首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Almost all of the previous studies with growth hormone (GH) have been done with exogenously supplied GH and, therefore, involve actions of the hormone through its receptor. However, the actions of endogenous or lymphocyte GH are still unclear. In a previous study, we showed that overexpression of GH (GHo) in a lymphoid cell line resulted in protection of the cells to apoptosis mediated by nitric oxide (NO). In the present study, we show that the protection from apoptosis could be transferred to control cells with culture fluids obtained from GHo cells and blocked by antibodies to the insulin-like growth factor-1 (IGF-1) or antibodies to the IGF-1-receptor (IGF-1R). Northern and Western blot analysis detected significantly higher levels of IGF-1 in cells overexpressing GH. An increase in the expression of the IGF-1R in GHo cells was also detected by Western blot analysis, (125)I-IGF-1 binding and analysis of IGF-1R promoter luciferase constructs. Transfection of GHo cells with a dominant negative IGF-1R mutant construct blocked the generation of NO and activation of Akt seen in GHo cells compared to vector alone control EL4 cells. The results suggest that one of the consequences of the overexpression of GH, in cells lacking the GH receptor, is an increase in the expression of IGF-1 and the IGF-1R which mediate the protection of EL4 lymphoma cells from apoptosis.  相似文献   

3.
In a search for novel leukocyte chemoattractants at sites of allergic inflammation, we found basophil-selective chemoattractant activity in extracts of human nasal polyps. The extracts were fractionated by reverse phase HPLC, and the resulting fractions were tested for leukocyte-stimulating activity using sensitive shape change assays. The basophil-selective activity detected was not depleted by a poxvirus CC-chemokine-binding protein affinity column. This activity was further purified by HPLC, and proteins in the bioactive fractions were analyzed by tandem electrospray mass spectrometry. Insulin-like growth factor-2 (IGF-2) was identified in these HPLC fractions, and the basophil-stimulating activity was inhibited by an anti-IGF-2-neutralizing Ab. Recombinant IGF-2 induced a substantial shape change response in basophils, but not eosinophils, neutrophils, or monocytes. IGF-2 stimulated chemokinesis of basophils, but not eosinophils or neutrophils, and synergized with eotaxin-1/CCL11 in basophil chemotaxis. IGF-2 also caused up-regulation of basophil CD11b expression and inhibited apoptosis, but did not stimulate degranulation or Ca(2+) flux. Recombinant IGF-1 exhibited similar basophil-selective effects as IGF-2, and both growth factors were detected in nasal polyp extracts by ELISA. This is the first demonstration of chemokinetic factors that increase the motility of basophils, but do not act on other granulocytes or monocytes. IGF-1 and IGF-2 could play a role in the selective recruitment of basophils in vivo.  相似文献   

4.
Oxidative stress promotes endothelial cell senescence and endothelial dysfunction, important early steps in atherogenesis. To investigate potential antioxidant effects of IGF-1 we treated human aortic endothelial cells (hAECs) with 0–100 ng/mL IGF-1 prior to exposure to native or oxidized low-density lipoprotein (oxLDL). IGF-1 dose- and time- dependently reduced basal- and oxLDL-induced ROS generation. IGF-1 did not alter superoxide dismutase or catalase activity but markedly increased activity of glutathione peroxidase (GPX), a crucial antioxidant enzyme, via a phosphoinositide-3 kinase dependent pathway. IGF-1 did not increase GPX1 mRNA levels but increased GPX1 protein levels by 2.6-fold at 24 h, and altered selenocysteine-incorporation complex formation on GPX1 mRNA. Furthermore, IGF-1 blocked hydrogen peroxide induced premature cell senescence in hAECs. In conclusion, IGF-1 upregulates GPX1 expression in hAECs via a translational mechanism, which may play an important role in the ability of IGF-1 to reduce endothelial cell oxidative stress and premature senescence. Our findings have major implications for understanding vasculoprotective effects of IGF-1.  相似文献   

5.
Zinc is an effector of insulin/IGF-1 signaling and has insulinomimetic effects, the molecular basis of which is not understood. The present study establishes the capacity of zinc to inhibit protein tyrosine phosphatases (PTPs) as a cause for these effects and, moreover, demonstrates modulation of the insulin response by changes in intracellular zinc. The inhibition of PTPs by zinc occurs at significantly lower concentrations than previously reported. In vitro, zinc inhibits PTPs 1B and SHP-1 with IC(50) values of 17 and 93 nM, respectively. A fluorescent probe with a similar binding constant [FluoZin-3, K(D)(Zn) = 15 nM] detects corresponding concentrations of zinc within cells. Increase of cellular zinc after incubation with both zinc and the ionophore pyrithione augments protein tyrosine phosphorylation, and in particular the phosphorylation of three activating tyrosine residues of the insulin/IGF-1 receptor. Vice versa, specific chelation of cellular zinc with the membrane-permeable N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine suppresses insulin- and IGF-1-stimulated phosphorylation. In the context of the emerging concept that intracellular zinc is tightly regulated and fluctuates dynamically, these results suggest that a pool of cellular zinc modulates phosphorylation signaling.  相似文献   

6.
7.
8.
9.
Iron is suspected to be involved in the induction and/or progression of various human tumors. The present study was designed to investigate the effects of iron on endothelial cells, keeping in mind that the homeostasis of microvessels plays a critical role in neo-angiogenesis. Applying a model of human dermal microvascular endothelial cell terminal differentiation and death induced by serum deprivation, we found that iron salts (iron chloride and ferric nitrilotriacetate) provided a survival advantage to endothelial cells. Using immunohistochemistry and Western Blot analysis, we found that the extended cellular life span induced by iron was paralleled by an increase of Bcl-2 protein expression. Taken together, these observations suggest that iron may give a survival advantage to endothelial cells and represent a novel mechanism through which iron may contribute to tumorigenesis.  相似文献   

10.
Iron is suspected to be involved in the induction and/or progression of various human tumors. The present study was designed to investigate the effects of iron on endothelial cells, keeping in mind that the homeostasis of microvessels plays a critical role in neo-angiogenesis. Applying a model of human dermal microvascular endothelial cell terminal differentiation and death induced by serum deprivation, we found that iron salts (iron chloride and ferric nitrilotriacetate) provided a survival advantage to endothelial cells. Using immunohistochemistry and Western Blot analysis, we found that the extended cellular life span induced by iron was paralleled by an increase of Bcl-2 protein expression. Taken together, these observations suggest that iron may give a survival advantage to endothelial cells and represent a novel mechanism through which iron may contribute to tumorigenesis.  相似文献   

11.
Cyclin D1 expression is co-regulated by growth factor and cell adhesion signaling. Cell adhesion to the extracellular matrix activates focal adhesion kinase (FAK), which is essential for cyclin D1 expression. Upon the loss of cell adhesion, cyclin D1 expression is downregulated, followed by apoptosis in normal epithelial cells. Since bcl-2 prevents apoptosis induced by the loss of cell adhesion, we hypothesized that bcl-2 induces survival signaling complementary to cell adhesion-mediated gene regulation. In the present study, we investigated the role of bcl-2 on FAK activity and cyclin D1 expression. We found that bcl-2 overexpression induces cyclin D1 expression in human breast epithelial cell line MCF10A independent of cell anchorage. Increased cyclin D1 expression in stable bcl-2 transfectants is not related to bcl-2-increased G1 duration, but results from cyclin D1 promoter activation. Transient transfection studies confirmed anchorage-independent bcl-2 induction of cyclin D1 promoter activity in human breast epithelial cell lines (MCF10A, BT549, and MCF-7). We provide evidence that bcl-2 induction of cyclin D1 expression involves constitutive activation of focal adhesion kinase, regardless of cell adhesion. The present study suggests a potential oncogenic activity for bcl-2 through cyclin D1 induction, and provides an insight into the distinct proliferation-independent pathway leading to increased cyclin D1 expression in breast cancer.  相似文献   

12.
YC Wu  M Zhu  DM Robertson 《PloS one》2012,7(8):e42483

Background

Type I insulin-like growth factor receptor (IGF-1R) and insulin receptor (INSR) are highly homologous molecules, which can heterodimerize to form an IGF-1R/INSR hybrid (Hybrid-R). The presence and biological significance of the Hybrid-R in human corneal epithelium has not yet been established. In addition, while nuclear localization of IGF-1R was recently reported in cancer cells and human corneal epithelial cells, the function and profile of nuclear IGF-1R is unknown. In this study, we characterized the nuclear localization and function of the Hybrid-R and the role of IGF-1/IGF-1R and Hybrid-R signaling in the human corneal epithelium.

Methodology/Principle Findings

IGF-1-mediated signaling and cell growth were examined in a human telomerized corneal epithelial (hTCEpi) cell line using co-immunoprecipitation, immunoblotting and cell proliferation assays. The presence of Hybrid-R in hTCEpi and primary cultured human corneal epithelial cells was confirmed by immunofluorescence and reciprocal immunoprecipitation of whole cell lysates. We found that IGF-1 stimulated Akt and promoted cell growth through IGF-1R activation, which was independent of the Hybrid-R. The presence of Hybrid-R, but not IGF-1R/IGF-1R, was detected in nuclear extracts. Knockdown of INSR by small interfering RNA resulted in depletion of the INSR/INSR and preferential formation of Hybrid-R. Chromatin-immunoprecipitation sequencing assay with anti-IGF-1R or anti-INSR was subsequently performed to identify potential genomic targets responsible for critical homeostatic regulatory pathways.

Conclusion/Significance

In contrast to previous reports on nuclear localized IGF-1R, this is the first report identifying the nuclear localization of Hybrid-R in an epithelial cell line. The identification of a nuclear Hybrid-R and novel genomic targets suggests that IGF-1R traffics to the nucleus as an IGF-1R/INSR heterotetrameric complex to regulate corneal epithelial homeostatic pathways. The development of novel therapeutic strategies designed to target the IGF-1/IGF-1R pathway must take into account the modulatory roles IGF-1R/INSR play in the epithelial cell nucleus.  相似文献   

13.
The basic mechanisms of nerve protection by estrogen remain to be clarified. This study was undertaken to confirm estrogen-induced insulin-like growth factor 1 (IGF-1) mRNA expression in the immortalized rat hippocampal cell H19-7 using a real-time quantitative polymerase chain reaction (PCR) assay, which has considerably increased accuracy and rapidity over other current methods. Upon stimulation by estradiol, the copy number of ER mRNA showed a 1.4-fold increase, and that of IGF-1 mRNA showed a 38.5-fold increase when compared with the control value. ICI182,780 inhibited the estradiol-induced upregulation of ER RNA completely, while it inhibited estradiol-stimulated IGF-1 mRNA expression partially. The increase of the copy number of IGF-1 mRNA was accomanied by enhancement of IGF-1 protein as observed by Western blot analysis.  相似文献   

14.
The imprinted insulin-like growth factor-2 (IGF2) gene is an auto/paracrine growth factor expressed only from the paternal allele in adult tissues. In tissues susceptible to aging-related cancers, including the prostate, a relaxation of IGF2 imprinting is found, suggesting a permissive role for epigenetic alterations in cancer development. To determine whether IGF2 imprinting is altered in cellular aging and senescence, human prostate epithelial and urothelial cells were passaged serially in culture to senescence. Allelic analyses using an IGF2 polymorphism demonstrated a complete conversion of the IGF2 imprint status from monoallelic to biallelic, in which the development of senescence was associated with a 10-fold increase in IGF2 expression. As a mechanism, a 2-fold decrease in the binding of the enhancer-blocking element CCCTC-binding factor (CTCF) within the intergenic IGF2-H19 region was found to underlie this switch to biallelic IGF2 expression in senescent cells. This decrease in CTCF binding was associated with reduced CTCF expression in senescent cells. No de novo increases in methylation at the IGF2 CTCF binding site were seen. The forced down-regulation of CTCF expression using small interfering RNA in imprinted prostate cell lines resulted in an increase in IGF2 expression and a relaxation of imprinting. Our data suggest a novel mechanism for IGF2 imprinting regulation, that is, the reduction of CTCF expression in the control of IGF2 imprinting. We also demonstrate that altered imprinting patterns contribute to changes in gene expression in aging cells.  相似文献   

15.
Mechanical strain of lung tissue is an important stimulus for the production of growth factors that are critical for lung growth and development. However, excessive mechanical strain, as may occur during mechanical ventilation, may produce an increase in growth factors that may contribute to lung injury. We hypothesized that mechanical strain of primary bronchial airway epithelial cells (BAEpCs) induced the production of placental growth factor (PlGF), a member of the VEGF family. BAEpCs were cultured on a deformable silicoelastic membrane and exposed to different magnitudes of stretch. Stretch induced PlGF and nitric oxide (NO) production that increased with increasing magnitude of stretch. Stretch also induced PlGF and inducible NO synthase (iNOS) gene expression. The stretch-induced PlGF production and NO synthesis were attenuated by PD98059, a specific mitogen-activated protein kinase kinase-1 and -2 inhibitor. Inhibition of NO generation by l-NAME or l-NMMA or scavenging NO by carboxy-PTIO prevented stretch-mediated erk1/2 activation. In addition, in unstretched BAEpCs, exogenous NO enhanced erk1/erk2 activation. Our data suggest that mechanical stretch of BAEpCs induces iNOS expression and induces PlGF release in an erk1/2 activation-dependent manner.  相似文献   

16.
胰岛素样生长因子I(IGF I)是属于胰岛素家族的一种多肽。它可促进心脏生长发育 ,增强心脏功能 ,参与心肌肥厚、心力衰竭和心肌细胞凋亡等病理过程。本文对心脏的IGF I来源及其受体、IGF I的心脏效应及可能的机制进行综述。IGF I对心脏疾病 (心肌肥厚、心力衰竭等 )的防治有潜在的临床应用价值。  相似文献   

17.
18.
Human rhinoviruses (HRV) are the most common agent of upper respiratory infections and an important cause of lower respiratory tract symptoms. Our previous research with other viral pathogens has shown that virus-induced airway inflammation and hyperreactivity involve neurotrophic pathways that also affect tropism and severity of the infection. The goals of this study were to analyze systematically the expression of key neurotrophic factors and receptors during HRV-16 infection of human airway epithelial cells and to test the hypothesis that neurotrophins modulate HRV infection by controlling the expression of a major cellular receptor for this virus, the intercellular adhesion molecule 1 (ICAM-1). Neurotrophins and ICAM-1 expression were analyzed at the mRNA level by real-time PCR and at the protein level by flow cytometry and immunocytochemistry. A small inhibitory RNA (siRNA) or a specific blocking antibody was utilized to suppress nerve growth factor (NGF) expression and measure its effects on viral replication and virus-induced cell death. Nasal and bronchial epithelial cells were most susceptible to HRV-16 infection at 33°C and 37°C, respectively, and a significant positive relationship was noted between expression of NGF and tropomyosin-related kinase A (TrkA) and virus copy number. ICAM-1 expression was dose dependently upregulated by exogenous NGF and significantly downregulated by NGF inhibition with corresponding decrease in HRV-16 replication. NGF inhibition also increased apoptotic death of infected cells. Our results suggest that HRV upregulates the NGF-TrkA pathway in airway epithelial cells, which in turn amplifies viral replication by increasing HRV entry via ICAM-1 receptors and by limiting apoptosis.  相似文献   

19.
Yoon SY  Kim KT  Jo SJ  Cho AR  Jeon SI  Choi HD  Kim KH  Park GS  Pack JK  Kwon OS  Park WY 《PloS one》2011,6(12):e28474
Radiofrequency (RF) radiation does not transfer high energy to break the covalent bonds of macromolecules, but these low energy stimuli might be sufficient to induce molecular responses in a specific manner. We monitored the effect of 1,763 MHz RF radiation on cultured human dermal papilla cells (hDPCs) by evaluating changes in the expression of cytokines related to hair growth. The expression of insulin-like growth factor-1 (IGF-1) mRNA in hDPCs was significantly induced upon RF radiation at the specific absorption rate of 10 W/kg, which resulted in increased expression of B-cell chronic lymphocytic leukemia/lymphoma 2 (BCL-2) and cyclin D1 (CCND1) proteins and increased phosphorylation of MAPK1 protein. Exposure to 10 W/kg RF radiation 1 h per day for 7 days significantly enhanced hair shaft elongation in ex vivo hair organ cultures. In RF-exposed follicular matrix keratinocytes in the hair bulb, the expression of Ki-67 was increased, while the signal for terminal deoxynucleotidyl transferase dUTP nick end labeling was reduced. From these results, we suggest that 1,763 MHz RF exposure stimulates hair growth in vitro through the induction of IGF-1 in hDPCs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号