首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
Histone chaperones have been implicated in nucleosome assembly and disassembly as well as histone modification. ASF1 is a highly conserved histone H3/H4 chaperone that synergizes in vitro with two other histone chaperones, chromatin assembly factor 1 (CAF-1) and histone repression A factor (HIRA), in DNA synthesis-coupled and DNA synthesis-independent nucleosome assembly. Here, we identify mutants of histones H3.1 and H3.3 that are unable to interact with human ASF1A and ASF1B isoforms but that are still competent to bind CAF-1 and HIRA, respectively. We show that these mutant histones are inefficiently deposited into chromatin in vivo. Furthermore, we found that both ASF1A and ASF1B participate in the DNA synthesis-independent deposition of H3.3 in HeLa cells, thus highlighting an unexpected role for ASF1B in this pathway. This pathway does not require interaction of ASF1 with HIRA. We provide the first direct determination that ASF1A and ASF1B play a role in the efficiency of nucleosome assembly in vivo in human cells.  相似文献   

10.
11.
12.
13.
The histone chaperone Asf1p mediates global chromatin disassembly in vivo   总被引:1,自引:0,他引:1  
The packaging of the eukaryotic genome into chromatin is likely to be mediated by chromatin assembly factors, including histone chaperones. We investigated the function of the histone H3/H4 chaperones anti-silencing function 1 (Asf1p) and chromatin assembly factor 1 (CAF-1) in vivo. Analysis of chromatin structure by accessibility to micrococcal nuclease and DNase I digestion demonstrated that the chromatin from CAF-1 mutant yeast has increased accessibility to these enzymes. In agreement, the supercoiling of the endogenous 2mu plasmid is reduced in yeast lacking CAF-1. These results indicate that CAF-1 mutant yeast globally under-assemble their genome into chromatin, consistent with a role for CAF-1 in chromatin assembly in vivo. By contrast, asf1 mutants globally over-assemble their genome into chromatin, as suggested by decreased accessibility of their chromatin to micrococcal nuclease and DNase I digestion and increased supercoiling of the endogenous 2mu plasmid. Deletion of ASF1 causes a striking loss of acetylation on histone H3 lysine 9, but this is not responsible for the altered chromatin structure in asf1 mutants. These data indicate that Asf1p may have a global role in chromatin disassembly and an unexpected role in histone acetylation in vivo.  相似文献   

14.
15.
16.
Asf1 is a histone chaperone that favors histone H3/H4 assembly and disassembly. We solved the structure of the conserved domain of human ASF1A in complex with the C-terminal helix of histone H3 using nuclear magnetic resonance spectroscopy. This structure is fully compatible with an association of ASF1 with the heterodimeric form of histones H3/H4. In our model, ASF1 substitutes for the second H3/H4 heterodimer that is normally found in heterotetrameric H3/H4 complexes. This result constitutes an essential step in the fundamental understanding of the mechanisms of nucleosome assembly by histone chaperones. Point mutations that perturb the Asf1/histone interface were designed from the structure. The decreased binding affinity of the Asf1-H3/H4 complex correlates with decreased levels of H3-K56 acetylation and phenotypic defects in vivo.  相似文献   

17.
Histone chaperone Asf1 participates in heterochromatin silencing, DNA repair and regulation of gene expression, and promotes the assembly of DNA into chromatin in vitro. To determine the influence of Asf1 on genetic stability, we have analysed the effect of asf1Delta on homologous recombination. In accordance with a defect in nucleosome assembly, asf1Delta leads to a loss of negative supercoiling in plasmids. Importantly, asf1Delta increases spontaneous recombination between inverted DNA sequences. This increase correlates with an accumulation of double-strand breaks (DSBs) as determined by immunodetection of phosphorylated histone H2A and fluorescent detection of Rad52-YFP foci during S and G2/M phases. In addition, asf1Delta shows high levels of sister chromatid exchange (SCE) and is proficient in DSB-induced SCE as determined by physical analysis. Our results suggest that defective chromatin assembly caused by asf1Delta leads to DSBs that can be repaired by SCE, affecting genetic stability.  相似文献   

18.
The mammalian HIRA/UBN1/ASF1a complex is a histone chaperone complex that is conserved from yeast (Saccharomyces cerevisiae) to humans. This complex preferentially deposits the histone variant H3.3 into chromatin in a DNA replication-independent manner and is implicated in diverse chromatin regulatory events from gene activation to heterochromatinization. In yeast, the orthologous complex consists of three Hir proteins (Hir1p, Hir2p, and Hir3p), Hpc2p, and Asf1p. Yeast Hir3p has weak homology to CABIN1, a fourth member of the human complex, suggesting that Hir3p and CABIN1 may be orthologs. Here we show that HIRA and CABIN1 interact at ectopic and endogenous levels of expression in cells, and we isolate the quaternary HIRA/UBN1/CABIN1/ASF1a (HUCA) complex, assembled from recombinant proteins. Mutational analyses support the view that HIRA acts as a scaffold to bring together UBN1, ASF1a, and CABIN1 into a quaternary complex. We show that, like HIRA, UBN1, and ASF1a, CABIN1 is involved in heterochromatinization of the genome of senescent human cells. Moreover, in proliferating cells, HIRA and CABIN1 regulate overlapping sets of genes, and these genes are enriched in the histone variant H3.3. In sum, these data demonstrate that CABIN1 is a functional member of the human HUCA complex and so is the likely ortholog of yeast Hir3p.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号