首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Collagen receptor integrins recycle between the plasma membrane and endosomes and facilitate formation and turnover of focal adhesions. In contrast, clustering of α2β1 integrin with antibodies or the human pathogen echovirus 1 (EV1) causes redistribution of α2 integrin to perinuclear multivesicular bodies, α2-MVBs. We show here that the internalized clustered α2 integrin remains in α2-MVBs and is not recycled back to the plasma membrane. Instead, receptor clustering and internalization lead to an accelerated down-regulation of α2β1 integrin compared to the slow turnover of unclustered α2 integrin. EV1 infection or integrin degradation is not associated with proteasomal or autophagosomal processes and shows no significant association with lysosomal pathway. In contrast, degradation is dependent on calpains, such that it is blocked by calpain inhibitors. We show that active calpain is present in α2-MVBs, internalized clustered α2β1 integrin coprecipitates with calpain-1, and calpain enzymes can degrade α2β1 integrin. In conclusion, we identified a novel virus- and clustering-specific pathway that diverts α2β1 integrin from its normal endo/exocytic traffic to a nonrecycling, calpain-dependent degradative endosomal route.  相似文献   

2.
Our previous research found that tetraspanin CD9 is downregulated in migrating epidermis during wound healing, and CD9 downregulation contributes to keratinocyte migration via matrix metalloproteinase-9 (MMP-9) activation. However, little is known about the mechanisms involved in CD9-regulated keratinocyte migration and MMP-9 activation. In this study, we revealed that the expressions of integrin subunits β5 and β6 were regulated by CD9. Furthermore, CD9 silencing triggered the switch from αvβ5 to αvβ6 integrin in HaCaT keratinocytes and CD9 overexpression reversed the switch. Importantly, integrin αvβ6 functional blocking antibody 10D5 significantly inhibited CD9 silencing-induced keratinocyte migration and MMP-9 activation, suggesting that the switch from αvβ5 to αvβ6 integrin plays a key role in CD9-regulated cell migration and MMP-9 activation in keratinocytes.  相似文献   

3.
Mena is an Ena/VASP family actin regulator with roles in cell migration, chemotaxis, cell-cell adhesion, tumor cell invasion, and metastasis. Although enriched in focal adhesions, Mena has no established function within these structures. We find that Mena forms an adhesion-regulated complex with α5β1 integrin, a fibronectin receptor involved in cell adhesion, motility, fibronectin fibrillogenesis, signaling, and growth factor receptor trafficking. Mena bound directly to the carboxy-terminal portion of the α5 cytoplasmic tail via a 91-residue region containing 13 five-residue "LERER" repeats. In fibroblasts, the Mena-α5 complex was required for "outside-in" α5β1 functions, including normal phosphorylation of FAK and paxillin and formation of fibrillar adhesions. It also supported fibrillogenesis and cell spreading and controlled cell migration speed. Thus, fibroblasts require Mena for multiple α5β1-dependent processes involving bidirectional interactions between the extracellular matrix and cytoplasmic focal adhesion proteins.  相似文献   

4.
Previous research within our laboratories identified the 3-hydroxypyrrolidine scaffold 1 as a new and selective integrin α5β1 inhibitor class which was designed for local administration. Herein the discovery of new orally available integrin α5β1 inhibitor scaffolds for potential systemic treatment is described.  相似文献   

5.
Lumican, an extracellular matrix protein of the small leucine-rich proteoglycan family, has been shown to impede melanoma progression by inhibiting cell migration. In the present study, we show that lumican targets α2β1 integrin thereby inhibiting cell migration. A375 melanoma cells were transfected with siRNA directed against the α2 integrin subunit. Compared to A375 control cells, the anti-migratory effect of lumican was abrogated on transfected A375 cells. Moreover, lumican inhibited the chemotactic migration of Chinese hamster ovary (CHO) cells stably transfected with α2 integrin subunit (CHO-A2) but not that of wild-type CHO cells (CHO-WT) lacking this subunit. In contrast to CHO-WT cells, we observed in time-lapse microscopy a decrease of CHO-A2 cell migration speed in presence of lumican. Focal adhesion kinase phosphorylated at tyrosine-397 (pFAK) and total FAK were analysed in CHO-WT and CHO-A2 cells. A significant decrease of the ratio pFAK/FAK was shown in presence of recombinant human lumican. Using solid phase assays, a direct binding between lumican and the α2β1 integrin was demonstrated. This interaction did not involve the glycan moiety of lumican and was cation independent. Lumican was also able to bind the activated I domain of the α2 integrin subunit with a Kd ≥ 200 nM. In conclusion, we demonstrated for the first time that the inhibition of cell migration by lumican depends on a direct binding between the core protein of lumican and the α2β1 integrin.  相似文献   

6.
The basement membrane protein laminin-332 (laminin-5) mediates both stable cell adhesion and rapid cell migration and thus has the potential to either restrain or promote tumor cell metastasis. The major cellular receptors for laminin-332 are integrin α3β1, which mediates rapid tumor cell migration, and integrin α6β4, which often mediates stable cell attachment. Tetraspanin protein CD151 interacts directly with both α3β1 and α6β4 integrins and with other tetraspanins, thereby promoting α3β1 and α6β4 association with tetraspanin-enriched microdomains on the cell surface. To explore the possibility of selectively modulating tumor cell responses to laminin-332, we re-expressed a series of CD151 mutants in epidermoid carcinoma cells with near total, RNAi-mediated silencing of endogenous CD151. The interactions of CD151 with its integrin partners or its interactions with other tetraspanins were selectively disrupted by specific mutations in the CD151 large extracellular loop (EC2 domain) or in intracellular CD151 palmitoylation sites, respectively. CD151-integrin association and CD151-tetraspanin association were both important for α3β1 integrin-dependent initial adhesion and rapid migration on laminin-332. Remarkably, however, only CD151-integrin association was required for stable, α6β4 integrin-dependent cell attachment on laminin-332. In addition, we found that a QRD amino acid motif in the CD151 EC2 domain, which had been thought to be crucial for CD151-integrin interaction, is not essential for CD151-integrin association or for the ability of CD151 to promote several different integrin functions. These new data suggest potential strategies for selectively modulating migratory cell responses to laminin-332, while leaving stable cell attachment on laminin-332 intact.  相似文献   

7.
The alpha7beta1 integrin is a laminin receptor on the surface of skeletal myoblasts and myofibers. Alternative forms of both the alpha7 and beta1 chains are expressed in a developmentally regulated fashion during myogenesis. These different alpha7beta1 isoforms localize at specific sites on myofibers and appear to have distinct functions in skeletal muscle. These functions include the migration and proliferation of developing myoblasts, the formation and integrity of neuromuscular and myotendinous junctions, and the "gluing" together of muscle fibers that is essential to the generation of contractile force. The alpha7beta1 integrin appears to be both directly and indirectly causally related to several muscle diseases. Enhanced expression of alpha7beta1-mediated linkage of the extracellular matrix is seen in Duchenne muscular dystrophy and may compensate for the absence of the dystrophin-mediated linkage. Downregulation of expression of the integrin may contribute to the development of pathology in congenital laminin deficiencies. Mutations in the alpha7 integrin gene underlie additional congenital muscle diseases. The functional roles of this integrin in the formation and stability of the neuromuscular and myotendinous junctions and its localization between fibers suggest that altered expression or function of this integrin may have widespread involvement in other myopathies. The localization of the alpha7 gene at human chromosome 12q13 is a useful clue for focusing such studies.  相似文献   

8.
We report a 3D QSAR study of almost 300 structurally diverse small molecule antagonists of the integrin α4β1 whose biological activity spans six orders of magnitude. The alignment of the molecules was based on the conformation of a structurally related ligand bound to the αIIBβ3 and αvβ3 integrins in X-ray crystallographic studies. The molecular field method, CoMSIA, was used to generate the 3D QSAR models. The resulting models showed that the lipophilic properties were the most important, with hydrogen bond donor and steric properties less relevant. The models were highly significant (r(2)=0.89, q2(LOO)=0.67, r(2) (test set)=0.76), and could make robust predictions of the data (SEE=0.46, SEP=0.78, SEP (test set)=0.66). We predicted the antagonist activities of a further ten compounds with useful accuracy. The model appears capable of predicting α4β1 integrin antagonist activity to within a factor of five for compounds within its domain of applicability. The implications for design of improved integrin antagonists will be discussed.  相似文献   

9.
Integrin adhesion receptors mediate cell-cell and cell-extracellular matrix interactions, which control cell morphology and migration, differentiation, and tissue integrity. Integrins recruit multimolecular adhesion complexes to their cytoplasmic domains, which provide structural and mechanosensitive signaling connections between the extracellular and intracellular milieux. The different functions of specific integrin heterodimers, such as α4β1 and α5β1, have been attributed to distinct signal transduction mechanisms that are initiated by selective recruitment of adhesion complex components to integrin cytoplasmic tails. Here, we report the isolation of ligand-induced adhesion complexes associated with wild-type α4β1 integrin, an activated α4β1 variant in the absence of the α cytoplasmic domain (X4C0), and a chimeric α4β1 variant with α5 leg and cytoplasmic domains (α4Pα5L), and the cataloguing of their proteomes by MS. Using hierarchical clustering and interaction network analyses, we detail the differential recruitment of proteins and highlight enrichment patterns of proteins to distinct adhesion complexes. We identify previously unreported components of integrin adhesion complexes and observe receptor-specific enrichment of molecules with previously reported links to cell migration and cell signaling processes. Furthermore, we demonstrate colocalization of MYO18A with active integrin in migrating cells. These datasets provide a resource for future studies of integrin receptor-specific signaling events.  相似文献   

10.
Integrins are heterodimeric (α and β subunits) signal transducer proteins involved in cell adhesions and migrations. The cytosolic tails of integrins are essential for transmitting bidirectional signaling and also implicated in maintaining the resting states of the receptors. In addition, cytosolic tails of integrins often undergo post-translation modifications like phosphorylation. However, the consequences of phosphorylation on the structures and interactions are not clear. The leukocyte-specific integrin αMβ2 is essential for myeloid cell adhesion, phagocytosis, and degranulation. In this work, we determined solution structures of the myristoylated cytosolic tail of αM and a Ser phosphorylated variant in dodecylphosphocholine micelles by NMR spectroscopy. Furthermore, the interactions between non-phosphorylated and phosphorylated αM tails with β2 tail were investigated by NMR and fluorescence resonance energy transfer (FRET). The three-dimensional structures of the 24-residue cytosolic tail of αM or phosphorylated αM are characterized by an N-terminal amphipathic helix and a loop at the C terminus. The residues at the loop are involved in packing interactions with the hydrophobic face of the helix. 15N-1H heteronuclear single quantum coherence experiments identified residues of αM and β2 tails that may be involved in the formation of a tail-tail heterocomplex. We further examined interactions between myristoylated β2 tail in dodecylphosphocholine micelles with dansylated αM tail peptides by FRET. These studies revealed enhanced interactions between αM or phosphorylated αM tails with β2 tail with Kd values ~5.2±0.6 and ~4.4±0.7 μm, respectively. Docked structures of tail-tail complexes delineated that the αM/β2 interface at the cytosolic region could be sustained by a network of polar interactions, ionic interactions, and/or hydrogen bonds.  相似文献   

11.
We have previously identified and characterised the collagen type II-binding integrin subunit alpha10, which is a member of the beta1 family and is expressed by chondrocytes. In the present study, we examined the expression of the alpha10 integrin in various mouse tissues. Immunohistochemical analysis of alpha10 on cryosections from 3-day-old mice demonstrated that alpha10beta1 was present in the hyaline cartilage of joints, vertebral column, trachea and bronchi. In addition, alpha10 was found in the ossification groove of Ranvier, in the aortic and atrioventricular valves of the heart and in the fibrous tissue lining skeletal muscle and ligaments. Overall, the distribution was distinct from that of the collagen-binding integrins alpha1beta1 and alpha2beta1. We also found that alpha10beta1was the dominating collagen-binding integrin during cartilage development. Expression of alpha10 appeared at embryonic day 11.5 (E11.5) at the same time as chondrogenesis started as judged by collagen type II expression. At E13.5, alpha10 was present throughout the anlage as well as in the perichondrium and in mesenchyme just outside the perichondrium, where it localised with collagen type I. Four weeks after birth, alpha10 was prominent both at the articular surface and in the growth plate. In conclusion, we found that integrin alpha10beta1 was a major collagen-binding integrin during cartilage development and in mature hyaline cartilage. In addition, we found that alpha10beta1 was present in some fibrous tissues.  相似文献   

12.
Recently, a new class of selective integrin α5β1inhibitors consisting of a heterocyclic based scaffold was published. Herein the SAR and pharmacokinetic profiles of N-phenyl piperidine derivatives are described.  相似文献   

13.
A series of potent α4β1/α4β7 integrin inhibitors is reported, including an inhibitor 12d with remarkable oral exposure and efficacy in rat models of rheumatoid arthritis and Crohn’s disease.  相似文献   

14.
The αMβ2 integrin and its role in neutrophil function   总被引:2,自引:0,他引:2  
ZHANGLI 《Cell research》1999,9(3):171-178
Neutrophils are the first cell type to arrive at the injury sites and play a critical role in host defense,by virtue of its ability to adhere and transmigrate through endothelium,to phagocytose foreign pathogens,and to produce free oxygen radicals and proteolytic enzymes.Yet,inappropriate neutrophil activation causes tissue damage and various inflammatory diseases.These physiological and pathological functions of neutrophils depend on the engagement of certain surface receptors,especially αMβ2,the major β2 integrin receptor present on neutrophil surface.Understanding of the molecular mechanisms underlying ligand binding by αMβ2,as well as the rolea of αMβ2ligand interactions in neutrophil functions will enable us to regulate more precisely neutrophil activities:that is,to promote their host defense functions,and at the same time to minimize their deleterious effects of normal cells.  相似文献   

15.
Background information. Previous studies have reported that cross‐talk between integrins may be an important regulator of integrin—ligand binding and subsequent signalling events that control a variety of cell functions in many tissues. We previously demonstrated that αvβ5/β6 integrin represses α2β1‐dependent cell migration. The αv subunits undergo an endoproteolytic cleavage by protein convertases, whose role in tumoral invasion has remained controversial. Results. Inhibition of convertases by the convertase inhibitor α1‐PDX (α1‐antitrypsin Portland variant), leading to the cell‐surface expression of an uncleaved form of the αv integrin, stimulated cell migration toward type I collagen. Under convertase inhibition, α2β1 engagement led to enhanced phosphorylation of both FAK (focal adhesion kinase) and MAPK (mitogen‐activated protein kinase). This outside‐in signalling stimulation was associated with increased levels of activated β1 integrin located in larger than usual focal‐adhesion structures and a cell migration that was independent of the PI3K (phosphoinositide 3‐kinase)/Akt (also called protein kinase B) pathway. Conclusions. The increase in cell migration observed upon convertases inhibition appears to be due to the up‐regulation of β1 integrins and to their location in larger focal‐adhesion structures. The endoproteolytic cleavage of αv subunits is necessary for αvβ5/β6 integrin to control α2β1 function and could thus play an essential role in colon cancer cell migration.  相似文献   

16.

Background

CCN2, (a.k.a. connective tissue growth factor and CTGF) has emerged as a regulator of cell migration. While the importance of CCN2 for the fibrotic process in wound healing has been well studied, the effect of CCN2 on keratinocyte function is not well understood. In this study, we investigated the mechanism behind CCN2-driven keratinocyte adhesion and migration.Materials and methods: Adhesion assays were performed by coating wells with 10 μg/ml fibronectin (FN) or phosphate-buffered saline (PBS). Keratinocytes were seeded in the presence or absence of 200 ng/ml CCN2, 5 mmol/l ethylenediaminetetraacetic acid, 10 mmol/l cations, 500 μl arginine–glycine–aspartic acid (RGD), 500 μM arginine–glycine–glutamate–serine (RGES), and 10 μg/ml anti-integrin blocking antibodies. Migration studies were performed using a modified Boyden chamber assay. Quantitative PCR was used to study the effect of CCN2 on integrin subunit mRNA expression. To block intracellular pathways, keratinocytes were pretreated with 20 μM PD98059 (MEK-1 inhibitor) or 20 μM PF573228 (FAK inhibitor) for 60 min prior the addition of CCN2. Western blot was used to measure CCN2, p-ERK1/2, and ERK1/2.Results: CCN2 enhanced keratinocyte adhesion to fibronectin via integrin α5β1. The addition of anti-integrin α5β1 antibodies reduced CCN2-mediated keratinocyte migration. In addition, CCN2 regulated mRNA and protein expression of integrin subunits α5 and β1. CCN2 activated the FAK-MAPK signaling pathway, and pretreatment with MEK1-specific inhibitor PD98059 markedly reduced CCN2-induced keratinocyte migration.Conclusions: Our results demonstrate that CCN2 enhances keratinocyte adhesion and migration through integrin α5β1 and activation of the FAK-MAPK signaling cascade.  相似文献   

17.
Leukocytes arrested on inflamed endothelium via integrins are subjected to force imparted by flowing blood. How leukocytes respond to this force and resist detachment is poorly understood. Live-cell imaging with Lifeact-transfected U937 cells revealed that force triggers actin polymerization at upstream α4β1 integrin adhesion sites and the adjacent cortical cytoskeleton. Scanning electron microscopy revealed that this culminates in the formation of structures that anchor monocyte adhesion. Inhibition of actin polymerization resulted in cell deformation, displacement, and detachment. Transfection of dominant-negative constructs and inhibition of function or expression revealed key signaling steps required for upstream actin polymerization and adhesion stabilization. These included activation of Rap1, phosphoinositide 3-kinase γ isoform, and Rac but not Cdc42. Thus, rapid signaling and structural adaptations enable leukocytes to stabilize adhesion and resist detachment forces.  相似文献   

18.
Fu BH  Wu ZZ  Qin J 《Molecular biology reports》2011,38(5):3271-3276
In this study, we applied specific blocking antibodies for integrin α6 or β1 subunit, and evaluated the in vitro effects of integrins α6β1 on the adhesion, chemotaxis and migration of hepatocellular carcinoma (HCC) cell line SMMC-7721 to type IV collagen. The adhesion force and cell migration, as measured by a micropipette aspiration system and Boyden chamber assay respectively, was dramatically reduced when either integrin subunits was blocked. The chemotaxis, as determined using a dual-micropipette system, was only affected by the antibody against β1 subunit. This study suggests that integrin α6β1 is an important cell surface receptor that mediates the adhesion of SMMC-7721 to type IV collagen. But the α6 subunit has minimal effect on pseudopod formation in response to type IV collagen. Therefore, the integrin α6β1-mediated cell migration is, at least in part, through the regulation on the cell adhesion step.  相似文献   

19.
A variety of proteins, including tenascin-C and osteopontin, have been identified as ligands for integrin α9β1. However, their affinities for integrin α9β1 are apparently much lower than those of other integrins (e.g. α3β1, α5β1, and α8β1) for their specific ligands, leaving the possibility that physiological ligands for integrin α9β1 still remain unidentified. In this study, we found that polydom (also named SVEP1) mediates cell adhesion in an integrin α9β1-dependent manner and binds directly to recombinant integrin α9β1 with an affinity that far exceeds those of the known ligands. Using a series of recombinant polydom proteins with N-terminal deletions, we mapped the integrin-binding site to the 21st complement control protein domain. Alanine-scanning mutagenesis revealed that the EDDMMEVPY sequence (amino acids 2636-2644) in the 21st complement control protein domain was involved in the binding to integrin α9β1 and that Glu(2641) was the critical acidic residue for the integrin binding. The importance of this sequence was further confirmed by integrin binding inhibition assays using synthetic peptides. Immunohistochemical analyses of mouse embryonic tissues showed that polydom colocalized with integrin α9 in the stomach, intestine, and other organs. Furthermore, in situ integrin α9β1 binding assays using frozen mouse tissues showed that polydom accounts for most, but not all, of the integrin α9β1 ligands in tissues. Taken together, the present findings indicate that polydom is a hitherto unknown ligand for integrin α9β1 that functions as a physiological ligand in vivo.  相似文献   

20.
Integrins may undergo large conformational changes during activation, but the dynamic processes and pathways remain poorly understood. We used molecular dynamics to simulate forced unbending of a complete integrin α(v)β? ectodomain in both unliganded and liganded forms. Pulling the head of the integrin readily induced changes in the integrin from a bent to an extended conformation. Pulling at a cyclic RGD ligand bound to the integrin head also extended the integrin, suggesting that force can activate integrins. Interactions at the interfaces between the hybrid and β tail domains and between the hybrid and epidermal growth factor 4 domains formed the major energy barrier along the unbending pathway, which could be overcome spontaneously in ~1 μs to yield a partially-extended conformation that tended to rebend. By comparison, a fully-extended conformation was stable. A newly-formed coordination between the α(v) Asp457 and the α-genu metal ion might contribute to the stability of the fully-extended conformation. These results reveal the dynamic processes and pathways of integrin conformational changes with atomic details and provide new insights into the structural mechanisms of integrin activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号