首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mannoside residues were revealed at the ultrastructural level in different cellular and extracellular compartments by means of the enzyme-gold and the lectin-gold approaches. For the enzyme-gold technique, an alpha-mannosidase-gold complex was prepared and conditions for the preparation of this complex as well as for its application were determined. Labeling was found over the rough endoplasmic reticulum mainly at the level of the membranes, the lumen of the cisternae being devoid of labeling. In the nucleus, the dense chromatin and the edge of the fibrillar threads in the nucleolus were intensely labeled. Few gold particles were present over the Golgi apparatus and mitochondria. The secretory granules in pancreatic cells, the peroxisomes in liver and the mucin in duodenal goblet cells were devoid of labeling. In the extracellular space, the basal lamina was labeled. Over the glomerular basal lamina, the labeling was mainly towards the epithelial side, in close contact with the podocytes. The results with the concanavalin A horseradish peroxidase (Con A-HRP)-gold technique were similar to those found with the enzyme-gold approach. Some differences were, however, detected at the level of the rough endoplasmic reticulum and the nucleus. In the endoplasmic reticulum, Con A-HRP-gold labeling was present over both the membranes and the lumen of the cisternae. In the nucleus, the labeling was mainly over the dispersed chromatin. These differences may be due to the binding of Con A not only to mannoside but also to other sugar residues as well as to the affinity of HRP-gold for some nucleoplasmic components.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
A cytochemical technique for the ultrastructural localization of substrates using enzyme-gold complexes is reported. RNase A and DNase I have been labeled with gold particles. The RNase-gold and dNase-gold complexes obtained were applied on thin sections of glutaraldehyde-fixed and Epon-embedded tissues. Different cellular compartments were labeled by these enzyme-gold complexes. Using the RNase-gold complex the rough endoplasmic reticulum appeared decorated with gold particles. The gold marker was also present over the nucleus, especially over the nucleolus; mitochondria were weakly labeled. Using the DNase-gold complex, gold particles were concentrated over the euchromatin of the nucleus and the mitochondria. The heterochromatin and the nucleolus showed a less intense labeling. For both enzyme-gold complexes, the Golgi area, the secretory granules and the extracellular space appeared free of label. In those control conditions where the substrates were added to the enzyme-gold complexes a major reduction in the labeling was observed. A quantitative evaluation of the labeling was performed. This evaluation confirmed the qualitative observations and the marked reduction of labeling occurring under the control conditions. The combination of the specificity of the enzyme-substrate interactions with the size and electron density of the gold particles and the good ultrastructural preservation of the tissues resulted in a very specific labeling with high resolution. These results demonstrate the possibility of detecting substrates by means of enzyme-gold complexes at the electron microscope level.  相似文献   

3.
The concanavalin A-gold labeled horseradish peroxidase (Con A-HRP-G) method has been employed in the ultrastructural localization of Con A surface receptor sites on glutaraldehyde-fixed normal human and guinea pig bone marrow cells. The number of gold particles per micron of cell surface was counted and data subjected to statistical analysis. All cells of the bone marrow exhibited Con A binding; however, the extent of surface labeling was dependent both on cell type and stage of differentiation. Distinctive modifications in mean surface density correlated with specific periods during the maturation of the erythrocytic, neutrophilic, eosinophilic and monocytic cell series. In several instances, the differentiative changes in surface Con A labeling proved to be species dependent. These observations are discussed in relationship to methodology and to potential changes in number and/or spatial arrangement of Con A receptor sites, primarily attributable to mannosyl and/or glucosyl residues associated with membrane glycoproteins and/or glycolipids of developing neutrophilic and erythrocytic cells.  相似文献   

4.
We investigated carbohydrate residues on the epithelial surface, in the epithelial cells and in gland cells of the tongue of the mole rat using histochemical methods. We used horseradish peroxidase-conjugated lectins from Helix pomatia (HPA), Arachishypogaea (PNA), Ulexeuropaeus (UEA I), Canavaliaensiformis (Con A). The most intense reactivity was observed in the keratin layer with HPA, UEA I and Con A, and in the epithelial cells with UEA I and Con A. In the glands, we found strong reactivity in serous cells with HPA and Con A, and in mucous cells with HPA and UEA I. PNA did not bind to epithelial or gland cells. Consequently, GlcNAc, fucose and α-D-mannose terminal glycoconjugates are distributed widely; GalNAc terminal glycoconjugates appeared in small amounts.  相似文献   

5.
The O-linked oligosaccharides of mucin-type glycoproteins contain N- acetyl-D-galactosamine (GalNAc) that is not found in N-linked glycoproteins. Because Helix pomatia lectin interacts with terminal GalNAc, we used this lectin, bound to particles of colloidal gold, to localize such sugar residues in subcellular compartments of intestinal goblet cells. When thin sections of low temperature Lowicryl K4M embedded duodenum or colon were incubated with Helix pomatia lectin- gold complexes, no labeling could be detected over the cisternal space of the nuclear envelope and the rough endoplasmic reticulum. A uniform labeling was observed over the first and several subsequent cis Golgi cisternae and over the last (duodenal goblet cells) or the two last (colonic goblet cells) trans Golgi cisternae as well as forming and mature mucin droplets. However, essentially no labeling was detected over several cisternae in the central (medial) region of the Golgi apparatus. The results strongly suggest that core O-glycosylation takes place in cis Golgi cisternae but not in the rough endoplasmic reticulum. The heterogenous labeling for GalNAc residues in the Golgi apparatus is taken as evidence that termination of certain O- oligosaccharide chains by GalNAc occurs in trans Golgi cisternae.  相似文献   

6.
It has been emphasized that specific bindings between membrane glycoproteins and membrane lectin-like substances are important in cell-to-cell interactions. We explored the surface of granulocyte-macrophage precursor cells (CFU-gm) by the differential agglutination technique. Enrichment of CFU-gm in the agglutinated fraction, containing the cells which have lectin receptors, from marrow treated with soybean agglutinin (SBA), peanut agglutinin (PNA) and concanavalin A (Con A), suggests the presence of reactive galactosyl and mannosyl residues on the surface of CFU-gm. On the other hand, wheat germ agglutinin (WGA), phytohemagglutinin (PHA) and ulex europaeus agglutinin (UEA), which bind to reactive N-acetylglucosamine, N-acetylgalactosamine and fucose, respectively, did not specifically agglutinate CFU-gm. Thus, reactive groups containing galactosyl and mannosyl structures on the surface of CFU-gm may possibly play a role in the process of cell-to-cell interactions between CFU-gm and marrow stromal cells.  相似文献   

7.
Biotinylated lectins were used to investigate the expression of carbohydrate residues on columnar and squamous epithelium of the uterine cervix. Con A, WGA, RCA I, PNA, UEA I, DBA and SBA were used. In the native exocervical and in metaplastic squamous epithelium of the transformation zone, one group of lectins (Con A, WGA, RCA I and PNA) stained the cell periphery of all epithelial layers. A second group (UEA I, DBA and SBA) colored the cell periphery of the suprabasal cells. The basal layer was always negative. All lectins labeled the apical border and occasionally the cytoplasm of the endocervical columnar epithelium. Lectin-binding of metaplastic and native squamous epithelium could possibly be used as a marker of epithelial differentiation in normal and abnormal conditions.  相似文献   

8.
To better understand the general distribution of glycoproteins and the distribution of specific glycoprotein-bound sugar residues in Paramecium, a survey of the binding pattern of selected lectins was carried out in P. tetraurelia, P. caudatum, and P. multimicronucleatum. Lectins studied were concanavalin A (Con A), Griffonia simplicifolia agglutinins I and II (GS I and GS II), wheat germ agglutinin (WGA), Ulex europaeus (UEA I), peanut agglutinin (PNA), Ricinis communis toxin (RCA60) and agglutinin (RCA120), soybean agglutinin (SBA), Bauhinia purpurea agglutinin (BPA), Dolichos biflorus agglutinin (DBA), and Maclura pomifera agglutinin (MPA). Those giving the most distinctive patterns were Con A, GS II, WGA, UEA I, and PNA. No significant differences were found between the three species. Concanavalin A, a mannose/glucose-binding lectin, diffusely labeled the cell surface and cytoplasm and, unexpectedly, the nuclear envelopes. Events of nuclear division, and nuclear size and number were thus revealed. Both WGA and GS II, which are N-acetylglucosamine-binding lectins, labeled trichocyst tips, the cell surface, and the oral region, revealing stages of stomatogenesis. The lectin WGA, in addition, labeled the compartments of the phagosome-lysosome system. The lectin PNA, an N-acetyl galactosamine/galactose-binding protein, was very specific for digestive vacuoles. Finally, UEA I, a fucose-binding lectin, brightly labeled trichocysts, both their tips and body outlines. We conclude that a judicious choice of lectins can be used to localize glycoproteins and specific sugar residues as well as to study certain events of nuclear division, cellular morphogenesis, trichocyst discharge, and events in the digestive cycle of Paramecium.  相似文献   

9.
Concanavalin A (Con A)-binding sites were labeled with colloidal gold (CG), stained with ruthenium red, and observed under a high-voltage electron microscope. Mouse peritoneal macrophages were labeled by the indirect Con A/CG labeling method at 0 degree C. After washing, some of the cells were incubated in phosphate-buffered saline (PBS) at 37 degrees C. The specimens were then stained with ruthenium red, to enhance the contrast of the cell surface, and embedded in Epon. Sections (0.3 approximately 3 micron thick) were cut and examined by high-voltage electron microscopy at accelerating voltages of 200 approximately 1,000 kV. Staining with ruthenium red provided a strong contrast of the cell surface and the invaginating tubules beneath it against the cytoplasm; in thick sections, both of them were clearly seen by stereomicroscopy. CG particles which represented Con A-binding sites were also sufficiently electron dense to be recognized by high-voltage electron microscopy of thick sections. The two- and three-dimensional distribution of CG particles on the ruthenium-red-positive cell surface was clearly visualized. At 0 degree C, Con A-binding sites were randomly distributed on the cell surface. The redistribution and endocytosis of Con A-binding sites were seen at 37 degrees C. The three-dimensional organization of membrane invagination, which represented the process of endocytosis, was clearly seen by stereomicroscopy. The combination of CG labeling and ruthenium red staining is a useful method for high-voltage electron microscopic analysis of the two- and three-dimensional distribution of CG-labeled ligands on the cell surface in thick sections.  相似文献   

10.
We have determined the subcellular distribution of fucosyl residues in rat duodenal absorptive enterocytes and goblet cells, using the binding affinity of the lectin I of Ulex europaeus (UEA I). In absorptive enterocytes, UEA I-lectin gold complexes were detected at the brush border and at the basolateral plasma membrane; pits of the plasma membrane were labeled, as were small vesicles, multivesicular bodies, lysosomes, and the Golgi apparatus. In the Golgi stacks, about half of the cisternae showed gold marker particles: accessible fucosyl residues were sparse in the cis subcompartment, the cismost cisterna mostly remaining negative; more intense label was found in medial cisternae; reactions were concentrated in the trans and transmost Golgi subcompartments. Cisternae, tubules and vesicles located at the trans Golgi side were the most constantly and intensely stained Golgi elements. In goblet cells, mucin granules and trans Golgi cisternae were labeled. Rarely, UEA I-gold bound to cisternae of the medial subcompartment; the cis subcompartment remained unstained. In part, UEA I-gold particles were restricted to dilated portions of the transmost Golgi cisterna and to secretory granules.  相似文献   

11.
The plant lectin concanavalin A (Con A) possesses a remarkably specific capacity to bind primarily α-d-mannose or α-d-glucose sugar residues on macromolecules (cf. 1). The multivalent Con A will bind to carbohydrates on cell surfaces, and free binding sites on the attached Con A will bind to horseradish peroxidase which is a glycoprotein (2). Since peroxidase may be visualized by reaction with diaminobenzidine (3), it has been possible using this method to specifically “stain” carbohydrate residues on cell surface macromolecules (2, 4). The same principles for staining cell surfaces should apply to “staining” glycoproteins separated by polyacrylamide electrophoresis. In this paper, we examine the staining of glycoproteins in sciatic nerve by a Con A-peroxidase labeling technique. The method is more sensitive for mannose or glucose containing glycoproteins than the periodic acid-Schiff's (PAS) method commonly used.  相似文献   

12.
Lectins and neoglycoproteins labeled with colloidal gold particles were used for the ultrastructural localization of carbohydrate residues and sugar-binding sites, respectively, in thin sections of tachyzoites of Toxoplasma gondii embedded in the Lowicryl K4M resin. Incubation of the sections in the presence of gold-labeled Canavalia ensiformis (Con A), Arachis hypogaea (PNA), Ricinus communis I (RCA I), Triticum vulgaris (WGA), and Limax flavus (LFA) agglutinins showed significant labeling of the rhoptries. However, no labeling of the parasite's surface was observed. Incubation of tachyzoites in the presence of gold-labeled albumin-N-acetyl-D-glucosamine or albumin-galactose, but not in the presence of albumin-mannose, led to labeling of the rhoptries in a pattern similar to that observed with the lectins. The results obtained are discussed in relation to the possible role played by secretion of rhoptry macromolecules during the process of T. gondii-host cell interaction.  相似文献   

13.
Summary Nucleic acids can be specifically localized at the electron microscope level by means of enzyme-gold complexes. Two enzymes RNAase A and DNAase I were labelled with colloidal gold, and the enzyme-gold complexes obtained applied on thin sections of glutaraldehyde-fixed and Epon-embedded tissues. Using RNAase-gold, the rough endoplasmic reticulum and the nucleolus of different cells appeared densely labelled. With the DNAase-gold the labelling was present over the euchromatin and the mitochondria. The quantitative evaluation, performed on different cellular compartments of the pancreatic acinar cells, confirmed the qualitative observations and ascertained the specificity of the labelling. The application of this technique, for the demonstration of nucleic acids in different tissues, is illustrated.  相似文献   

14.
Summary Electron-microscopic cytochemical studies on satellite cells of normal human skeletal muscle were carried out using the concanavalin Aperoxidase (Con A-HRP) coupling method. Con A-binding sites, which probably correspond to glycoproteins, were found to be associated with the cell surface, smooth surfaced vesicles, nuclear envelope and endoplasmic reticulum of the satellite cells and were also identified at the cell surface of the adjacent muscle fiber. The possible relationships of these observations to the functions of satellite cells are discussed.  相似文献   

15.
To better understand the general distribution of glycoproteins and the distribution of specific glycoprotein-bound sugar residues in Paramecium, a survey of the binding pattern of selected lectins was carried out in P. tetraurelia, P. caudatum, and P. multimicronucleatum. Lectins studied were concanavalin A (Con A), Griffonia simplicifolia agglutinins I and II (GS I and GS II), wheat germ agglutinin (WGA), Ulex europaeus (UEA I), peanut agglutinin (PNA), Ricinis communis toxin (RCA60) and agglutinin (RCA120), soybean agglutinin (SBA), Bauhinia purpurea agglutinin (BPA), Dolichos biflorus agglutinin (DBA), and Maclura pomifera agglutinin (MPA). Those giving the most distinctive patterns were Con A, GS II, WGA, UEA I, and PNA. No significant differences were found between the three species. Concanavalin A, a mannose/glucose-binding lectin, diffusely labeled the cell surface and cytoplasm and, unexpectedly, the nuclear envelopes. Events of nuclear division, and nuclear size and number were thus revealed. Both WGA and GS II, which are N-acetylglucosamine-binding lectins, labeled trichocyst tips, the cell surface, and the oral region, revealing stages of stomatogenesis. The lectin WGA, in addition, labeled the compartments of the phagosome-lysosome system. The lectin PNA, an N-acetyl galactosamine/galactose-binding protein, was very specific for digestive vacuoles. Finally, UEA I, a fucose-binding lectin, brightly labeled trichocysts, both their tips and body outlines. We conclude that a judicious choice of lectins can be used to localize glycoproteins and specific sugar residues as well as to study certain events of nuclear division, cellular morphogenesis, trichocyst discharge, and events in the digestive cycle of Paramecium.  相似文献   

16.
Topochemical characteristics of reactions of different types of collagen-containing structures with Concanavalin A (Con A) have not been considered up to now. In this study the presence and availability of glucose residues of collagen molecules from intestine, liver, cartilage and tendon are detected using Con A and horseradish peroxidase (HRP). In intestine, cartilage and tendon sections, the Con A-HRP method was only significantly positive when the sections were first submitted to treatment with papain. This suggested the presence of glycoproteins and proteoglycans of the extracellular matrix (ECM), which might interfere either interacting with lateral sugar residues of the collagen molecules, or causing some steric blockade or even masking as occurs in regions with a high state of compactness.  相似文献   

17.
Based on author's previous work on detection and immunolocalization of glycoproteins of the plasma membrane of maize ( Zea mays L. ) sperm cells, a 68 kD peripheral specific glycopolypeptide of the plasma membrane from maize sperm cells was purified by IEF-SDS two-dimensional electrophoresis. It presents specif- ically positive reaction in Con A-HRP (concanavalin A-horseradish peroxidase) staining, and its pi value is 5.5. The search in protein sequence database reveals that the amino-terminal sequence of this glycopolypeptide is identical with that of Con A. But its difference from Con A in molecular weight and pi value indicates that it could be related to a Con A receptor on the plasma membranes of maize sperm cells instead of being Con A itself. It is fascinating to study further the function of the above glycopolypeptide in gametic recognition, adhesion and fusion of the double fertilization in maize.  相似文献   

18.
O-Linked fucose in glycoproteins from Chinese hamster ovary cells   总被引:2,自引:1,他引:1  
We report our discovery that many glycoproteins synthesizedby Chinese hamster ovary (CHO) cells contain fucose in O-glycosidiclinkage to polypeptide. To enrich for the possible presenceof O-linked fucose, we studied the lectin-resistant mutant ofCHO cells known as Lec1. Lec1 cells lack N-acetylglucosaminyltransferaseI and are therefore unable to synthesize complex-type N-linkedoligosaccharides. Lec1 cells were metabolically radiolabelledwith [6-3H]fucose and total glycoproteins were isolated. Glycopeptideswere prepared by proteolysis and fractionated by chromatographyon a column of concanavalin A (Con A)— Sepharose. Thesets of fractionated glycopeptides were treated with mild base/borohydrideto effect the ß-elimination reaction and release potentialO-linked fucosyl residues. The ß-elimination produced[3H]fucitol quantitatively from [3H]fucose-labelled glycopeptidesnot bound by Con A-Sepharose, whereas none was generated bytreatment of glycopeptides bound by the lectin. The total [3H]fucose-labelledglycoproteins from Lec1 cells were separated by SDS—PAGEand detected by fluorography. Treatment of selected bands ofdetectable glycoproteins with mild base/borohydride quantitativelygenerated [3H]fucitol. Pretreatment of the glycoproteins withN-glycanase prior to the SDS—PAGE method of analysis causedan enrichment in the percentage of radioactivity recovered as[3H]fucitol. Trypsin treatment of [3H]fucose-labelled intactCHO cells released glycopeptides that contained O-linked fucose,indicating that it is present in surface glycoproteins. Thesefindings demonstrate that many glycoproteins from CHO cellscontain O-linked fucosyl residues and raise new questions aboutits biosynthesis and possible function. fucose glycoproteins monosaccharide O-linked  相似文献   

19.
Takata  K.  Arii  T.  Yamagishi  S.  Hirano  H. 《Histochemistry and cell biology》1984,81(5):441-444
Summary Concanavalin A (Con A)-binding sites were labeled with colloidal gold (CG), stained with ruthenium red, and observed under a high-voltage electron microscope. Mouse peritoneal macrophages were labeled by the indirect Con A/CG labeling method at 0° C. After washing, some of the cells were incubated in phosphate-buffered saline (PBS) at 37° C. The specimens were then stained with ruthenium red, to enhance the contrast of the cell surface, and embedded in Epon. Sections (0.33 m thick) were cut and examined by high-voltage electron microscopy at accelerating voltages of 2001,000 kV. Staining with ruthenium red provided a strong contrast of the cell surface and the invaginating tubules beneath it against the cytoplasm; in thick sections, both of them were clearly seen by stereomicroscopy. CG particles which represented Con A-binding sites were also sufficiently electron dense to be recognized by high-voltage electron microscopy of thick sections. The two- and three-dimensional distribution of CG particles on the ruthenium-red-positive cell surface was clearly visualized. At 0° C, Con A-binding sites were randomly distributed on the cell surface. The redistribution and endocytosis of Con A-binding sites were seen at 37° C. The three-dimensional organization of membrane invagination, which represented the process of endocytosis, was clearly seen by stercomicroscopy. The combination of CG labeling and ruthenium red staining is a useful method for high-voltage electron microscopic analysis of the two- and three-dimensional distribution of CG-labeled ligands on the cell surface in thick sections.  相似文献   

20.
The composition and distribution of rat acrosomal glycoproteins during spermiogenesis have been investigated at light and electron microscopic level by means of a variety of morphological techniques including the application of lectins conjugated to peroxidase, digoxigenin and colloidal gold, enzyme and chemical deglycosylation procedures and conventional histochemistry. Results obtained with lectin histochemistry in combination with beta-elimination reaction and endoglucosaminidase F/peptide N-glycosidase F digestion suggest that glycoproteins of mature acrosomes contain both N- and O-linked oligosaccharides. N-linked chains of acrosomal glycoproteins contain mannose and external residues of N-acetylglucosamine and galactose. They also have fucose residues linked to the core region of the oligosaccharide side chains. O-linked oligosaccharide chains contain external residues of both galactose and N-acetylgalactosamine. Mannose, fucose, galactose and N-acetylglucosamine residues were detected in acrosomes at all steps of spermiogenesis. N-acetylgalactosamine residues were only observed in the late steps of the spermiogenesis. N-acetylneuraminic acid residues were not detected throughout the acrosomal development. At initial stages of acrosome formation, glycoproteins were preferentially distributed over the acrosomic granules. In cap phase spermatids, lectin binding sites were homogeneously distributed throughout the acrosomes; however, in mature spermatozoa, glycoproteins were predominantly located over the outer acrosomal membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号