共查询到20条相似文献,搜索用时 15 毫秒
1.
Ca2+ controls biological processes by interacting with proteins with different affinities, which are largely influenced by the electrostatic interaction from the local negatively charged ligand residues in the coordination sphere. We have developed a general strategy for rationally designing stable Ca2+- and Ln3+-binding proteins that retain the native folding of the host protein. Domain 1 of cluster differentiation 2 (CD2) is the host for the two designed proteins in this study. We investigate the effect of local charge on Ca2+-binding affinity based on the folding properties and metal-binding affinities of the two proteins that have similarly located Ca2+-binding sites with two shared ligand positions. While mutation and Ca2+ binding do not alter the native structure of the protein, Ca2+ binding specifically induced changes around the designed Ca2+-binding site. The designed protein with a -5 charge at the binding sphere displays a 14-, 20-, and 12-fold increase in the binding affinity for Ca2+, Tb3+, and La3+, respectively, compared to the designed protein with a -3 charge, which suggests that higher local charges are preferred for both Ca2+ and Ln3+ binding. The localized charged residues significantly decrease the thermal stability of the designed protein with a -5 charge, which has a T(m) of 41 degrees C. Wild-type CD2 has a T(m) of 61 degrees C, which is similar to the designed protein with a -3 charge. This decrease is partially restored by Ca2+ binding. The effect on the protein stability is modulated by the environment and the secondary structure locations of the charged mutations. Our study demonstrates the capability and power of protein design in unveiling key determinants to Ca2+-binding affinity without the complexities of the global conformational changes, cooperativity, and multibinding process found in most natural Ca2+-binding proteins. 相似文献
2.
Occurrence and accommodation of charged amino acid residues in proteins that are structurally equivalent to buried non-polar residues in homologues have been investigated. Using a dataset of 1,852 homologous pairs of crystal structures of proteins available at 2A or better resolution, 14,024 examples of apolar residues in the structurally conserved regions replaced by charged residues in homologues have been identified. Out of 2,530 cases of buried apolar residues, 1,677 of the equivalent charged residues in homologues are exposed and the rest of the charged residues are buried. These drastic substitutions are most often observed in homologous protein pairs with low sequence identity (<30%) and in large protein domains (>300 residues). Such buried charged residues in the large proteins are often located in the interface of sub-domains or in the interface of structural repeats, Beyond 7A of residue depth of buried apolar residues, or less than 4% of solvent accessibility, almost all the substituting charged residues are buried. It is also observed that acidic sidechains have higher preference to get buried than the positively charged residues. There is a preference for buried charged residues to get accommodated in the interior by forming hydrogen bonds with another sidechain than the main chain. The sidechains interacting with a buried charged residue are most often located in the structurally conserved regions of the alignment. About 50% of the observations involving hydrogen bond between buried charged sidechain and another sidechain correspond to salt bridges. Among the buried charged residues interacting with the main chain, positively charged sidechains form hydrogen bonds commonly with main chain carbonyls while the negatively charged residues are accommodated by hydrogen bonding with the main chain amides. These carbonyls and amides are usually located in the loops that are structurally variable among homologous proteins. 相似文献
3.
Derewenda ZS 《Structure (London, England : 1993)》2004,12(4):529-535
Protein crystallization constitutes a limiting step in structure determination by X-ray diffraction. Even if single crystals are available, inadequate physical quality may seriously limit the resolution of the available data and consequently the accuracy of the atomic model. Recent studies show that targeted mutagenesis of surface patches containing residues with large flexible side chains and their replacement with smaller amino acids lead to effective preparation of X-ray quality crystals of proteins otherwise recalcitrant to crystallization. Furthermore, this technique can also be used to obtain crystals of superior quality as compared to those grown for the wild-type protein, sometimes increasing the effective resolution by as much as 1 A or more. Several recent examples of this new methodology suggest that the method has the potential to become a routine tool in protein crystallography. 相似文献
4.
Lindman S Xue WF Szczepankiewicz O Bauer MC Nilsson H Linse S 《Biophysical journal》2006,90(8):2911-2921
This study shows significant effects of protein surface charges on stability and these effects are not eliminated by salt screening. The stability for a variant of protein G B1 domain was studied in the pH-range of 1.5-11 at low, 0.15 M, and 2 M salt. The variant has three mutations, T2Q, N8D, and N37D, to guarantee an intact covalent chain at all pH values. The stability of the protein shows distinct pH dependence with the highest stability close to the isoelectric point. The stability is pH-dependent at all three NaCl concentrations, indicating that interactions involving charged residues are important at all three conditions. We find that 2 M salt stabilizes the protein at low pH (protein net charge is +6 and total number of charges is 6) but not at high pH (net charge is or=18). Furthermore, 0.15 M salt slightly decreases the stability of the protein over the pH range. The results show that a net charge of the protein is destabilizing and indicate that proteins contain charges for reasons other than improved stability. Salt seems to reduce the electrostatic contributions to stability under conditions with few total charges, but cannot eliminate electrostatic effects in highly charged systems. 相似文献
5.
Positively charged residues are important determinants of membrane protein topology 总被引:23,自引:0,他引:23
R E Dalbey 《Trends in biochemical sciences》1990,15(7):253-257
Membrane proteins are found in a variety of conformations, with each protein spanning the membrane a set number of times and adopting a particular orientation. Positively charged residues, often located near the boundaries of transmembrane segments, appear to be involved in specifying the topology of membrane proteins. 相似文献
6.
Vesicle surface charge and polylysine modification of ultraviolet absorption by the olefinic bonds in charged lipid 总被引:1,自引:0,他引:1
The results of electrical conductivity and ultraviolet absorption studies on bilayer vesicles, composed of various mixtures of saturated dipalmitoylphosphatidylcholine (DPPC)and unsaturated bovine brain phoaphatidylserine (PS), in the presence and absence of polylysine indicate the following. (i) The two kinds of lipid maintain a strong transbilayer segregation over a wide range of proportions. The charged lipid (PS) preferentially locates in the inner, at PS proportions of 33% or less, and in the outer layer of the membranes when its proportion is increased to 50%. (ii) At PS proportions of 33% of less, where DPPC is the major component of the outer layer, the ability of polylysine to modify ultraviolet absorption by the olefinic bonds in the PS depends on the fluidity of the phosphatidylcholine. At higher PS proportions, where PS preferentially locates in the outer layer, modification of the ultraviolet absorption spectrum of the lipid by polylysine occurs only when the surface charge of the vesicles is diminished by the addition of bivalent metal ions. (iii) The polylysine-induced change in the ultraviolet absorption spectrum of the olefinic bonds in the vesicles was found to be very similar to that induced by dispersing unsaturated fatty acids in water rather than dissolving them in a nonpolar solvent. This suggests that polylysine modification of the vesicles spectrum may be the result of deep hydrophobic penetration by the polypeptide causing hydration and(or) parallel alignment of the dipole moments of the absorbing chromophores. 相似文献
7.
Modification of the lysine residues in the lactose repressor protein has been carried out with trinitrobenzenesulfonate. Reaction of lysine residues at positions 33, 37, 108, 290, and 327 was observed. Inducer binding was increased by modification with this reagent, while both nonspecific DNA binding and operator DNA binding were diminished, although to differing degrees. The loss in operator DNA binding capacity was complete with modification of approximately 2 equiv of lysine per monomer. The extent of reaction was affected by the presence of both sugar and DNA ligands; binding activities of the modified protein and reaction pattern of the lysines were perturbed by these ligands. The presence of operator or nonspecific DNA during the reaction protected against specific and nonspecific DNA binding activity loss. This protection presumably occurs by steric restriction of reagent access to lysine residues which are essential for both nonspecific and operator binding interactions. Lysines-33 and -108 were protected from modification in the presence of DNA. These experiments suggest that the charge on the lysine residues is important for protein interaction with DNA and that steric constraints for operator DNA interaction with the protein are more restrictive than for nonspecific DNA binding. In contrast, inducer (isopropyl beta-D-thiogalactoside) presence partially protected lysine-290 from modification while significantly enhancing reaction at lysine-327. Conformational alterations consequent to inducer binding are apparently reflected in these altered lysine reactivities. 相似文献
8.
The role of tryptophan residues in the stability of proteins was studied by ozone oxidation, which causes a small change in the tryptophan side chain. Trp 187 of the constant fragment of a type lambda immunoglobulin light chain, Trp 59 of ribonuclease T1, and Trp 62 of hen egg white lysozyme were oxidized specifically by ozone to N'-formylkynurenine or kynurenine. Judging from their circular dichroic and fluorescence spectra, these modified proteins were found to be the same as those of the respective intact proteins. However, even the slight modification of a single tryptophan residue produced a large decrease in the stability of these proteins to guanidine hydrochloride and heat. The smaller the extent of exposure of the tryptophan residue, the greater the effect of the modification on the stability. The formal kinetic mechanism of unfolding and refolding by guanidine hydrochloride of the CL fragment was not altered by tryptophan oxidation, but the rate constants for unfolding and refolding changed. The thermal unfolding transitions were analyzed to obtain the thermodynamic parameters. The enthalpy and entropy changes for the modified proteins were larger than the respective values for the intact proteins. 相似文献
9.
Sota Yagi Satoshi AkanumaAkihiko Yamagishi 《Biochimica et Biophysica Acta - Proteins and Proteomics》2014,1844(3):553-560
A non-polar patch on the surface of a protein can cause a reduction in the solubility and stability of the protein, and thereby induce aggregation. However, a non-polar patch may be required so that the protein can bind to another molecule. The mutant 6L—derived from the acidic, dimeric α-helical protein sulerythrin and containing six additional leucines arranged to form a non-polar patch on its surface when properly folded—has a substantially reduced solubility in comparison with that of wild-type sulerythrin. This reduced solubility appears to cause 6L to aggregate. To reverse this aggregation, we mutated 6L so that it contained three to six additional glutamates or aspartates that we predicted would surround the non-polar leucine patch on natively folded 6L. Although the introduction of three glutamates or aspartates increased solubility, the mutants still aggregate and have a reduced α-helical content. Conversely, mutants with six additional glutamates or aspartates appear to exist mostly as dimers and to have the same α-helical content as that of wild-type sulerythrin. Notably, the introduction of five lysines or five arginines at the positions held by the glutamates or aspartates did not recover solubility as effectively as did the negatively charged residues. These results demonstrate that negatively charged residues, but not positively charged ones, surrounding a non-polar patch on an acidic protein can completely reverse the decrease in its solubility caused by the patch of non-polar surface residues. 相似文献
10.
Strickler SS Gribenko AV Gribenko AV Keiffer TR Tomlinson J Reihle T Loladze VV Makhatadze GI 《Biochemistry》2006,45(9):2761-2766
Engineering proteins to withstand a broad range of conditions continues to be a coveted objective, holding the potential to advance biomedicine, industry, and our understanding of disease. One way of achieving this goal lies in elucidating the underlying interactions that define protein stability. It has been shown that the hydrophobic effect, hydrogen bonding, and packing interactions between residues in the protein interior are dominant factors that define protein stability. The role of surface residues in protein stability has received much less attention. It has been believed that surface residues are not important for protein stability particularly because their interactions with the solvent should be similar in the native and unfolded states. In the case of surface charged residues, it was sometimes argued that solvent exposure meant that the high dielectric of the solvent will further decrease the strength of the charge-charge interactions. In this paper, we challenge the notion that the surface charged residues are not important for protein stability. We computationally redesigned sequences of five different proteins to optimize the surface charge-charge interactions. All redesigned proteins exhibited a significant increase in stability relative to their parent proteins, as experimentally determined by circular dichroism spectroscopy and differential scanning calorimetry. These results suggest that surface charge-charge interactions are important for protein stability and that rational optimization of charge-charge interactions on the protein surface can be a viable strategy for enhancing protein stability. 相似文献
11.
Patricia Francis-Lyon Shengyin Gu Joel Hass Nina Amenta Patrice Koehl 《BMC bioinformatics》2010,11(1):575
Background
The problem of determining the physical conformation of a protein dimer, given the structures of the two interacting proteins in their unbound state, is a difficult one. The location of the docking interface is determined largely by geometric complementarity, but finding complementary geometry is complicated by the flexibility of the backbone and side-chains of both proteins. We seek to generate candidates for docking that approximate the bound state well, even in cases where there is backbone and/or side-chain difference from unbound to bound states. 相似文献12.
The human immunodeficiency virus type 1 (HIV-1) capsid protein (CA) plays a crucial role in both assembly and maturation of the virion as well as viral infectivity. Previous in vivo experiments generated two N-terminal domain charge change mutants (E45A and E128A/R132A) that showed an increase in stability of the viral core. This increase in core stability resulted in decreased infectivity, suggesting the need for a delicate balance of favorable and unfavorable interactions to both allow assembly and facilitate uncoating following infection. Purified CA protein can be triggered to assemble into tubelike structures through the use of a high salt buffer system. The requirement for high salt suggests the need to overcome charge/charge repulsion between subunits. The mutations mentioned above lie within a highly charged region of the N-terminal domain of CA, away from any of the proposed protein/protein interaction sites. We constructed a number of charge mutants in this region (E45A, E45K, E128A, R132A, E128A/R132A, K131A, and K131E) and evaluated their effect on protein stability in addition to their effect on the rate of CA assembly. We find that the mutations alter the rate of assembly of CA without significantly changing the stability of the CA monomer. The changes in rate for the mutants studied are found to be due to varying degrees of electrostatic repulsion between the subunits of each mutant. 相似文献
13.
Electrostatic effects on modification of charged groups in the active site cleft of subtilisin by protein engineering 总被引:12,自引:0,他引:12
The dielectric constant in the active site cleft of subtilisin from Bacillus amyloliquefaciens has been probed by mutating charged residues on the rim and measuring the effect on the pKa value of the active site histidine (His64) by kinetics. Mutation of a negatively charged surface residue, which is 12 to 13 A from His64, to an uncharged one Asp----Ser99) lowers the pKa of the histidine by up to 0.4 unit at low ionic strength (0.005 to 0.01 M). This corresponds to an apparent dielectric constant of about 40 to 50 between Asp99 and His64. The mutation is in an external loop that is known to tolerate a serine at position 99 from homologies with subtilisins from other bacilli. The environment between His64 and Asp99 is predominantly protein. Another charged residue that is at a similar distance from His64 (14 to 15 A) and is also in an external loop that is known to tolerate a serine residue is Glu156, at the opposite side of the active site. There is only water in a direct line between His64 and Glu156. Mutation of Glu----Ser156 also lowers the pKa of His64 by up to 0.4 unit at low ionic strength. This change again corresponds to an apparent dielectric constant of about 40 to 50. The pKa values were determined from the pH dependence of kcat/KM for the hydrolysis of peptide substrates, with a precision of typically +/- 0.02 unit. The following suggests that the changes in pKa are real and not artefacts of experimental conditions: Hill plots of the data for pKa determination have gradients (h) of -1.00(+/- 0.02), showing that there are negligible systematic deviations from theoretical ionization curves involving a monobasic acid: the pH dependence for the hydrolysis of two different substrates (succinyl-L-alanyl-L-alanyl-L-prolyl-L-phenylalanyl p-nitroanilide and benzoyl-L-valyl-L-glycyl-L-arginyl p-nitroanilide) gives identical results so that the pKa is independent of substrate; the pH dependence is unaffected by changing the concentration of enzyme, so that aggregation is not affecting the results; the shift in pKa is masked by high ionic strength, as expected qualitatively for ionic shielding of electrostatic interactions. 相似文献
14.
Denaturation of protein by chlorine dioxide: oxidative modification of tryptophan and tyrosine residues 总被引:4,自引:0,他引:4
Ogata N 《Biochemistry》2007,46(16):4898-4911
Oxychlorine compounds, such as hypochlorous acid (HOCl) and chlorine dioxide (ClO2), have potent antimicrobial activity. Although the biochemical mechanism of the antimicrobial activity of HOCl has been extensively investigated, little is known about that of ClO2. Using bovine serum albumin and glucose-6-phosphate dehydrogenase of Saccharomyces cerevisiae as model proteins, here I demonstrate that the antimicrobial activity of ClO2 is attributable primarily to its protein-denaturing activity. By solubility analysis, circular dichroism spectroscopy, differential scanning calorimetry, and measurement of enzymatic activity, I demonstrate that protein is rapidly denatured by ClO2 with a concomitant decrease in the concentration of ClO2 in the reaction mixture. Circular dichroism spectra of the ClO2-treated proteins show a change in ellipticity at 220 nm, indicating a decrease in alpha-helical content. Differential scanning calorimetry shows that transition temperature and endothermic transition enthalpy of heat-induced unfolding decrease in the ClO2-treated protein. The enzymatic activity of glucose-6-phosphate dehydrogenase decreases to 10% within 15 s of treatment with 10 microM ClO2. Elemental analyses show that oxygen, but not chlorine, atoms are incorporated in the ClO2-treated protein, providing direct evidence that protein is oxidized by ClO2. Furthermore, mass spectrometry and nuclear magnetic resonance spectroscopy show that tryptophan residues become N-formylkynurenine and tyrosine residues become 3,4-dihydroxyphenylalanine (DOPA) or 2,4,5-trihydroxyphenylalanine (TOPA) in the ClO2-treated proteins. Taking these results together, I conclude that microbes are inactivated by ClO2 owing to denaturation of constituent proteins critical to their integrity and/or function, and that this denaturation is caused primarily by covalent oxidative modification of their tryptophan and tyrosine residues. 相似文献
15.
1. Reaction of 1,2-cyclohexanedione with arginine residues of egg white riboflavin-binding protein results in a loss of the binding activity. 2. In borate buffer pH 8.0, with 0.15 M cyclohexanedione, the inactivation proceeds with a pseudo-first-order rate constant 0.084 hr.-1. 3. At least 65% of lost riboflavin binding capacity can be recovered on 12 hr incubation in 0.5 M hydroxylamine pH 7.0. 4. All 5 arginine residues are modified, 2-3 of them seem to react much easier than others. 5. The correlation between modification of arginines and protein inactivation, as analyzed by kinetic and statistical methods, suggests that one of low-reactivity residues is "essential" for riboflavin binding. 6. In the holoprotein, one arginine residue is almost completely protected from 1,2-cyclohexanedione modification. 7. Riboflavin does not dissociate from holoprotein, even on prolongated incubation with the reagent. 8. The protected arginine residue seems to be located in the riboflavin binding pocket of protein macromolecule. 相似文献
16.
A continuum electrostatics model is used to calculate the relative stabilities of 117 mutants of staphylococcal nuclease (SNase) involving the mutation of a charged residue to an uncharged residue. The calculations are based on the crystallographic structure of the wild-type protein and attempt to take implicitly into account the effect of the mutations in the denatured state by assuming a linear relationship between the free energy changes caused by the mutation in the native and denatured states. A good correlation (linear correlation coefficient of approximately 0.8) is found with published experimental relative stabilities of these mutants. The results suggest that in the case of SNase (i) charged residues contribute to the stability of the native state mainly through electrostatic interactions, and (ii) native-like electrostatic interactions may persist in the denatured state. The continuum electrostatics method is only moderately sensitive to model parameters and leads to quasi-predictive results for the relative mutant stabilities (error of 2-3 kJ mol(-1) or of the order of k(B)T), except for mutants in which a charged residue is mutated to glycine. 相似文献
17.
Restricting detergent protease action to surface of protein fibres by chemical modification 总被引:1,自引:0,他引:1
Schroeder M Lenting HB Kandelbauer A Silva CJ Cavaco-Paulo A Gübitz GM 《Applied microbiology and biotechnology》2006,72(4):738-744
Due to their excellent properties, such as thermostability, activity over a broad range of pH and efficient stain removal, proteases from Bacillus sp. are commonly used in the textile industry including industrial processes and laundry and represent one of the most important groups of enzymes. However, due to the action of proteases, severe damage on natural protein fibres such as silk and wool result after washing with detergents containing proteases. To include the benefits of proteases in a wool fibre friendly detergent formulation, the soluble polymer polyethylene glycol (PEG) was covalently attached to a protease from Bacillus licheniformis. In contrast to activation of PEG with cyanuric chloride (50%) activation with 1,1′-carbonyldiimidazole (CDI) lead to activity recovery above 90%. With these modified enzymes, hydrolytic attack on wool fibres could be successfully prevented up to 95% compared to the native enzymes. Colour difference (ΔE) measured in the three dimensional colour space showed good stain removal properties for the modified enzymes. Furthermore, half-life of the modified enzymes in buffers and commercial detergents solutions was nearly twice as high as those of the non-modified enzymes with values of up to 63 min. Out of the different modified proteases especially the B. licheniformis protease with the 2.0-kDa polymer attached both retained stain removal properties and did not hydrolyse/damage wool fibres. 相似文献
18.
Surfactant protein C (SP-C) is a lung-specific protein that is synthesized as a 21-kDa integral membrane propeptide (pro-SP-C) and proteolytically processed to a 3.7-kDa secretory product. Previous studies have shown that palmitoylation of pro-SP-C is dependent on two N-terminal juxtamembrane positively charged residues. We hypothesized that these residues influence modification of pro-SP-C by directing transmembrane orientation. Double substitution mutation of these juxtaposed residues from positive to neutral charged species resulted in complete reversal of transmembrane orientation of pro-SP-C and total abrogation of post-translational processing. Mutation of a single residue resulted in mixed orientation. Protein trafficking studies in A549 cells showed that while the double mutant was retained in the endoplasmic reticulum, single mutants produced a mixed pattern of both endoplasmic reticulum (double mutant-like) and vesicular (wild type-like) expression. Our study demonstrates the crucial role juxtamembrane positively charged residues play in establishing membrane topology and their influence on the trafficking and processing of pro-SP-C. Moreover this study provides a likely precedent for a mechanism in disorders associated with mutations in the membrane-flanking region of integral membrane proteins. 相似文献
19.
Methods of stabilization and formulation of proteins are important in both biopharmaceutical and biocatalysis industries. Polymers are often used as modifiers of characteristics of biological macromolecules to improve the biochemical activity and stability of proteins or drug bioavailability. Green fluorescent protein (GFP) shows remarkable structural stability and high fluorescence; its stability can be directly related to its fluorescence output, among other characteristics. GFP is stable under increasing temperatures, and its thermal denaturation is highly reproducible. Relative thermal stability was undertaken by incubation of GFP at varying temperatures and GFP fluorescence was used as a reporter for unfolding. At 80°C, DEAE-dextran did not have any effect on GFP fluorescence, indicating that it does not confer stability. 相似文献
20.
Noa Cohen‐Hadar Shira Lagziel‐Simis Yariv Wine Felix Frolow Amihay Freeman 《Biotechnology and bioengineering》2011,108(1):1-11
Protein crystals are routinely prepared for the elucidation of protein structure by X‐ray crystallography. These crystals present an highly accurate periodical array of protein molecules with accompanying highly ordered porosity made of interconnected voids. The permeability of the porous protein crystals to a wide range of solutes has recently triggered attempts to explore their potential application as biotemplates by a controlled “filling” process for the fabrication of novel, nano‐structured composite materials. Gaining control of the porosity of a given protein crystal may lead to the preparation of a series of “biotemplates” enabling different ‘filler’/protein content ratios, resulting in different nanostructured composites. One way to gain such control is to produce a series of polymorphic forms of a given “parent‐protein” crystal. As protein packing throughout crystallization is primarily dominated by the chemical composition of the surface of protein molecules and its impact on protein–protein interactions, modification of residues exposed on the surface will affect protein packing, leading to modified porosity. Here we propose to provide influence on the porosity of protein crystals for biotemplating by pre‐crystallization chemical modification of lysine residues exposed on protein's surface. The feasibility of this approach was demonstrated by the serial application of chemical “modifiers” leading to protein derivatives exhibiting altered porosity by affecting protein “packing” throughout protein crystallization. Screening of a series of modifying agents for lysine modification of hen egg white lysozyme revealed that pre‐crystallization modification preserving their positive charge did not affect crystal porosity, while modification resulting in their conversion to negatively charged groups induced dramatic change in protein crystal's packing and porosity. Furthermore, we demonstrate that chemical modification of lysine residues affecting modified protein packing may be simultaneously performed with the crystallization process: aldehydes generating Schiff base formation with protein's lysine residues readily affected modified protein packing, resulting in altered porosity. Our results demonstrate the feasibility of the use of site directed chemical modifications for the generation of a series of protein crystal exhibiting different porosities for biotemplating, all derived from one “parent” protein. Biotechnol. Bioeng. 2011; 108:1–11. © 2010 Wiley Periodicals, Inc. 相似文献