首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
p120 catenin is thought to be a key regulator of E-cadherin function and stability, but its role(s) in vivo is poorly understood. To examine these directly, we generated a conditional p120 knockout mouse and targeted p120 ablation to the embryonic salivary gland. Surprisingly, acinar differentiation is completely blocked, resulting in a gland composed entirely of ducts. Moreover, p120 ablation causes E-cadherin deficiency in vivo and severe defects in adhesion, cell polarity, and epithelial morphology. These changes closely phenocopy high-grade intraepithelial neoplasia, a condition that, in humans, typically progresses to invasive cancer. Tumor-like protrusions appear immediately after p120 ablation at e14 and expand into the lumen until shortly after birth, at which time the animals die with completely occluded glands. The data reveal an unexpected role for p120 in salivary acinar development and show that p120 ablation by itself induces effects consistent with a role in tumor progression.  相似文献   

2.
P190A and p190B Rho GTPase activating proteins (GAPs) are essential genes that have distinct, but overlapping roles in the developing nervous system. Previous studies from our laboratory demonstrated that p190B is required for mammary gland morphogenesis, and we hypothesized that p190A might have a distinct role in the developing mammary gland. To test this hypothesis, we examined mammary gland development in p190A-deficient mice. P190A expression was detected by in situ hybridization in the developing E14.5 day embryonic mammary bud and within the ducts, terminal end buds (TEBs), and surrounding stroma of the developing virgin mammary gland. In contrast to previous results with p190B, examination of p190A heterozygous mammary glands demonstrated that p190A deficiency disrupted TEB morphology, but did not significantly delay ductal outgrowth indicating haploinsufficiency for TEB development. To examine the effects of homozygous deletion of p190A, embryonic mammary buds were rescued by transplantation into the cleared fat pads of SCID/Beige mice. Complete loss of p190A function inhibited ductal outgrowth in comparison to wildtype transplants (51% vs. 94% fat pad filled). In addition, the transplantation take rate of p190A deficient whole gland transplants from E18.5 embryos was significantly reduced compared to wildtype transplants (31% vs. 90%, respectively). These results suggest that p190A function in both the epithelium and stroma is required for mammary gland development. Immunostaining for p63 demonstrated that the myoepithelial cell layer is disrupted in the p190A deficient glands, which may result from the defective cell adhesion between the cap and body cell layers detected in the TEBs. The number of estrogen- and progesterone receptor-positive cells, as well as the expression levels of these receptors was increased in p190A deficient outgrowths. These data suggest that p190A is required in both the epithelial and stromal compartments for ductal outgrowth and that it may play a role in mammary epithelial cell differentiation.  相似文献   

3.
Cadherins are transmembrane glycoproteins involved in cell-cell adhesion, signalling, proliferation and differentiation. In this review, we have focused upon in vivo cadherin expression and function in two different biological systems, the mammary gland epithelium and the melanocyte lineage. Development of the mammary gland represents a paradigm of in situ epithelial differentiation and the melanocyte lineage of a model of non-epithelial (or mesenchymal) cell differentiation where cells migrate extensively from their site of origin towards the skin compartment. In the mammary epithelium, the predominantly expressed cadherin is E-cadherin, a cell surface molecule that directs morphogenesis and maintenance of the epithelial structure. In the melanocyte lineage, the expression of a number of cadherins is strictly spatiotemporally regulated during development and adult life. The specific functions mediated by this very dynamic cadherin expression are not yet known and their characterisation represents a challenge for the future.  相似文献   

4.
The mammary gland epithelium comprises two major cell types: basal and luminal. Basal cells interact directly with the extracellular matrix (ECM) and express higher levels of the ECM receptors, integrins, than luminal cells. We show that deletion of beta1 integrin from basal cells abolishes the regenerative potential of the mammary epithelium and affects mammary gland development. The mutant epithelium was characterized by an abnormal ductal branching pattern and aberrant morphogenesis in pregnancy, although at the end of gestation, the secretory alveoli developed from beta1 integrin-positive progenitors. Lack of beta1 integrin altered the orientation of the basal-cell division axis and in mutant epithelium, in contrast to control tissue, the progeny of beta1 integrin-null basal cells, identified by a genetic marker, was found in the luminal compartment. These results reveal, for the first time, the essential role of the basal mammary epithelial cell-ECM interactions mediated by beta1 integrins in the maintenance of a functional stem cell population, mammary morphogenesis and segregation of the two major mammary cell lineages.  相似文献   

5.
6.
The development of the mammary gland is spatially regulated by the interaction of the mammary epithelium with the extracellular matrix (ECM). Cells receive cues from the ECM through a family of adhesion receptors called integrins, consisting of alpha- and beta-chain dimers. Integrins assist cells in sensing their appropriate developmental context in response to both hormones and growth factors. Here we argue that cell adhesion to the ECM plays a key role in specific developmental checkpoints, particularly in alveolar survival, morphogenesis and function. Specific ablation of alphabeta1-integrins in the luminal epithelium of the mammary gland shows that this sub-type of receptors is required for proliferation, accurate morphological organisation, as well as milk secretion. Downstream, small Rho GTPases mediate cellular polarisation and differentiation. Current challenges in studying the integration of signals in checkpoints of mammary gland development are discussed.  相似文献   

7.
The stromal microenvironment regulates mammary gland branching morphogenesis. We have observed that mast cells are present in the mammary gland throughout its postnatal development and, in particular, are found around the terminal end buds and ductal epithelium of the pubertal gland. Mast cells contribute to allergy, inflammatory diseases, and cancer development but have not been implicated in normal development. Genetic and pharmacological disruption of mast cell function in the mammary gland revealed that mast cells are involved in rapid proliferation and normal duct branching during puberty, and this effect is independent of macrophage recruitment, which also regulates mammary gland development. For mast cells to exert their effects on normal morphogenesis required activation of their serine proteases and degranulation. Our observations reveal a novel role for mast cells during normal pubertal development in the mammary gland.  相似文献   

8.
Cadherins are cell adhesion molecules involved in cell-cell adhesion, signalling, and cellular proliferation and differentiation. E-cadherin is required for the formation of epithelium in vivo. We investigated the contribution of the cytoplasmic domain of E-cadherin to adhesion, signalling, and differentiation during murine mammary gland development, by in vivo expression of a gene encoding a truncated form of E-cadherin lacking the extracellular domain. The expression of this gene in mammary epithelial cells during pregnancy induced precocious lobular epithelial morphogenesis associated with morphological differentiation and the early synthesis of various molecules (advanced milk fat globule appearance and milk protein production). After delivery, when a fully differentiated and secretory epithelium is required for lactation, the cytoplasmic domain of E-cadherin had a dominant-negative effect on cell-cell adhesion and affected the structure and function of the epithelium. This also led to the partial loss of epithelial polarisation and changes in the basement membrane, both important in malignancy. Thus, the cytoplasmic domain of E-cadherin induces epithelial morphogenesis, but also alters the cohesiveness of the fully differentiated epithelium.  相似文献   

9.
p190-B Rho GTPase activating protein is essential for mammary gland development because p190-B deficiency prevents ductal morphogenesis. To investigate the role of p190-B during distinct stages of mammary gland development, tetracycline-regulatable p190-B-overexpressing mice were generated. Short-term induction of p190-B in the developing mammary gland results in abnormal terminal end buds (TEBs) that exhibit aberrant budding off the neck, histological anomalies, and a markedly thickened stroma. Overexpression of p190-B throughout postnatal development results in increased branching, delayed ductal elongation, and disorganization of the ductal tree. Interestingly, overexpression of p190-B during pregnancy results in hyperplastic lesions. Several cellular and molecular alterations detected within the aberrant TEBs may contribute to these phenotypes. Signaling through the IGF pathway is altered, and the myoepithelial cell layer is discontinuous at sites of aberrant budding. An increase in collagen and extensive infiltration of macrophages, which have recently been implicated in branching morphogenesis, is observed in the stroma surrounding the p190-B-overexpressing TEBs. We propose that the stromal response, disruption of the myoepithelial layer, and alterations in IGF signaling in the p190-B-overexpressing mice impact the TEB architecture, leading to disorganization and increased branching of the ductal tree. Moreover, we suggest that alterations in tissue architecture and the adjacent stroma as a consequence of p190-B overexpression during pregnancy leads to loss of growth control and the formation of hyperplasia. These data demonstrate that precise control of p190-B Rho GTPase-activating protein activity is critical for normal branching morphogenesis during mammary gland development.  相似文献   

10.
E-cadherin, the primary epithelial adherens junction protein, has been implicated as playing a critical role in nucleating formation of adherens junctions, tight junctions, and desmosomes. In addition to its role in maintaining structural tissue integrity, E-cadherin has also been suggested as an important modulator of cell signaling via interactions with its cytoplasmic binding partners, catenins, as well as with growth factor receptors. Therefore, we proposed that loss of E-cadherin from the developing mouse intestinal epithelium would disrupt intestinal epithelial morphogenesis and function. To test this hypothesis, we used a conditional knockout approach to eliminate E-cadherin specifically in the intestinal epithelium during embryonic development. We found that E-cadherin conditional knockout mice failed to survive, dying within the first 24 hours of birth. Examination of intestinal architecture at E18.5 demonstrated severe disruption to intestinal morphogenesis in animals lacking E-cadherin in the epithelium of the small intestine. We observed changes in epithelial cell shape as well as in the morphology of villi. Although junctional complexes were evident, junctions were abnormal, and barrier function was compromised in E-cadherin mutant intestine. We also identified changes in the epithelial cell populations present in E-cadherin conditional knockout animals. The number of proliferating cells was increased, whereas the number of enterocytes was decreased. Although Wnt/β-catenin target mRNAs were more abundant in mutants compared with controls, the amount of nuclear activated β-catenin protein was dramatically lower in mutants compared with controls. In summary, our data demonstrate that E-cadherin is essential for intestinal epithelial morphogenesis and homeostasis during embryonic development.  相似文献   

11.
p120 loss destabilizes E-cadherin and could therefore result in tumor and/or metastasis-promoting activities similar to those caused by E-cadherin downregulation. Previously, we reported that p120 is essential in the intestine for barrier function, epithelial homeostasis and survival. Conditional p120 ablation in the mouse intestine induced severe inflammatory bowel disease, but long-term cancer-related studies were impossible because none of the animals survived longer than 21 days. Here, we used a tamoxifen-inducible mouse model (Vil-Cre-ER(T2);p120(fl/fl)) to limit the extent of p120 ablation and thereby enable long-term studies. Reducing p120 KO to ~10% of the intestinal epithelium produced long-lived animals outwardly indistinguishable from controls. Effects of prolonged p120 absence were then evaluated at intervals spanning 2 to 18 months. At all time points, immunostaining revealed microdomains of p120-null epithelium interspersed with normal epithelium. Thus, stochastic p120 ablation is compatible with crypt progenitor cell function and permitted lifelong renewal of the p120-null cells. Consistent with previous observations, a barrier defect and frequent infiltration of neutrophils was observed, suggesting that focal p120 loss generates a microenvironment disposed to chronic inflammation. We report that 45% of these animals developed tumors within 18 months of tamoxifen induction. Interestingly, β-catenin was upregulated in the majority, but none of the tumors were p120 null. Although further work is required to directly establish mechanism, we conclude that limited p120 ablation can promote tumorigenesis by an indirect non-cell autonomous mechanism. Given that byproducts of inflammation are known to be highly mutagenic, we suggest that tumorigenesis in this model is ultimately driven by the lifelong inability to heal chronic wounds and the substantially increased rates of stochastic gene mutation in tissue microenvironments subjected to chronic inflammation. Indeed, although technical issues precluded direct identification of mutations, β-catenin upregulation in human colon cancer almost invariably reflects mutations in APC and/or β-catenin.  相似文献   

12.
The tumor suppressor p53 is important for inhibiting the development of breast carcinomas. However, little is known about the effects of increased p53 activity on mammary gland development. Therefore, the effect of p53 dosage on mammary gland development was examined by utilizing the p53+/m mouse, a p53 mutant which exhibits increased wild-type p53 activity, increased tumor resistance, a shortened longevity, and a variety of accelerated aging phenotypes. Here we report that p53+/m virgin mice exhibit a defect in mammary gland ductal morphogenesis. Transplants of mammary epithelium into p53+/m recipient mice demonstrate decreased outgrowth of wild-type and p53+/m donor epithelium, suggesting systemic or stromal alterations in the p53+/m mouse. Supporting these data, p53+/m mice display decreased levels of serum IGF-1 and reduced IGF-1 signaling in virgin glands. The induction of pregnancy or treatment of p53+/m mice with estrogen, progesterone, estrogen and progesterone in combination, or IGF-1 stimulates ductal outgrowth, rescuing the p53+/m mammary phenotype. Serial mammary epithelium transplants demonstrate that p53+/m epithelium exhibits decreased transplant capabilities, suggesting early stem cell exhaustion. These data indicate that appropriate levels of p53 activity are important in regulating mammary gland ductal morphogenesis, in part through regulation of the IGF-1 pathway.  相似文献   

13.
Mammary epithelium is organized as a bilayer with a layer of luminal secretory cells and a layer of basal myoepithelial cells. To dissect the specific functions of these two major compartments of the mammary epithelium in mammary morphogenesis we have used genetically modified mice carrying transgenes or conditional alleles whose expression or ablation were cell-type specific. Basal cells are located in close proximity to mammary stroma and directly interact with the extracellular matrix (basement membrane) during all their lifespan. On the contrary, luminal secretory cells during early stages of the postnatal mammary development have only limited contacts with basement membrane and become exposed to the extracellular matrix only during late developmental stages at the end of pregnancy and in lactation. Consistently perturbation of beta1-integrin function specifically in the luminal layer of the mammary epithelium, did not interfere with mammary morphogenesis until the second part of pregnancy but led to impaired secretory differentiation and lactation. On the contrary, ablation of beta1-integrin gene in the basal mammary epithelial cells resulted in a more precocious phenotype: disorganized branching in young virgin animals and a complete arrest of lobuloalveolar development. Further, a constitutive activation of beta-catenin signaling due to expression of N-terminally truncated (stabilized) beta-catenin specifically in basal myoepithelial cells resulted in accelerated differentiation of luminal secretory cells in pregnancy, precocious postlactational involution, increased angiogenesis and development of mammary tumors. Altogether these data suggest that basal mammary epithelial cells can affect growth and differentiation of luminal secretory cells, have an impact on the epithelium-stroma relationships and, thereby, play an important role in the process of mammary morphogenesis and differentiation.  相似文献   

14.
Eph receptor tyrosine kinases, including EphA2, are expressed in the mammary gland. However, their role in mammary gland development remains poorly understood. Using EphA2-deficient animals, we demonstrate for the first time that EphA2 receptor function is required for mammary epithelial growth and branching morphogenesis. Loss of EphA2 decreased penetration of mammary epithelium into fat pad, reduced epithelial proliferation, and inhibited epithelial branching. These defects appear to be intrinsic to loss of EphA2 in epithelium, as transplantation of EphA2-deficient mammary tissue into wild-type recipient stroma recapitulated these defects. In addition, HGF-induced mammary epithelial branching morphogenesis was significantly reduced in EphA2-deficient cells relative to wild-type cells, which correlated with elevated basal RhoA activity. Moreover, inhibition of ROCK kinase activity in EphA2-deficient mammary epithelium rescued branching defects in primary three-dimensional cultures. These results suggest that EphA2 receptor acts as a positive regulator in mammary gland development, functioning downstream of HGF to regulate branching through inhibition of RhoA. Together, these data demonstrate a positive role for EphA2 during normal mammary epithelial proliferation and branching morphogenesis.  相似文献   

15.
Although the neuropilins were characterized as semaphorin receptors that regulate axon guidance, they also function as vascular endothelial growth factor (VEGF) receptors and contribute to the development of other tissues. Here, we assessed the role of NRP2 in mouse mammary gland development based on our observation that NRP2 is expressed preferentially in the terminal end buds of developing glands. A floxed NRP2 mouse was bred with an MMTV-Cre strain to generate a mammary gland-specific knockout of NRP2. MMTV-Cre;NRP2(loxP/loxP) mice exhibited significant defects in branching morphogenesis and ductal outgrowth compared with either littermate MMTV-Cre;NRP2(+/loxP) or MMTV-Cre mice. Mechanistic insight into this morphological defect was obtained from a mouse mammary cell line in which we observed that VEGF(165), an NRP2 ligand, induces branching morphogenesis in 3D cultures and that branching is dependent upon NRP2 as shown using shRNAs and a function-blocking antibody. Epithelial cells in the mouse mammary gland express VEGF, supporting the hypothesis that this NRP2 ligand contributes to mammary gland morphogenesis. Importantly, we demonstrate that VEGF and NRP2 activate focal adhesion kinase (FAK) and promote FAK-dependent branching morphogenesis in vitro. The significance of this mechanism is substantiated by our finding that FAK activation is diminished significantly in developing MMTV-Cre;NRP2(loxP/loxP) mammary glands compared with control glands. Together, our data reveal a VEGF/NRP2/FAK signaling axis that is important for branching morphogenesis and mammary gland development. In a broader context, our data support an emerging hypothesis that directional outgrowth and branching morphogenesis in a variety of tissues are influenced by signals that were identified initially for their role in axon guidance.  相似文献   

16.
Vitamin D(3) receptor ablation alters mammary gland morphogenesis   总被引:5,自引:0,他引:5  
Postnatal mammary gland morphogenesis is achieved through coordination of signaling networks in both the epithelial and stromal cells of the developing gland. While the major proliferative hormones driving pubertal mammary gland development are estrogen and progesterone, studies in transgenic and knockout mice have successfully identified other steroid and peptide hormones that impact on mammary gland development. The vitamin D(3) receptor (VDR), whose ligand 1,25-dihydroxyvitamin D(3) is the biologically active form of vitamin D(3), has been implicated in control of differentiation, cell cycle and apoptosis of mammary cells in culture, but little is known about the physiological relevance of the vitamin D(3) endocrine system in the developing gland. In these studies, we report the expression of the VDR in epithelial cells of the terminal end bud and subtending ducts, in stromal cells and in a subset of lymphocytes within the lymph node. In the terminal end bud, a distinct gradient of VDR expression is observed, with weak VDR staining in proliferative populations and strong VDR staining in differentiated populations. The role of the VDR in ductal morphogenesis was examined in Vdr knockout mice fed high dietary Ca(2+) which normalizes fertility, serum estrogen and neonatal growth. Our results indicate that mammary glands from virgin Vdr knockout mice are heavier and exhibit enhanced growth, as evidenced by higher numbers of terminal end buds, greater ductal outgrowth and enhanced secondary branch points, compared with glands from age- and weight-matched wild-type mice. In addition, glands from Vdr knockout mice exhibit enhanced growth in response to exogenous estrogen and progesterone, both in vivo and in organ culture, compared with glands from wild-type mice. Our data provide the first in vivo evidence that 1,25-dihydroxyvitamin D(3) and the VDR impact on ductal elongation and branching morphogenesis during pubertal development of the mammary gland. Collectively, these results suggest that the vitamin D(3) signaling pathway participates in negative growth regulation of the mammary gland.  相似文献   

17.
p130Cas adaptor protein regulates basic processes such as cell cycle control, survival and migration. p130Cas over-expression has been related to mammary gland transformation, however the in vivo consequences of p130Cas over-expression during mammary gland morphogenesis are not known. In ex vivo mammary explants from MMTV-p130Cas transgenic mice, we show that p130Cas impairs the functional interplay between Epidermal Growth Factor Receptor (EGFR) and Estrogen Receptor (ER) during mammary gland development. Indeed, we demonstrate that p130Cas over-expression upon the concomitant stimulation with EGF and estrogen (E2) severely impairs mammary morphogenesis giving rise to enlarged multicellular spherical structures with altered architecture and absence of the central lumen. These filled acinar structures are characterized by increased cell survival and proliferation and by a strong activation of Erk1/2 MAPKs and Akt. Interestingly, antagonizing the ER activity is sufficient to re-establish branching morphogenesis and normal Erk1/2 MAPK activity. Overall, these results indicate that high levels of p130Cas expression profoundly affect mammary morphogenesis by altering epithelial architecture, survival and unbalancing Erk1/2 MAPKs activation in response to growth factors and hormones. These results suggest that alteration of morphogenetic pathways due to p130Cas over-expression might prime mammary epithelium to tumorigenesis.  相似文献   

18.
Mammary morphogenesis in the mouse is driven by specialized structures at the ends of the developing ducts, the terminal end buds (TEB). The mechanisms controlling the precise branching and spacing of the ducts are, as yet, unknown. To identify genes that are associated with migration of TEB and differentiation of the subtending ducts, we developed a novel method of isolating TEB and ducts free of stroma, and compared the gene expression profiles of these two isolates using oligonucleotide microarrays. Ninety one genes were upregulated in TEB compared to ducts. Three of these genes, Sprr1A, Sema3B, and BASP1, are associated with axonal growth and guidance. Two additional members of the Sprr family, Sprr2A and 2B, not previously associated with axonal growth, were also highly expressed in TEB. Expression of these genes was confirmed by RT-PCR and Western blotting, and the cellular distribution of Sprr1A and BASP1 was demonstrated by immunohistochemistry. Other semaphorins, including Sema3C, 4A, 4F and the cancer invasion associated Sema 4D were also expressed in the mouse mammary gland along with the semaphorin receptors, Plexins A2, A3, B2, and D1, and Neuropilins 1 and 2. These results are discussed in the context of other proteins expressed in the developing gland that are known to be downstream effectors of these signaling molecules. We suggest that these genes may influence ductal growth and morphogenesis in the developing mammary gland.  相似文献   

19.
Transforming growth factor-beta (TGF-beta) regulates proliferation, morphogenesis, and functional differentiation in the mammary gland and plays complex roles in mammary tumorigenesis. Here we show that the signaling mediators Smad1-Smad5 are expressed at all stages of mammary gland development. To begin to investigate which Smads mediate which TGF-beta responses, we have analyzed mammary gland development in Smad3 null mice. Smad3 null virgin females showed delayed mammary gland development. However, this phenotype was secondary to ovarian insufficiency because Smad3 null mammary epithelium developed normally in hormonally supplemented Smad3 null mice or when transplanted into wild-type hosts. Absence of Smad3 had no effect on the ability of TGF-beta to inhibit the growth of mammary epithelial cells in culture, and no compensatory changes in expression or activation of Smad2 were seen in the Smad3 null epithelium. A small but significant decrease in apoptotic cells was seen in involuting glands from Smad3 null transplants. The results suggest that epithelial Smad3 is dispensable for TGF-beta effects on proliferation and differentiation in the mammary gland, but that it contributes in a nonredundant manner to the induction of apoptosis.  相似文献   

20.
Fibronectin (Fn) plays an important part in the branching morphogenesis of salivary gland, lung, and kidney. Here, we examine the effect of the conditional knockout of Fn in the mammary epithelium [FnMEp−/−] on postnatal mammary gland development, using Cre-loxP-mediated gene knockout technology. Our data show that Fn deletion causes a moderate retardation in outgrowth and branching of the ductal tree in 5-week-old mice. These defects are partially compensated in virgin 16-week-old mice. However, mammary glands consisting of Fn-deficient epithelial cells fail to undergo normal lobuloalveolar differentiation during pregnancy. The severity of lobuloalveolar impairment ranged from lobular hypoplasia to aplasia in some cases and was associated with the amount of Fn protein recovered from these glands. Decreased rates of mammary epithelial cell proliferation accounted for delayed ductal outgrowth in virgin and lack of alveologenesis in pregnant FnMEp−/− mice. Concomitant decreased expression of integrin β1 (Itgb1) and lack of autophosphorylation of focal adhesion kinase (Fak) suggest that this pathology might, at least in part, be mediated by disruption of the Fn/Itgb1/Fak signaling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号