首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An experimental prototype oil boom including oil sorbents, slow-release fertilizers and biomass of the marine oil-degrading bacterium, Alcanivorax borkumensis , was applied for sorption and degradation of heavy fuel oil in a 500-L mesocosm experiment. Fingerprinting of DNA and small subunit rRNA samples for microbial activity conducted to study the changes in microbial communities of both the water body and on the oil sorbent surface showed the prevalence of A. borkumensis on the surface of the oil sorbent. Growth of this obligate oil-degrading bacterium on immobilized oil coincided with a 30-fold increase in total respiration. A number of DNA and RNA signatures of aromatic hydrocarbon-degrading bacteria were detected both in samples of water body and on oil sorbent. Ultimately, the heavy fuel oil in this mesocosm study was effectively removed from the water body. This is the first study to successfully investigate the fate of oil-degrading microbial consortia in an experimental prototype for a bioremediation strategy in offshore, coastal or ship-bound oil spill mitigation using a combination of mechanical and biotechnological techniques.  相似文献   

2.
两种海洋专性解烃菌降解石油的协同效应   总被引:3,自引:0,他引:3  
【目的】为研究在石油降解过程中海洋专性解烃菌的协同效应。【方法】以食烷菌22CO-6、JZ9B和海杆菌PY97S为实验材料构建石油降解菌群,采用重量法、气相色谱氢火焰离子化检测器、气相色谱质谱联用及棒薄层色谱等多种手段分析、比较降解菌纯培养和降解菌群对原油的降解率及石油降解后产物的多元色谱图。【结果】构建的降解菌群22CO-6+PY97S和JZ9B+PY97S中2种专性解烃菌具有明显的协同效应。与石油烃降解菌22CO-6、JZ9B单菌降解相比,PAHs降解菌PY97S的加入,可以使原油降解率从27.81%、83.52%分别提高到64.03%和86.89%,同时促进石油中烷烃、芳香烃组分包括高分子量多环芳烃chrysene及其衍生物的降解。【结论】在石油降解过程中海洋专性解烃菌之间存在明显的协同效应,不仅可以加快石油降解,还可以彻底降解石油中生态毒性较大的高分子量化合物。  相似文献   

3.
Aims:  To monitor microbial community dynamics in a semi‐industrial‐scale lignocellulosic biofuel reactor system and to improve our understanding of the microbial communities involved in the MixAlco? biomass conversion process. Methods and Results:  Reactor microbial communities were characterized at six time points over the course of an 80‐day, mesophilic, semi‐industrial‐scale fermentation using community qPCR and 16S rRNA tag‐pyrosequencing. We found the communities to be dynamic, bacterially dominated consortia capable of changing quickly in response to reactor conditions. Clostridia‐ and Bacteroidetes‐like organisms dominated the reactor communities, but ultimately the communities established consortia containing complementary functional capacities for the degradation of lignocellulosic materials. Eighteen operational taxonomic units were found to share strong correlations with reactor acid concentration and may represent taxa integral to fermentor performance. Conclusions:  The results of this study indicate that the emergence of complementary functional classes within the fermentor consortia may be a trait that is consistent across scales, and they suggest that there may be flexibility with respect to the specific identities of the organisms involved in the fermentor’s degradation and fermentation processes. Significance and Impact of the Study:  This study provides new information regarding the composition, dynamics and potential flexibility of the microbial communities associated with the MixAlco? process and is likely to inform the improvement of this and other applications that employ mixed microbial communities.  相似文献   

4.
This study investigates the dynamics of protozoan community in biofilms formed on inert artificial surfaces suspended in various freshwater environments. The results also test the hypothesis that the dynamics of protozoan and microalgal communities in biofilms are interdependent because the latter form one of the major food items of benthic protozoa. Cleaned glass slides were suspended in surface waters at four sampling locations to collect biofilm communities. The glass slides after retrieval were observed under a microscope for diatom and protozoan density and their generic composition. Members of protozoa belonging to phylum Sarcomastigophora dominated the protozoan community followed by phylum Ciliophora in all sampling locations. The variation of protozoan feeding groups showed an initial abundance of autotrophs/holophytes which gave way to heterotrophs, predators, and bacterivores towards the end of the study. The density and generic composition of protozoa varied significantly with the age of biofilm and sampling location. The density variation of protozoa followed that of diatoms in all four sampling locations and this has resulted in a significant positive correlation between diatom and protozoan densities. This suggests the dependency and/or food web connectedness of these two communities in natural biofilms.  相似文献   

5.
Sponges occur across diverse marine biomes and host internal microbial communities that can provide critical ecological functions. While strong patterns of host specificity have been observed consistently in sponge microbiomes, the precise ecological relationships between hosts and their symbiotic microbial communities remain to be fully delineated. In the current study, we investigate the relative roles of host population genetics and biogeography in structuring the microbial communities hosted by the excavating sponge Cliona delitrix. A total of 53 samples, previously used to demarcate the population genetic structure of C. delitrix, were selected from two locations in the Caribbean Sea and from eight locations across the reefs of Florida and the Bahamas. Microbial community diversity and composition were measured using Illumina‐based high‐throughput sequencing of the 16S rRNA V4 region and related to host population structure and geographic distribution. Most operational taxonomic units (OTUs) specific to Cliona delitrix microbiomes were rare, while other OTUs were shared with congeneric hosts. Across a large regional scale (>1,000 km), geographic distance was associated with considerable variability of the sponge microbiome, suggesting a distance–decay relationship, but little impact over smaller spatial scales (<300 km) was observed. Host population structure had a moderate effect on the structure of these microbial communities, regardless of geographic distance. These results support the interplay between geographic, environmental, and host factors as forces determining the community structure of microbiomes associated with C. delitrix. Moreover, these data suggest that the mechanisms of host regulation can be observed at the population genetic scale, prior to the onset of speciation.  相似文献   

6.
The leaf surfaces of Tamarix, a salt-secreting desert tree, harbor a diverse community of microbial epiphytes. This ecosystem presents a unique combination of ecological characteristics and imposes a set of extreme stress conditions. The composition of the microbial community along ecological gradients was studied from analyses of microbial richness and diversity in the phyllosphere of three Tamarix species in the Mediterranean and Dead Sea regions in Israel and in two locations in the United States. Over 200,000 sequences of the 16S V6 and 18S V9 hypervariable regions revealed a diverse community, with 788 bacterial and 64 eukaryotic genera but only one archaeal genus. Both geographic location and tree species were determinants of microbial community structures, with the former being more dominant. Tree leaves of all three species in the Mediterranean region were dominated by Halomonas and Halobacteria, whereas trees from the Dead Sea area were dominated by Actinomycetales and Bacillales. Our findings demonstrate that microbial phyllosphere communities on different Tamarix species are highly similar in the same locale, whereas trees of the same species that grow in different climatic regions host distinct microbial communities.  相似文献   

7.
Total of 272 crude oil-degrading bacteria were isolated from seven locations along the coast of Kuwait. The analysis of the 16S rDNA sequences of isolated bacteria revealed the predominance of six bacterial genera: Pseudomonas, Bacillus, Staphylococcus, Acinetobacter, Kocuria and Micrococcus. Investigation of the factors associated with bacterial predominance revealed that, dominant culturable crude oil-degrading bacteria were better crude oil utilizers than the less frequently occurring isolates. Bacterial predominance was also influenced by the ability of bacteria to adapt to the level of organic content available. Predominant culturable bacteria constituted 89.7–54.2% of the total crude oil-degrading bacterial communities. Using 16S-RFLP analyses to assess the diversity of the dominant crude oil-degrading bacterial genera, four phylotypes of Pseudomonas sp. and seven phylotypes of Bacillus sp. were determined. This suggested high degree of diversity of crude oil-degrading bacterial population at the strain level, but low diversity at the genus level.  相似文献   

8.
Summary The potential seeding impact of sea ice microbial communities was studied during late austral winter early spring 1988 in the Weddell Sea, Antarctica. Experiments were performed in seawater aquariums with natural seawater and seawater enriched with crushed ice. Algal, protozoan and bacterial cell numbers were followed, as well as nutrients and DOC levels. The results showed a potential seeding effect of sea ice communities to the water column. However, the type of ice communities differed greatly from each other and the effect of such seeding will be patchy. In our experiments seeding of seawater by ice rich in algae, flagellates and/or particulate organic carbon lead to the development of communities dominated either by diatoms or bacteria.Data presented here were collected during the European Polarstern Study (EPOS) sponsored by the European Science Foundation  相似文献   

9.
Protozoan grazers play an important role in controlling the density of crude-oil degrading marine communities as has been evidenced in a number of microcosm experiments. However, small bioreactors contain a low initial titre of protozoa and the growth of hydrocarbon-depleting bacteria is accompanied by the fast depletion of mineral nutrients and oxygen, which makes microcosms rather unsuitable for simulating the sequence of events after the oil spill in natural seawater environment. In the present study, the population dynamics of marine protozoan community have been analysed in a 500 l mesocosm experiment involving bioaugmented oil booms that contained oil sorbents and slow-release fertilisers. A significant increase in numbers of marine flagellates and ciliates on biofilms of oil-degrading microbes was microscopically observed as early as 8 days after the start of the experiment, when protozoa exhibited a population density peak making up to 3,000 cells ml−1. Further, the protozoan density varied throughout the experiment, but never dropped below 80 cells ml−1. An 18S rRNA gene-based fingerprinting analysis revealed several changes within the eukaryotic community over the whole course of the experiment. Initial growth of flagellates and small ciliates was followed by a predominance of larger protozoa. According to microscopic observations and SSU rRNA molecular analyses, most predominant were the ciliates belonging to Euplotidae and Scuticociliatia. This is the first study to characterise the eukaryotic communities specifically in a large-scale oil bioremediation trial using both microscopy-based and several molecular techniques.  相似文献   

10.
Obligate oil-degrading marine bacteria   总被引:3,自引:0,他引:3  
Over the past few years, a new and ecophysiologically unusual group of marine hydrocarbon-degrading bacteria - the obligate hydrocarbonoclastic bacteria (OHCB) - has been recognized and shown to play a significant role in the biological removal of petroleum hydrocarbons from polluted marine waters. The introduction of oil or oil constituents into seawater leads to successive blooms of a relatively limited number of indigenous marine bacterial genera--Alcanivorax, Marinobacter, Thallassolituus, Cycloclasticus, Oleispira and a few others (the OHCB)--which are present at low or undetectable levels before the polluting event. The types of OHCB that bloom depend on the latitude/temperature, salinity, redox and other prevailing physical-chemical factors. These blooms result in the rapid degradation of many oil constituents, a process that can be accelerated further by supplementation with limiting nutrients. Genome sequencing and functional genomic analysis of Alcanivorax borkumensis, the paradigm of OHCB, has provided significant insights into the genomic basis of the efficiency and versatility of its hydrocarbon utilization, the metabolic routes underlying its special hydrocarbon diet, and its ecological success. These and other studies have revealed the potential of OHCB for multiple biotechnological applications that include not only oil pollution mitigation, but also biopolymer production and biocatalysis.  相似文献   

11.
Aims:  To investigate the feasibility of applying sorbent material X-Oil® in marine oil spill mitigation and to survey the interactions of oil, bacteria and sorbent.
Methods and Results:  In a series of microcosms, 25 different treatments including nutrient amendment, bioaugmentation with Alcanivorax borkumensis and application of sorbent were tested. Microbial community dynamics were analysed by DNA fingerprinting methods, RISA and DGGE. Results of this study showed that the microbial communities in microcosms with highly active biodegradation were strongly selected in favour of A. borkumensis . Oxygen consumption measurements in microcosms and gas chromatography of oil samples indicated the fast and intense depletion of linear alkanes as well as high oxygen consumption within 1 week followed by consequent slower degradation of branched and polyaromatic hydrocarbons.
Conclusion:  Under given conditions, A. borkumensis was an essential organism for biodegradation, dominating the biofilm microbial community formation and was the reason of emulsification.
Significance and Impact of the Study:  This study strongly emphasizes the pivotal importance of A. borkumensis as an essential organism in the initial steps of marine hydrocarbon degradation. Interaction with the sorbent material X-Oil® proved to be neutral to beneficial for biodegradation and also promoted the growth of yet unknown micro-organisms.  相似文献   

12.
In recent works, microbial consortia consisting of various bacteria and fungi exhibited a biodegradation performance superior to single microbial strains. A highly efficient biodegradation of synthetic dyes, polycyclic aromatic hydrocarbons, polychlorinated biphenyls, and other organic pollutants can be achieved by mixed microbial cultures that combine degradative enzyme activities inherent to individual consortium members. This review summarizes biodegradation results obtained with defined microbial cocultures and real microbial consortia. The necessity of using a proper strategy for the microbial consortium development and optimization was clearly demonstrated. Molecular genetic and proteomic techniques have revolutionized the study of microbial communities, and techniques such as the denaturing gradient gel electrophoresis, rRNA sequencing, and metaproteomics have been used to identify consortium members and to study microbial population dynamics. These analyses could help to further enhance and optimize the natural activities of mixed microbial cultures.  相似文献   

13.
Xu M  Chen X  Qiu M  Zeng X  Xu J  Deng D  Sun G  Li X  Guo J 《PloS one》2012,7(1):e30439
Polybrominated diphenyl ethers (PBDEs) can be reductively degraded by microorganisms under anaerobic conditions. However, little is known about the effect of electron donors on microbial communities involved in PBDEs degradation. Here we employed 454 Titanium pyrosequencing to examine the phylogenetic diversity, composition, structure and dynamics of microbial communities from microcosms under the conditions of different electron donor amendments. The community structures in each of the five alternate electron donor enrichments were significantly shifted in comparison with those of the control microcosm. Commonly existing OTUs between the treatment and control consortia increased from 5 to 17 and more than 50% of OTUs increased around 13.7 to 186 times at least in one of the microcosms after 90-days enrichment. Although the microbial communities at different taxonomic levels were significantly changed by different environmental variable groups in redundancy analysis, significant correlations were observed between the microbial communities and PBDE congener profiles. The lesser-brominated PBDE congeners, tri-BDE congener (BDE-32) and hexa-BDE, were identified as the key factors shaping the microbial community structures at OTU level. Some rare populations, including the known dechlorinating bacterium, Dehalobacter, showed significant positive-correlation with the amounts of PBDE congeners in the consortia. The same results were also observed on some unclassified bacteria. These results suggest that PBDEs-degrading microbial communities can be successfully enriched, and their structures and compositions can be manipulated through adjusting the environmental parameters.  相似文献   

14.
Biodegradation of anthropogenic pollutants in shallow aquifers is an important microbial ecosystem service which is mainly brought about by indigenous anaerobic microorganisms. For the management of contaminated sites, risk assessment and control of natural attenuation, the assessment of in situ biodegradation and the underlying microbial processes is essential. The development of novel molecular methods, “omics” approaches, and high-throughput techniques has revealed new insight into complex microbial communities and their functions in anoxic environmental systems. This review summarizes recent advances in the application of molecular methods to study anaerobic microbial communities in contaminated terrestrial subsurface ecosystems. We focus on current approaches to analyze composition, dynamics, and functional diversity of subsurface communities, to link identity to activity and metabolic function, and to identify the ecophysiological role of not yet cultured microbes and syntrophic consortia. We discuss recent molecular surveys of contaminated sites from an ecological viewpoint regarding degrader ecotypes, abiotic factors shaping anaerobic communities, and biotic interactions underpinning the importance of microbial cooperation for microbial ecosystem services such as contaminant degradation.  相似文献   

15.
To study the biodegradability of microbial communities in crude oil contamination, crude oil-contaminated soil samples from different areas of China were collected. Using polyphasic approach, this study explored the dynamic change of the microbial communities during natural accumulation in oil field and how the constructed bioremediation systems reshape the composition of microbial communities. The abundance of oil-degrading microbes was highest when oil content was 3–8%. This oil content is potentially optimal for oil degrading bacteria proliferation. During a ~12 months natural accumulation, the quantity of oil-degrading microbes increased from 105 to 108 cells/g of soil. A typical sample of Liaohe (LH, oil-contaminated site near Liaohe River, Liaoning Province, China) was remediated for 50 days to investigate the dynamic change of microbial communities. The average FDA (a fluorescein diacetate approach) activities reached 0.25 abs/hr·g dry soil in the artificially enhanced repair system, 32% higher than the 0.19 abs/hr·g dry soil in natural circumstances. The abundance of oil-degrading microbes increased steadily from 0.001 to 0.068. During remediation treatment, oil content in the soil sample was reduced from 6.0% to 3.7%. GC–MS analysis indicated up to 67% utilization of C10–C20 normal paraffin hydrocarbons, the typical compounds that undergo microbial degradation.  相似文献   

16.
17.
ABSTRACT: BACKGROUND: The activated sludge process is one of the most widely used methods for treatment of wastewater and the microbial community composition in the sludge is important for the process operation. While the bacterial communities have been characterized in various activated sludge systems little is known about archaeal communities in activated sludge. The diversity and dynamics of the Archaea community in a full-scale activated sludge wastewater treatment plant were investigated by fluorescence in situ hybridization, terminal restriction fragment length polymorphism analysis and cloning and sequencing of 16S rRNA genes. RESULTS: The Archaea community was specialized and dominated by Methanosaeta-like species. During a 15 month period major changes in the community composition were only observed twice despite seasonal variations in environmental and operating conditions. Water temperature appeared to be the process parameter that affected the community composition the most. Several terminal restriction fragments also showed strong correlations with sludge properties and effluent water properties. The Archaea were estimated to make up 1.6-% of total cell numbers in the activated sludge and were present both as single cells and colonies of varying sizes. CONCLUSIONS: The results presented here show that Archaea can constitute a constant and integral part of the activated sludge and that it can therefore be useful to include Archaea in future studies of microbial communities in activated sludge.  相似文献   

18.
A stable and specific bacterial community was shown to be associated with the Mediterranean sponge Chondrilla nucula. The associated bacterial communities were demonstrated to be highly similar for all studied specimens regardless of sampling time and geographical region. In addition, analysis of 16S rDNA clone libraries revealed three constantly C. nucula-associated bacterial phylotypes belonging to the Acidobacteria, the Gamma- and Deltaproteobacteria present in sponge specimens from two Mediterranean regions with distinct water masses (Ligurian Sea and Adriatic Sea). For the first time, candidate division TM7 bacteria were found in marine sponges. A major part (79%) of the C. nucula-derived 16S rDNA sequences were closely related to other sponge-associated bacteria. Phylogenetic analysis identified 14 16S rRNA gene sequence clusters, seven of which consisted of exclusively sponge-derived sequences, whereas the other seven clusters contained additional environmental sequences. This study adds to a growing database on the stability and variability of microbial consortia associated with marine sponges.  相似文献   

19.
The species composition of microbial communities in natural habitats may be extremely complex and therefore a quantitative analysis of the fraction each species contributes to the consortium has proven to be difficult. During recent years, the identification of bacterial pure cultures based on their infrared spectra has been established. Fourier-transform infrared microspectroscopy now proceeds a step further and allows identification of microorganisms directly plated from community dilutions. Infrared spectra of microcolonies of 70-250 microm in diameter can be recorded without producing a pure culture of the isolate. We have applied this novel technique for quantitative comparative analysis of two undefined, geographically separated food-borne smear cheese microbial consortia of limited complexity. Due to the high degree of automation, up to 200 microcolonies could be identified in 1 day and, in total, 3170 infrared spectra of microcolonies were recorded. The results obtained have been verified by Fourier-transform infrared macrospectroscopy and 16S rDNA sequencing. Interestingly, although the communities were unrelated, Staphylococcus equorum, Corynebacterium casei, Arthrobacter casei and Brevibacterium linens were found to be part of both consortia, however, with different incidence. In addition, Corynebacterium variabile, Microbacterium gubbeenense, Brachybacterium alimentarium, Enterococcus faecalis and an unknown species were detected in either one of the consortia.  相似文献   

20.
包括产电菌群和噬电菌群的人工电活性微生物菌群(synthetic electroactive microbial consortia)通过菌种间的物质能量级联反应介导化学能与(光)电能间的相互转化,其可利用底物来源广泛、双向电子传递速率快、环境稳定性强,在清洁电能开发、废水处理、环境修复、生物固碳固氮以及生物燃料、无机纳米材料、高聚物等高值化学品合成等多个领域具有广泛的应用前景。针对人工电活性微生物菌群设计、构建与应用,本文总结电活性微生物菌群界面电子传递和种间电子传递机制,概括基于“劳力分工”原理设计构建人工电活性微生物菌群物质能量级联反应基本架构,总结菌群关系与菌群生态位优化等人工电活性微生物菌群工程化策略,分类列举人工电活性微生物菌群在利用廉价生物质产电、生物光伏固碳产电,光驱噬电生物菌群固氮等相关应用。最后对人工电活性微生物菌群未来研究方向进行了展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号