affected periphyton biomass negatively but increased phytoplankton abundance. Perch had no influence on benthic invertebrate density, zooplankton biomass or periphyton stoichiometry. Benthic grazers reduced periphyton biomass and nutrient content. The difference between the simple and the complex food web was presumably due to the increase of pelagic cyanobacteria ( Gloeotrichia sp.) with fish presence in the complex food web, thus fish had indirect negative effects on periphyton biomass through nutrient competition and shading by cyanobacteria. We conclude that the higher food web complexity through the presence of pelagic primary producers (in this case Gloeotrichia sp.) influences the direction and strength of trophic and stoichiometric interactions.  相似文献   

19.
1. Using data from 71, mainly shallow (an average mean depth of 3 m), Danish lakes with contrasting total phosphorus concentrations (summer mean 0.02–1.0 mg P L?l), we describe how species richness, biodiversity and trophic structure change along a total phosphorus (TP) gradient divided into five TP classes (class 1–5: <0.05, 0.05–0.1, 0.1–0.2, 0.2–0.4,> 0.4 mg P L?1).
2. With increasing TP, a significant decline was observed in the species richness of zooplankton and submerged macrophytes, while for fish, phytoplankton and floating‐leaved macrophytes, species richness was unimodally related to TP, all peaking at 0.1–0.4 mg P L?1. The Shannon–Wiener and the Hurlbert probability of inter‐specific encounter (PIE) diversity indices showed significant unimodal relationships to TP for zooplankton, phytoplankton and fish. Mean depth also contributed positively to the relationship for rotifers, phytoplankton and fish.
3. At low nutrient concentrations, piscivorous fish (particularly perch, Perca fluviatilis) were abundant and the biomass ratio of piscivores to plankti‐benthivorous cyprinids was high and the density of cyprinids low. Concurrently, the zooplankton was dominated by large‐bodied forms and the biomass ratio of zooplankton to phytoplankton and the calculated grazing pressure on phytoplankton were high. Phytoplankton biomass was low and submerged macrophyte abundance high.
4. With increasing TP, a major shift occurred in trophic structure. Catches of cyprinids in multiple mesh size gill nets increased 10‐fold from class 1 to class 5 and the weight ratio of piscivores to planktivores decreased from 0.6 in class 1 to 0.10–0.15 in classes 3–5. In addition, the mean body weight of dominant cyprinids (roach, Rutilus rutilus, and bream, Abramis brama) decreased two–threefold. Simultaneously, small cladocerans gradually became more important, and among copepods, a shift occurred from calanoid to cyclopoids. Mean body weight of cladocerans decreased from 5.1 μg in class 1 to 1.5 μg in class 5, and the biomass ratio of zooplankton to phytoplankton from 0.46 in class 1 to 0.08–0.15 in classes 3–5. Conversely, phytoplankton biomass and chlorophyll a increased 15‐fold from class 1 to 5 and submerged macrophytes disappeared from most lakes.
5. The suggestion that fish have a significant structuring role in eutrophic lakes is supported by data from three lakes in which major changes in the abundance of planktivorous fish occurred following fish kill or fish manipulation. In these lakes, studied for 8 years, a reduction in planktivores resulted in a major increase in cladoceran mean size and in the biomass ratio of zooplankton to phytoplankton, while chlorophyll a declined substantially. In comparison, no significant changes were observed in 33 ‘control’ lakes studied during the same period.  相似文献   

20.
1. Thermally assisted hydrolysis and methylation of cellular lipids, by means of Curie‐point pyrolysis of intact whole cells in the presence of a quaternary ammonium hydroxide reagent, provided analytical access (pyrolysis‐gas chromatography; Py‐GC) to the very small amounts of algal carbon delivered by fluorescence‐activated cell sorting. Based on differences in pigment composition, population‐specific in situ fatty acid profiles could be obtained of the major taxa present in the phytoplankton of Lake Loosdrecht (The Netherlands). 2. By combining Py‐GC and compound‐specific isotope‐ratio mass spectrometry (Py‐GC‐IRMS) the in situ carbon isotopic signatures could be established of the fatty acid profiles retrieved by flow cytometry. Colonial phytoplankton not amenable to cell sorting and zooplankton specimens were also isotopically characterised with this technique by subjecting handpicked samples to pyrolytic methylation. In this way proxies could be obtained in great detail for isotopic end‐members delineating important carbon sources and sinks in the pelagic food web of Lake Loosdrecht. 3. These analyses suggested a significant isotopic heterogeneity among major representatives of the phytoplankton in Lake Loosdrecht. This heterogeneity was also reflected in the isotopic composition of the zooplankton, implying the occurrence of preferential grazing. A differential labelling of the phytoplankton using 13C‐CO2 in a laboratory confinement, and subsequent monitoring of label transfer to the zooplankton, corroborated selective feeding in some rotifer species. The large‐bodied rotifer Asplanchna, previously thought to be predaceous, apparently mainly fed on algae rather than small rotifers, whereas Euchlanis dilatata actively selected filamentous cyanobacteria. Flow cytometric cell sorting in concert with Py‐GC‐IRMS offers new possibilities in carbon isotope‐based food web studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号