共查询到20条相似文献,搜索用时 15 毫秒
1.
In water-limited environments of the intermountain region of North America, summer precipitation may play a role in the structure and function of aridland communities and ecosystems. This study examined the potential reliance on summer precipitation of two widespread, coexisting woody species in the southwestern United States, Pinus edulis Englmn. (Colorado piñon) and Juniperus osteosperma (Torr) Little (Utah juniper). The current distributions of P. edulis and J. osteosperma are highly suggestive of different dependencies on summer rainfall. We hypothesized that P. edulis was dependent on summer precipitation, utilizing summer precipitation even during extremely dry summers, whereas J. osteosperma was not dependent, using summer precipitation only when amounts were above some minimum threshold. Using sap flux and stable isotopic methods to assess seasonal water sources and water use efficiency, we examined the response of these two species to seasonal variations in moisture at a site located near the northern limits of the North American monsoon. Both sap flux and isotopic results indicated that P. edulis was responsive to summer rain, while J. osteosperma was not. Following summer rain events, sap flux density increased in P. edulis for several days, but not in J. osteosperma. Isotopic evidence indicated that P. edulis took up summer-derived moisture to a greater extent than J. osteosperma. Values of the natural abundance stable isotope ratio of carbon of leaf soluble carbohydrates increased over the summer for P. edulis, indicative of assimilation at higher water use efficiency, but were invariant for J. osteosperma. Our results supported the hypothesis that P. edulis and J. osteosperma are differentially sensitive to summer precipitation and are discussed in the light of potential changes in the seasonality of precipitation associated with climate change. 相似文献
2.
3.
Enhancing diversity within crop systems can have benefits including increased resource use efficiency and productivity, and increased control of weeds, pests and diseases. Some benefits are expected to operate through biodiversity-driven insurance effects, whereby enhanced diversity increases the chance that a system component can compensate for the impacts of adverse environmental conditions. Studies of insurance effects in natural and agricultural systems have provided equivocal results. As insurance effects are expected to play a key role in helping to maintain crop production in more variable future climates (for example under periodic drought), it is essential to know when and how they operate and interact with other potentially beneficial biodiversity-function effects. Using barley as a model crop, and pot-based plant communities, we studied the interactive effects of barley cultivar diversity and drought stress on plant productivity and the response of agricultural weeds, fungal disease, and aphids. Drought reduced barley and weed biomass, but there were no interactive effects of drought and cultivar diversity on plant productivity. Increased cultivar diversity enhanced weed suppression, potentially as a result of reduced functional space availability, and reduced disease severity on a susceptible cultivar; these effects were consistent irrespective of drought. Aphid responses were more complex, with idiosyncratic response patterns on individual cultivars. Overall, we found no evidence of an insurance effect of enhanced cultivar diversity for the negative impact of drought on crop productivity, but our results indicate that other positive biodiversity effects (weed and disease suppression) are maintained under drought. However, it is clear that not all potentially-beneficial biodiversity effects respond in the same manner. Field trials are now needed to explore whether a range of responses also occur in crop field settings, whether these can be expected to occur predictably under a range of environmental conditions, and how these then impact on crop production. 相似文献
4.
Prapawadee Nutiprapun Sutheera Hermhuk Satoshi Nanami Akira Itoh Mamoru Kanzaki Dokrak Marod 《Global Change Biology》2023,29(2):451-461
As El Niño is predicted to become stronger and more frequent in the future, it is crucial to understand how El Niño-induced droughts will affect tropical forests. Although many studies have focused on tropical rainforests, there is a paucity of studies on seasonally dry tropical forests (SDTFs), particularly in Asia, and few studies have focused on seedling dynamics, which are expected to be strongly affected by drought. Seedlings in SDTFs are generally more drought-tolerant than those in the rainforests, and the effects of El Niño-induced droughts may differ between SDTF and tropical rainforests. In this study, we explored the impact of El Niño-induced drought at an SDTF in northern Thailand by monitoring the seedling dynamics at monthly intervals for 7 years, including a period of strong El Niño. The effects were compared between two forest types in an SDTF: a deciduous dipterocarp forest (DDF), dominated by deciduous species, and an adjacent lower montane forest (LMF) with more evergreen species. El Niño-induced drought increased seedling mortality in both the forest types. The effect of drought was stronger in evergreen than in the deciduous species, resulting in higher mortality in the LMF during El Niño. However, El Niño increased seedling recruitment only in the DDF, mainly because of the massive recruitment of the deciduous oak, Quercus brandisiana (Fagaceae), which compensated for the mortality of seedlings in the DDF. As a result, El Niño increased seedling density in the DDF and decreased it in the LMF. This is the first long-term study to identify the differences in the impacts of El Niño on seedlings between the two forest types, and two leaf habits, evergreen and deciduous, in Southeast Asia. Our findings suggest that future climate change may alter the species composition and spatial distribution of seedlings in Asian SDTFs. 相似文献
5.
The inheritance of mature fruit color in peppers (Capsicum spp.) is controlled by several genes. However, the inheritance of the transition of colors the fruit undergo during ripening has not been described extensively. The authors describe the inheritance of a unique gene which affects foliage color and fruit color transition occurring in the jalape?o cultivar NuMex Pi?ata. The gene responsible is designated the tra gene. 相似文献
6.
Kiarash Jamshidi Goharrizi Farzaneh Amirmahani Fatemeh Salehi 《Physiologia plantarum》2020,168(4):973-989
In this study, 7-month-old UCB-1, Badami, Ghazvini and Kale-Ghouchi pistachio rootstocks were exposed to control, drought, salinity and drought + salinity environments for 60 d. Total chlorophyll and total carotenoid contents decreased in all cultivars under drought, salinity and drought + salinity stresses. Under drought and salinity stresses, alone or in combination, Na+ and Cl− ions increased in all four pistachio rootstocks, while K+ ion decreased only in Ghazvini and Kaleh-Ghouchi cultivars. The enzyme activities of ascorbate peroxidase, polyphenol oxidase, catalase and guaiacol peroxidase increased in all cultivars when subjected to all three stresses with the exception of the ascorbate peroxidase activity in Kale-Ghouchi cultivar during drought stress. Oxidative stress parameters including electrolyte leakage, malondialdehyde, other aldehydes and hydrogen peroxide increased under all three stress conditions in all genotypes. The content of proline, total free amino acids and total soluble carbohydrates were enhanced under drought, salinity and drought + salinity stresses, whereas the protein content decreased in all pistachio rootstocks. In all evaluated traits, except for the K+ ion content and APX activity, the highest impacts was seen for drought + salinity > salinity > drought stresses, respectively. For the first time, we have proven that K+ ion content has a positive correlation with the ascorbate peroxidase, polyphenol oxidase, catalase and guaiacol peroxidase enzymes activities under drought + salinity stress. Finally, based on the bi-plot and cluster analyses, we have selected the UCB-1 > Badami > Ghazvini > Kale-Ghouchi cultivars as the most tolerant pistachio rootstocks under drought + salinity stress, respectively. 相似文献
7.
Does an increase in irradiance influence periphyton in a heavily-grazed woodland stream? 总被引:6,自引:0,他引:6
Alan D. Steinman 《Oecologia》1992,91(2):163-170
Summary Irradiance level and grazer density were manipulated in a factorial design to examine the relative effects of biotic and abiotic factors on periphyton biomass, productivity, and taxonomic structure in a heavily grazed, woodland stream. Irradiance levels were increased from 0.26 to 12.42 mol quanta/m2/d by placing metal halide lamps over the stream. The major grazer in this system was the prosobranch snail Elimia clavaeformis. Its densities were reduced from ca. 750 individuals/m2 to near zero by raising platforms off the stream bottom. Experimental treatments were maintained for 48 days. Biomass-specific carbon fixation rates increased significantly in response to higher light levels, indicating that periphyton communities were light-limited at this time of year. However, positive effects of irradiance on areal-specific carbon fixation and biomass were detected only when grazer density was reduced. Basal cells of the chlorophyte Stigeoclonium dominated communities exposed either to low light or high grazing pressure. When light was increased and grazer density reduced, large or upright diatoms became more abundant. Results from this study indicated that limitation of periphyton photosynthesis could be mitigated by increasing the levels of an abiotic resource (light) to this system, but that periphyton biomass was controlled by biotic interactions. 相似文献
8.
9.
Viewing species–area curves in the context of the different life forms that generate them might be instructive for understanding why high species density develops in some plant communities. In order to evaluate the patterns of species density in an Australian temperate eucalypt woodland community, we used species–area curves and document rate of species accumulation by life forms in six nested plots ranging in size from 1 m2 to 0.1 ha at 13 woodland sites. Mean total species density was 82 ± 3.8 species at 0.1 ha scales (range 49–104 species), making them amongst the most diverse woodlands in Australia at these spatial scales. Species–area relationships for total species were best described by power function models (log–log linear) with slopes (z) ranging from 0.12 to 0.35 (mean = 0.17 ± 0.02). When species were analysed by life form, species–area relationships were similarly well-described by the power function for all life forms, although their slopes differed significantly; annuals had the lowest slope and woody species the highest. Annuals and perennial herb species density were equal at the smallest spatial scales (mean 11.7 and 11.5 species/m2, respectively) and hence, both life forms help generate high small scale species density. Small-scale total species density, but not individual life form, was a significant predictor of larger-scale total species density (r 2 = 0.36, P = 0.03). Our findings suggest that high species density may be a general property of temperate eucalypt woodlands with herbaceous understoreys and that the mechanisms that underpin these patterns require further study. 相似文献
10.
《Cytokine》2015,72(2):255-260
IntroductionCritically ill patients with acute kidney injury (AKI) present high mortality rates. The magnitude of inflammatory response could determine the prognosis of such patients. Continuous renal replacement therapy (CRRT) may play an important role in removing inflammatory mediators in patients with AKI.AimTo investigate whether the magnitude of inflammatory mediator’s removal is associated with mortality among critically ill patients on CVVHDF, a CRRT modality.MethodsThis study consisted of 64 critically ill patients requiring CVVHDF. Plasma levels of C3a, TNF-α, IL-10, IL-6, IL-1β, sTNFRI and sTNFRII were determined by enzyme-linked immunosorbent assay (ELISA) at the beginning of CVVHDF and after 24 h (outlet). Clearance of cytokines during the first 24 h of CVVHDF was calculated. Clinical and laboratory data were acquired from patient’s records data.ResultsMean age of patients requiring CVVHDF was 63 years, 67.2% were men and 87.3% were Caucasian. Thirty-five (35) patients (54.7%) died. Comparing non-survivors with the group of survivors we observed higher incidence of sepsis (68.6 versus 37.9%, p < 0.05), higher APACHE II score (34.8 ± 7.6 versus 29.2 ± 7.1, p < 0.05) and higher lactate levels (23.2 ± 17.6 versus 16.4 ± 6.6, p < 0.05). According to the inter-tertile range of TNF-α clearance (ITR1 (<0.54); ITR2 (0.54–2.93); ITR3 (>2.93)) we found that those patients with higher TNF-α removal by RRT (ITR3) had a better survival. Multivariable analysis showed that lower clearance of TNF-α remained independently associated with high mortality after adjustment for sex, age, use of vasoactive drugs, APACHE II score sepsis, creatinine and lactate before CVVHDF (HR: 0.179, 95% IC: 0.049–0.661, p < 0.01).ConclusionThe attenuation of inflammatory response may be related to the lower mortality observed on those patients with higher TNF-α removal by CVVHDF. 相似文献
11.
Stable hydrogen and oxygen isotopic composition of bulk leaf water (δDlw and δ18Olw) in piñon pine (Pinus edulis and P. monophylla) and gas exchange parameters were measured under field conditions to examine the effects of seasonal moisture stress on leaf water isotopic enrichment. Study sites were located near the lower elevation limit for piñon in the southwestern USA. Leaf-level transpiration measurements were made four times daily in spring, summer and early autumn; simultaneously, leaf samples were collected for water extraction and stable isotope analysis. Diurnal variations in δDlw and δ18Olw values were small, especially when leaf water residence times (molar leaf water content divided by transpiration rate) were high. Stomatal conductance explained most of the variance (60%) in leaf water enrichment across the dataset. Observed leaf water enrichment was compared with predictions of steady-state and nonsteady-state models. Nonsteady-state predictions fit observations the best, although D enrichment was often lower than predicted by any model. Hydrogen isotope ratios of leaf water and cellulose nitrate were strongly correlated, demonstrating preservation of a leaf water signal in wood and leaf cellulose. 相似文献
12.
Clinton D. Francis Catherine P. Ortega John Hansen 《The Journal of wildlife management》2011,75(7):1574-1580
Piñon–juniper (Pinus spp.–Juniperus spp.) woodlands are common throughout western North America, yet relatively little is known about the habitat use and requirements for many members of its avian community. During summer 2005–2007, we assessed avian nesting substrates within piñon (Pinus edulis)–juniper (Juniperus osteosperma) woodlands in northwestern New Mexico. Of all nests in live trees, 86% were in junipers. The selection of juniper as a nest tree was significantly higher than expected from the region's piñon–juniper ratio (1:1.06) for the community as a whole, for both open cup and cavity nesting species, and for 8 species (of which 6 are piñon–juniper obligate or semi-obligate species). Nest survival, however, was not higher in juniper than in piñon for the nesting community as a whole or for chipping sparrows (Spizella passerina), the single species that was well represented nesting in piñon. The high use of juniper as a nesting substrate differs from previous studies, which have suggested that a presence of piñon is among the most important habitat features for many piñon–juniper species. Because of their importance to nesting birds, managers should avoid preferential thinning of junipers within piñon–juniper woodlands. © 2011 The Wildlife Society. 相似文献
13.
Most woodland ferns thrive under conditions of high air humidity, frequent precipitation and exposure to extended periods of leaf wetness, but it is not known how widespread foliar water uptake is in this plant group. In a tracer experiment with deuterated water (2H2O) applied to the leaf surface of five temperate woodland ferns (Athyrium filix-femina, Dryopteris filix-mas, Polystichum aculeatum, Polystichum braunii and Asplenium scolopendrium), we tested (1) whether these species exhibit foliar water uptake and (2) whether the capability to absorb water through the leaf epidermis increases with the frequency of epidermal trichomes. All species had significantly higher abundances of 2H in tissue water, when extracted distant to the place of application, compared to the background level (0.052–0.504 vs. 0.015 at.%), evidencing uptake through the epidermis and leaf-internal translocation. A positive relation between trichome density and 2H incorporation was found only for the second-order pinnae but not for the more central frond sections. The results suggest that foliar water uptake may be widespread among temperate woodland ferns across different families and that leaf trichome structure probably influences this process. 相似文献
14.
Three previous reports of microgeographical variation of glycerate dehydrogenase (Gly) frequencies in piñon, Pinus edulis, established the hypothesis that Gly frequencies contribute to adaptation to heterogeneous environments, specifically to variation in soil moisture. In each of these studies, the frequency of the Gly‐3 allele or of Gly‐33 homozygotes was higher on dry sites than on nearby moist sites. Here we attempt to extend these observations by testing the hypothesis that Gly frequencies respond to soil moisture variation on a range‐wide scale. Gly frequencies were surveyed in 11 natural populations, and the frequency of the Gly‐3 allele varied from 0.27 to 0.65 among the sample sites. Elevation varied from 1650 to 3100 m, and summer precipitation, defined as precipitation from April to August, varied from 13.7 to 26.4 cm. The soil types at the collection sites were schist, quaternary volcanic or a mixture of shale and sandstone. Logistic regression revealed that Gly frequencies did not respond to either elevation or soil type, but were related to summer precipitation (P < 0.01). The correlation between summer precipitation and the frequency of the Gly‐3 allele was r = ?0.92 (P < 0.001). Thus, the patterns of differentiation on microgeographical scales are consistent with greater differentiation on a range‐wide scale. 相似文献
15.
P. Guicherd J. P. Peltier E. Gout R. Bligny G. Marigo 《Trees - Structure and Function》1997,11(3):155-161
In leaves of Fraxinus excelsior L., malate and mannitol were characterized by 13C NMR spectroscopy and enzymatic specific assays as the major constituents of a soluble carbon fraction involved in an osmotic
adjustment. During a summer drought where predawn leaf water potential of adult trees growing in a mesoxerophilic stand fell
to – 4 MPa in August, malate and mannitol leaf contents increased by a factor of 1.8 and 2.2 respectively, compared to control
trees growing on a flood plain. This drought stress led to concentrations as high as 280 mM and 600 mM for mannitol and malate,
respectively. The effects of gradually developing water deficit were also studied in a semi-controlled environment in 3-year-old
seedlings. When predawn leaf water potential reached -6 MPa, leaves displayed a low turgor pressure but stomatal conductance
was still measurable. Malate and mannitol were also the main osmoticum involved. After rewatering, gas exchange capacities
were largely restored. Altogether, these results show that the strong water-stress tolerance of Fraxinus excelsior is in part related to an accumulation of malate and mannitol.
Received: 3 January 1996 / Accepted: 19 March 1996 相似文献
16.
17.
Meagan M. Hynes Matthew E. Smith Robert J. Zasoski Caroline S. Bledsoe 《Mycorrhiza》2010,20(4):265-274
Ectomycorrhizal (ECM) hyphal communities have not been well characterized. Furthermore, there have been few studies where
the ECM hyphal community is compared to fungi detected as sporocarps or ECM-colonized root tips. We investigated fungi present
as hyphae in a well-studied California Quercus–Pinus woodland. Hyphal species present were compared to those found as sporocarps and ECM root tips at the same site. Hyphae were
extracted from root-restrictive nylon mesh in-growth bags buried in the soil near mature Quercus douglasii, Quercus wislizeni, and Pinus sabiniana. Taxa were identified using PCR, cloning, and DNA sequencing of internal transcribed spacer and 28s rDNA. Among the 33 species
detected, rhizomorph-forming ECM fungi dominated the hyphal community, especially species of Thelephoraceae and Boletales.
Most fungi in soils near Quercus spp. and P. sabiniana were ECM basidiomycetes, but we detected two ECM ascomycetes and three non-mycorrhizal fungi. Many ECM species present as
hyphae were also previously detected at this site as sporocarps (18%) or on ECM root tips (58%). However, the hyphal community
was mostly dominated by different taxa than either the sporocarp or ECM root communities. 相似文献
18.
19.
Does triacylglycerol (TAG) serve a photoprotective function in plant leaves? An examination of leaf lipids under shading and drought 下载免费PDF全文
Renée M. Marchin Tarryn L. Turnbull Audrey I. Deheinzelin Mark A. Adams 《Physiologia plantarum》2017,161(3):400-413
Plant survival in many ecosystems requires tolerance of large radiation loads, unreliable water supply and suboptimal soil fertility. We hypothesized that increased production of neutral lipids (triacylglycerols, TAGs) in plant leaves is a mechanism for dissipating excess radiation energy. In a greenhouse experiment, we combined drought and shade treatments and examined responses among four species differing in life form, habitat, and drought‐ and shade‐tolerance. We also present a lipid extraction protocol suitable for sclerophyllous leaves of native Australian trees (e.g. Acacia, Eucalyptus). Fluorescence measurements indicated that plants exposed to full sunlight experienced mild photoinhibition during our experiment. Accumulation of TAGs did not follow photosynthetic capacity, but instead, TAG concentration increased with non‐photochemical quenching. This suggests that plants under oxidative stress may increase biosynthesis of TAGs. Moderate drought stress resulted in a 60% reduction in TAG concentration in wheat (Triticum aestivum). Shading had no effect on TAGs, but increased concentrations of polar lipids in leaves; for example, acclimation to shade in Austrodanthonia spp., a native Australian grass, resulted in a 60% increase in associated polar lipids and higher foliar chlorophyll concentrations. Shading also reduced the digalactosyldiacylglycerol:monogalactosyldiacylglycerol (DGDG:MGDG) ratio in leaves, with a corresponding increase in the degree of unsaturation and thus fluidity of thylakoid membranes of chloroplasts. Our results suggest that prevention of photodamage may be coordinated with accumulation of TAGs, although further research is required to determine if TAGs serve a photoprotective function in plant leaves. 相似文献
20.
Jana Kholová C. Tom HashMarie Ko?ová Vincent Vadez 《Environmental and Experimental Botany》2011,71(1):99-106
The control of reactive oxygen species (ROS) and the stability of photosynthetic pigments under stress conditions are hypothesized to contribute to drought tolerance. Here we studied how ascorbic peroxidase (APX), superoxide dismutase (SOD), catalase (CAT) isozyme activities and chlorophyll a, b (Chl a, b) and carotenoids (Car) contents responded to water stress and whether they related to presence of a terminal drought tolerance QTL in pearl millet. We used PRLT2/89-33 (QTL donor), H77/833-2 (sensitive), and near-isogenic lines (QTL-NILs) introgressed with the QTL in H77/833-2 background. Under water stress there was no significant change in the total APX activity; only the proportional APX5 activity increased, with higher band intensity in tolerant genotypes. There were no significant changes in total activities of CAT and SOD under water stress, with similar band intensities in all genotypes, and a new CAT isozyme was induced in all genotypes. The photosynthetic pigment content decreased under water stress, although not differently in any genotype. Under water stress, the activities of most APX, CAT and SOD isozymes were closely related to the total chlorophyll/carotenoids ratio. Overall, besides APX5, water stress did not lead to major changes in the profile of isoenzymes involved in ROS scavenging. Similarly, the pigment content under stress did not discriminate genotypes according to the presence/absence of the QTL. This absence of discrimination for the ROS scavenging enzymes and for the pigment content under stress suggests that these traits may not play a key role in terminal drought tolerance in pearl millet. 相似文献