首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Resistance of fully imbibed tomato seeds to very high salinities   总被引:2,自引:0,他引:2  
Abstract Seeds of Lyeopersicon esculentum cv. VF36 (a salt-sensitive cultivar), L. esculentum var. Edkawi (which is fairly salt-resistant), and a wild relative, L. cheesmanii, were exposed to various concentrations of NaCl, up to 460 mol m?3, either directly or following imbibition in non-saline nutrient solution. After 10 d exposure to salt, they were transferred to non-saline solution. All taxa showed some germination at the lowest salinity tested, 92 mol m?3 NaCl, but virtually no germination occurred at 184 mol m?3 NaCl or higher salinities. Within 2 d after removal of the salt stress, however, the seeds of L. esculentum reached control levels of germination, even if they had already been on the verge of germination when the stress was imposed. The seeds of L. cheesmanii were less resistant to NaCl. The physiological basis for the resistance of VF36 seeds is discussed.  相似文献   

2.
The physiological changes induced by a daily increase of NaCl level, over a period of 4 d, were studied in leaves of the salt-sensitive cultivated tomato species Lycopersicon esculentum and its wild salt-tolerant relative Lycopersicon pennellii. A higher solute contribution to the osmotic adjustment was observed in NaCl-treated leaves of L. pennellii than in those of L. esculentum. This response together with the higher accumulation of inorganic solutes in the wild species and of organic solutes in the cultivated species verified the different salt tolerance mechanisms operating in the two species in the short-term. With regard to the changes induced by salt stress on the free polyamine levels, the putrescine and spermine levels increased with salinity, whereas the spermine levels decreased in both tomato species; nevertheless, the main difference between the two species lays in an earlier and greater accumulation of putrescine induced by salinity in L. pennellii than in L. esculentum. The changes in putrescine levels were associated to changes in amino acids related to its synthesis, and the changes were different in both species. In L. esculentum, the high concentrations of some intermediate compounds (glutamate and arginine) were related to the low accumulation rate of both proline and putrescine. In contrast, in L. pennellii, important reductions in glutamate and arginine levels were found at the end of the salinization period. Moreover, in this last situation, a decline in the putrescine level ran parallel to a high proline accumulation, which suggests that the higher the stress level, the higher the deviation of glutamate to proline occurring in the salt tolerant species. It could be concluded that an early accumulation of the diamine putrescine seems to be associated with salt tolerance in the short-term.  相似文献   

3.
Salt tolerance defined in terms of fruit yield under different NaCl concentrations (171.1 and 325.1 mM) is analyzed in 11 lines belonging to: Lycopersicon esculentum, L. cheesmanii, L. chmielewski, L. peruvianum and L. pimpinellifolium. Four L. pimpinellifolium lines and two L. cheesmanii lines tolerated the 171.1mM treatment; the latter species even tolerates 325.1 mM of NaCl. Changes in gene expression induced by salt treatment were also investigated by studying anther and leaf zymograms for L. esculentum and one salt-tolerant L. pimpinellifolium line, and leaf proteinograms for all lines. Changes in leaf PRX and MDH enzymatic systems were detected, mainly in the salt-sensitive genotype (L. esculentum). Four saltrelated peptides from 14 500 to 40 000 daltons were found. A polyclonal antibody raised against one of these peptides (number 2), also binds another peptide, named 2, of much higher molecular weight, present both in control and salt-tolerant L. cheesmanii lines at the end of 171.1 mM treatment. The xero-halophyte shrub Atriplex halimus also showed a likely 2-homologous peptide with this treatment, while its counterpart C3 species A. triangularis did not.  相似文献   

4.
Wrona AF  Epstein E 《Plant physiology》1985,79(4):1064-1067
Excised roots of the tomato species, Lycopersicon esculentum Mill. cv Walter (the commercial species) and of Lycopersicon cheesmanii ssp. minor (Hook.) C.H. Mull. (a wild species from the Galapagos Islands), were used in comparative studies of their absorption of K+ and Na+. Uptake of 86Rb-labeled K+ and 22Na-labeled Na+ by excised roots of `Walter' and L. cheesmanii varied as a function of genotype and tissue pretreatment with or without K+. Excised roots of `Walter' consistently absorbed more 86Rb-labeled K+ than those of L. cheesmanii. Absorption of K+ from solutions ranging from 0.01 to 0.2 millimolar KCl showed saturation kinetics in both K+-pretreated and K+-depleted roots of `Walter,' and for K+-depleted roots of L. cheesmanii. K+-pretreated roots of L. cheesmanii had exceedingly low rates of K+ uptake with strikingly different, linear kinetics. Pretreatment with K+ caused a decrease in rates of K+ uptake in both genotypes. Potassium depleted roots of L. cheesmanii absorbed Na+ at a greater rate than those of `Walter,' whereas K+-pretreated roots of `Walter' absorbed Na+ at a greater rate than those of L. cheesmanii. The results confirm and extend previous conclusions to the effect that closely related genotypes may exhibit widely different responses to the two alkali cations, K+ and Na+.  相似文献   

5.
6.
Inositol and sugars in adaptation of tomato to salt   总被引:3,自引:1,他引:2       下载免费PDF全文
Tomato (Lycopersicon esculentum Mill. cv New Yorker) plants subjected to 100 millimolar NaCl plus Hoagland nutrients exhibited a pattern of wilting, recovery of turgor, and finally recovery of growth at a reduced level, which required 3 days. During the nongrowing, adaptation phase there were immediate increases in free hexoses and sucrose which declined to near control levels as growth resumed. There was a steady increase in myo-inositol content which reached its maximal level at the time of growth resumption. The myo-inositol level then remained elevated for the remainder of the experiment. Myo-inositol constituted two-thirds of the soluble carbohydrate in leaves and three-fourths of the soluble carbohydrate in roots of salt-adapted plants. Plants which were alternated daily between salt and control solutions accumulated less myo-inositol and exhibited less growth than the continuously salt-treated plants. In L. pennellii and in salt-tolerant and salt-sensitive breeding lines selected from L. esculentum × L. pennellii BC(1) and F(8), myo-inositol content was highest in the most tolerant genotypes, intermediate in the normal cultivar, and lowest in the sensitive genotype after treatment with salt.  相似文献   

7.
Naturally adapted salt tolerant populations provide a valuable material for exploring the adaptive components of salt tolerance. Under this aspect, two populations of Cynodon dactylon (L.) Pers. were subjected to salt stress in hydroponics. One was collected from a heavily salt-affected soil in the vicinity of a natural salt lake, Uchhali Lake, in the Salt Range of the Punjab province of Pakistan, and the other from a normal non-saline habitat from the Faisalabad region. The NaCl treatments in Hoagland's nutrient solution were: Control (no salt), 50, 100, 150 and 200 mM of NaCl. After 8 weeks of growth in hydroponics produced biomass, ion relations, and photosynthetic capacity were measured in the differently adapted ecotypes. In the ecotype of C. dactylon from the Salt Range, shoot dry weight was only slightly affected by varying levels of salt. However, in contrast, its root weight was markedly increased. On the other hand, the ecotype from Faisalabad (non-saline habitat) showed a marked decrease in shoot and root dry weights under saline regimes. The ecotype from the Salt Range accumulated relatively less amount of Na+ in the shoot than did that from Faisalabad, particularly at higher salt levels. Shoot or root K+ and Ca2+ contents varied inconsistently in both ecotypes under salt stress. All the photosynthetic parameters, leaf water potential and osmotic potential, and chlorophyll content in both ecotypes were adversely affected by salt stress, but all these physiological attributes except turgor potential and soluble sugars were less affected at high salinities in the salt tolerant ecotype from Salt Range. This ecotype accumulated significantly higher organic osmotica (total free amino acids, proline, total soluble proteins, and total soluble sugars) under saline conditions than its intolerant counterpart. Overall, the salt tolerant ecotype of C. dactylon from the Salt Range showed high salt tolerance due to its restricted uptake of Na+ accompanied by an increased uptake of K+ and Ca2+ in the roots as well as shoot due to its higher photosynthetic capacity and accumulation of organic osmotica such as free amino acids and proline under saline conditions.  相似文献   

8.
Nitric oxide (NO) has emerged as a key molecule involved in many physiological events in plants. To characterize roles of NO in tolerance of tomato (Lycopersicom esculentum Mill.) to salt stress, the protective effects of NO against salt-induced oxidative stress in the leaves of tomato cultivar Hufan1480 (salt-tolerant) and Hufan2496 (salt-sensitive) were evaluated. Under salt stress, Hufan1480 showed higher biomass accumulation, and less oxidative damage when compared with the Hufan2496. Application of exogenous sodium nitroprusside, a NO donor, dramatically alleviated growth suppression induced by salt stress in two tomato ecotypes, reflected by decreased malondialdehyde and O2·− production. Furthermore, the antioxidant enzymes superoxide dismutase, guaiacol peroxidase, catalase and ascorbate peroxidase, the antioxidant metabolites ascorbate and reduced glutathione, and the osmosis molecules proline and soluble sugar were increased in both ecotypes in the presence of NO under salt stress. Therefore, the protective effect of NO against salt-induced oxidative damages in tomato seedlings is most likely mediated through stimulation of antioxidant system.  相似文献   

9.
Saline soils are becoming an important limiting factor in production agriculture. Soybean cultivars [Glycine max (L.) Merr.] differ in their ability to tolerate salt stress with those that cannot limit ion uptake into leaves being salt sensitive. Those that can partially limit ion uptake into leaves are generally more salt tolerant. Soybean mosaic virus (SMV) is an important viral pathogen of soybean worldwide and is commonly transmitted by the soybean aphid, Aphis glycines Matsumura. In this study, we investigate the interaction of salt stress in soybean with SMV infection and infestation by the soybean aphid by measuring aphid populations in a no-choice assay, gene expression levels, and the induction of volatile organic compounds using static headspace GC–MS analysis. Salt stress and SMV infection both reduced total aphid populations, though SMV did not reduce the total number of aphids per gram of fresh weight. Aphid suppression of a calcium EF hand gene and OPR1 was lost when salt-sensitive soybean plants were salt stressed and when salt-tolerant plants were subjected to all three stressors. The relative levels of SMV in aphid-infested soybeans were increased by salt stress in the salt-sensitive cultivar, whereas SMV levels decreased in the salt-tolerant cultivar. Static headspace collection of volatile organic compounds revealed that salt stress and SMV infection had suppressive activities on aphid-induced terpenes. These results suggest that although salt stress has a negative impact on aphid population size, the changes in volatiles and SMV levels could alter the incidence of SMV in salt-stressed fields.  相似文献   

10.
Rush DW  Epstein E 《Plant physiology》1981,68(6):1308-1313
In long-term experiments with differentially salinized nutrient solutions, plants of Lycopersicon esculentum Mill cv. Walter failed at Na+ concentrations of 200 millimolar or more but tolerated K+ concentrations of that magnitude. The behavior of the wild, salt-tolerant Lycopersicon cheesmanii (Hook) C. H. Mull., accession number 1401, was diametrically different; it tolerated Na+ at 200 millimolar, but K+ at the same concentration proved toxic to it.  相似文献   

11.
The natural capacity of plants to endure salt stress is largely regulated by multifaceted structural and physio-biochemical modulations. Salt toxicity endurance mechanism of six ecotypes of Typha domingensis Pers. was evaluated by analyzing photosynthesis, ionic homeostasis, and stomatal physiology under different levels of salinity (0, 100, 200 and 300 mM NaCl). Typha populations were collected across different areas of Punjab, an eastern province in Pakistan. All studied attributes among ecotypes presented differential changes as compared to control. Different salt treatments not only affected gas exchange attributes but also shown significant modifications in stomatal anatomical changes. As compared to control, net photosynthetic rate, transpiration rate, total chlorophyll contents and carotenoids were increased by 111%, 64%, 103% and 171% respectively, in Sahianwala ecotype among all other ecotypes. Similarly, maximum water use efficiency (WUE), sub stomatal CO2 concentration, sodium (Na+) and chloride (Cl) contents were observed in Sahianwala (191%, 93%, 168%, 158%) and Knotti (162%, 75%, 146%, 182%) respectively, as compared to the others ecotypes. Adaxial and abaxial stomatal areas remained stable in Sahianwala and Knotti. The highest abaxial stomatal density was observed in Gatwala ecotype (42 mm2) and maximum adaxial stomatal density was recorded in Sahianwala ecotype (43 mm2) at 300 mM NaCl salinity. The current study showed that Typha ecotypes responded varyingly to salinity in terms of photosynthesis attributes to avoid damages due to salinity. Overall, differential photosynthetic activity, WUE, and changes in stomatal attributes of Sahianwala and Knotti ecotypes contributed more prominently in tolerating salinity stress. Therefore, Typha domingensis is a potential species to be used to rehabilitate salt affected lands for agriculture and aquatic habitat.Supplementary InformationThe online version contains supplementary material available at 10.1007/s12298-021-00963-x.  相似文献   

12.
Summary Genetic diversity has to be described and measured in order to establish breeding strategies and manage genetic resources. It is also fundamental to develop a comparative intraspecific study before attempting to discuss and conclude any phylogenetic relationship. The genetic variability of Lycopersicon species was studied using starch gel electrophoresis of 11 enzymatic systems in a hierarchical fashion. The species with the greatest genetic variability are L. chilense, L. peruvianum and L. pennellii, mainly due to the within-line component. L. chmielewskii, L. parviflorum and L. pimpinellifolium show an intermediate total variability and their between-component clearly predominates over the within-component. The least variable species are L. cheesmanii and L. esculentum. Cluster analysis resulted in three main groups: one formed by the cultigen, L. pimpinellifolium, L. cheesmanii and L. peruvianum;another by two species with self-incompatibility systems, L. pennelli and L. chilense; and another by two autogamous species L. chmielewskii and L. parviflorum. With respect to L. esculentum the farthest related species is Solanum rickii and the closest, L. pimpinellifolium.  相似文献   

13.
The fungal pathogen Alternaria alternata f. sp. lycopersici produces AAL-toxins that function as chemical determinants of the Alternaria stem canker disease in the tomato (Lycopersicon esculentum). In resistant cultivars, the disease is controlled by the Asc locus on chromosome 3. Our aim was to characterize novel sources of resistance to the fungus and of insensitivity to the host-selective AAL-toxins. To that end, the degree of sensitivity of wild tomato species to AAL-toxins was analyzed. Of all members of the genus Lycopersicon, only L. cheesmanii was revealed to be sensitive to AAL-toxins and susceptible to fungal infection. Besides moderately insensitive responses from some species, L. pennellii and L. peruvianum were shown to be highly insensitive to AAL-toxins as well as resistant to the pathogen. Genetic analyses showed that high insensitivity to AAL-toxins from L. pennellii is inherited in tomato as a single complete dominant locus. This is in contrast to the incomplete dominance of insensitivity to AAL-toxins of L. esculentum. Subsequent classical genetics, RFLP mapping and allelic testing indicated that high insensitivity to AAL-toxins from L. pennellii is conferred by a new allele of the Asc locus.  相似文献   

14.
The genus Lotus comprises a heterogeneous group of annual and perennial species. Lotus japonicus (with MG20 and Gifu ecotypes) has been adopted as one of the model legumes in genetic and genomic studies. Other Lotus species, such us Lotus burttii and Lotus filicaulis, have also been used in genetic and genomic studies because of their capacity to produce fertile progenies in crosses with L. japonicus. In the present work, physiological responses to salt stress in four Lotus genotypes were evaluated on the basis of growth and associated parameters, such as photosynthesis, ions, relative water content, oxidative damage and antioxidant system responses, using two NaCl levels applied by acclimation for up to 28 and 60 d. Growth responses varied with plant developmental stage in the four Lotus genotypes. L. japonicus MG20 was found to be a salt-tolerant genotype, mainly when exposed to salt stress at the young plant stage. The capacity of Lj MG20 to sustain growth under salt stress was correlated with enhancement of Superoxide dismutase and Glutathione reductase activities, as well as with increases in total and reduced glutathione content and lower Na+ accumulation in leaves. These results suggest that enhancement of antioxidant responses in Lj MG20 contributed to improve salt stress tolerance at early stages. On the other hand, after long-term high NaCl stress treatment, L. filicaulis exhibited lower biomass reduction, lower oxidative damage and Na+ accumulation in leaves than the control treatment; hence, this genotype was considered salt-tolerant. These apparently ambiguous results remark that salt tolerance, as a development-related process, was differentially expressed among the Lotus genotypes and depended on stress duration and plant phenological stage.  相似文献   

15.
Switchgrass (Panicum virgatum L.) is an important crop for bioenergy feedstock development. Switchgrass has two main ecotypes: the lowland ecotype being exclusively tetraploid (2n = 4x = 36) and the upland ecotype being mainly tetraploid and octaploid (2n = 8x = 72). Because there is a significant difference in ploidy, morphology, growth pattern, and zone of adaptation between and within the upland and lowland ecotypes, it is important to discriminate switchgrass plants belonging to different genetic pools. We used 55 simple sequence repeats (SSR) loci and six chloroplast sequences to identify patterns of variation between and within 18 switchgrass cultivars representing seven lowland and 11 upland cultivars from different geographic regions and of varying ploidy levels. We report consistent discrimination of switchgrass cultivars into ecotype membership and demonstrate unambiguous molecular differentiation among switchgrass ploidy levels using genetic markers. Also, SSR and chloroplast markers identified genetic pools related to the geographic origin of the 18 cultivars with respect to ecotype, ploidy, and geographical, and cultivar sources. SSR loci were highly informative for cultivar fingerprinting and to classify plants of unknown origin. This classification system is the first step toward developing switchgrass complementary gene pools that can be expected to provide a significant heterotic increase in biomass yield.  相似文献   

16.
生态型多样性对存在盐分胁迫和不存在盐分胁迫下浮萍生长的重要性 淡水生态系统受到的污染正在威胁着全世界淡水植物物种的多样性。浮萍(Lemna minor)等淡水植物对新出现的逆境条件具有潜在的敏感性。为了测试生态型的多样性是否可以增强这类植物对逆境的抗性,本研究使用了7个浮萍种群,并沿着一个生态型多样性梯度对存在和不存在中度盐分胁迫时的种群生长速率进行了测量。这些浮萍种群在92个实验围隔中生长了5个月,其中有生态型单一栽培,也有在5或3个同种生态型(23种独特组合)中混合栽培。在无扰条件下生长一段时间(阶段1)后,这些浮萍栽培物将被置于中等盐分胁迫(50 mmol/L NaCl)条件下数周时间(阶段2)。实验进行时存在着与不同生态型伴生的天然表观微生物群落(epimicrobial community)。在阶段2中,这些藻类的一部分受到了随机二次胁迫。这些生态型表现出了不同的生长速率,其中最快的生长速率是其它生态型的两倍。多样性的环境进一步影响了生态型的生长速率,生态型混合栽培的植株在实验结束时具有更高的丰度,因此,随着时间的推移,环境逐渐恶化,生态型的多样性也将变得更为重要。上述研究结果表明,种内生长速率的差异体现了生态型多样性对种群丰度的正向影响。在中等盐度水平下的暴露并未显著影响浮萍的生长速率,尽管这种效应可能被盐性环境中更小的藻类压力所掩盖。  相似文献   

17.
Recombinant inbred lines for genetic mapping in tomato   总被引:11,自引:5,他引:6  
A cross between the cultivated tomato Lycopersicon esculentum and a related wild species L. cheesmanii yielded 97 recombinant inbred lines (RILs) which were used to construct a genetic map consisting of 132 molecular markers. Significant deviation from the expected 1:1 ratio between the two homozygous classes was found in 73% of the markers. In 98% of the deviating markers, L. esculentum alleles were present in greater frequency than the L. cheesmanii alleles. For most of the markers with skewed segregation, the direction of the deviation was maintained from F2 to F7 generations. The average heterozygosity in the population was 15%. This value is significantly greater than the 1.5% heterozygosity expected for RILs in the F7 generation. On average, recombination between linked markers was twice as high in the RILs than in the F2 population used to derive them. The utility of RILs for the mapping of qualitative and quantitative traits is discussed.  相似文献   

18.
Fifteen genotypes of faba bean (Vicia faba L.) were inoculated with salt-tolerant Rhizobium leguminosarum biovar. viciae strain GRA 19 in solution culture with 0 (control) and 75 mM NaCl added immediately after transplanting. Genotypes varied in their tolerance of high levels of NaCl. Physiological parameters (dry weight of shoot and root, number and dry weight of nodules) were not affected by salinity in lines VF46, VF64 and VF112. Faba bean line VF60 was sensitive to salt stress. Host tolearance appeared to be a major requisite for nodulation and N2 fixation under salt stress. Tolerant line VF112 sustained nitrogen fixation under saline conditions. Activity of the ammonium assimilation enzymes glutamine synthetase and glutamate synthase, and soluble protein content, were reduced by salinity in all genotypes tested. Evidence presented here suggests a need to select faba bean genotypes that are tolerant to salt stress.Abbreviations ARA acetylene reduction activity - NADH-GOGAT NADH-dependent glutamate synthase - GS glutamine synthetase  相似文献   

19.
We investigated the effects of silicon (Si) on time-dependent changes in root tonoplast H+-ATPase and H+-PPase activities, membrane fatty acid compositions and tonoplast fluidity in two barley (Hordeum vulgare L.) cultivars differing in salt tolerance. Plants were grown in NaCl-free (control) and NaCl-supplied (60 and 120 mM, respectively) nutrient solutions with or without 1.0 mM Si. Plant roots were harvested to isolate tonoplast vesicles for assay of H+-ATPase and H+-PPase activities at days 2, 4, and 6 after treatment in the first experiment and for analysis of membrane fatty acid composition and fluidity at day 4 after treatment in the second experiment. The results showed that tonoplast H+-ATPase and H+-PPase activities in roots of salt-treated plants increased at day 2, which was more obvious at 60 mM NaCl in the salt-tolerant cultivar than in the salt-sensitive cultivar, and then decreased at day 4 and onward. These enzyme activities decreased consistently from days 2 to 6 for treatment with 120 mM NaCl. However, inclusion of 1.0 mM Si significantly enhanced both H+-ATPase and H+-PPase activities in roots of salt stressed barley, which was irrespective of NaCl level or cultivar used. The ratio of unsaturated to saturated fatty acids (U/S) increased under salt stress for both cultivars. Addition of Si to salt treatment increased the ratio of U/S in salt-tolerant cultivar but it did not in salt-sensitive cultivar compared to non-Si-amended salt treatment. Salt treatment decreased tonoplast fluidity of roots of barley significantly compared with control treatment. However, root tonoplast fluidity was significantly lower in the Si-amended salt treatment than in the non-Si-amended salt treatment. These results were in line with the previous findings that Si could help increase antioxidative defense and reduce membrane lipid oxidative damage in barley under salt stress. The possible mechanisms involved in Si-enhanced salt tolerance were discussed with respect to cell membrane integrity, stability and function in barley.  相似文献   

20.

Background and Aims

Despite concerns about the impact of rising sea levels and storm surge events on coastal ecosystems, there is remarkably little information on the response of terrestrial coastal plant species to seawater inundation. The aim of this study was to elucidate responses of a glycophyte (white clover, Trifolium repens) to short-duration soil flooding by seawater and recovery following leaching of salts.

Methods

Using plants cultivated from parent ecotypes collected from a natural soil salinity gradient, the impact of short-duration seawater soil flooding (8 or 24 h) on short-term changes in leaf salt ion and organic solute concentrations was examined, together with longer term impacts on plant growth (stolon elongation) and flowering.

Key Results

There was substantial Cl and Na+ accumulation in leaves, especially for plants subjected to 24 h soil flooding with seawater, but no consistent variation linked to parent plant provenance. Proline and sucrose concentrations also increased in plants following seawater flooding of the soil. Plant growth and flowering were reduced by longer soil immersion times (seawater flooding followed by drainage and freshwater inputs), but plants originating from more saline soil responded less negatively than those from lower salinity soil.

Conclusions

The accumulation of proline and sucrose indicates a potential for solute accumulation as a response to the osmotic imbalance caused by salt ions, while variation in growth and flowering responses between ecotypes points to a natural adaptive capacity for tolerance of short-duration seawater soil flooding in T. repens. Consequently, it is suggested that selection for tolerant ecotypes is possible should the predicted increase in frequency of storm surge flooding events occur.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号