首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
植物叶绿体和线粒体含有DNA,它们表现出不同的遗传变异特性。叶绿体基因组的保守性强,含有特征性重复顺序,它的遗传形式多样而以母系遗传为主,在组织培养和体细胞杂交中具有稳定性强,单亲遗传的特点。线粒体基因组变异性很强,含有主基因组和随体DNA,它的遗传形式是母系遗传,但在体细胞杂交中有时表现为双亲本遗传,并有mtDNA重组,mtDNA在组织培养中发生极大的变异性。在细胞核和线粒体、叶绿体之间存在DNA互相运动的现象。  相似文献   

2.
线粒体DNA序列特点与昆虫系统学研究   总被引:50,自引:9,他引:41  
昆虫线粒体DNA是昆虫分子系统学研究中应用最为广泛的遗传物质之一。线粒体DNA具有进化速率较核DNA快 ,遗传过程不发生基因重组、倒位、易位等突变 ,并且遵守严格的母系遗传方式等特点。本文概述了mtDNA中的rRNA、tRNA、蛋白编码基因和非编码区的一般属性 ,分析了它们在昆虫分子系统学研究中的应用价值 ,以及应用DNA序列数据来推导分类阶 (单 )元的系统发育关系时 ,基因或DNA片段选择的重要性  相似文献   

3.
线粒体DNA(mtDNA)因它的高拷贝数、易扩增、高突变率、中性、低重组和母系遗传等特征,已广泛应用在系统进化和群体遗传研究方面[1,2].但是,由于mtDNA本身的特征,如异质性.  相似文献   

4.
线粒体DNA是动物细胞核外唯一的遗传物质,具有结构简单、进化速度快、母系遗传和基因重组率小等特点。文章在介绍蜜蜂线粒体DNA的结构大小及其多态性的研究的基础上,对其在蜜蜂的种间多态性、亚种间及亚种内多态性、起源进化、群体遗传结构及基因流动、亚种及类型的分类等方面的研究应用进行阐述。  相似文献   

5.
鱼类线粒体DNA及其研究进展   总被引:8,自引:0,他引:8  
鱼类是脊椎动物中最原始而在种属数量上又最占优势的类群,其起源复杂,分布广泛,拥有丰富的遗传多样性。鱼类线粒体DNA(mitochondrial DNA,mtDNA)同其他脊椎动物的mtRNA一样,呈共价闭合环状,是细胞核外具自主复制、转录和翻译能力的遗传因子。与核DNA相比,鱼类mtDNA具有分子较小、结构简单、进化速度快、遗传相对独立性和母系遗传等特点,是一个相对独立的复制单位。由于鱼类线粒体DNA具有上述特点,以mtDNA作为分子标记,探讨鱼类的群体遗传结构与系统演化,已成为鱼类分子群体遗传学和系统学研究中的热点。综述了鱼类mtDNA的结构特征、进化和多态性检测方法及其在鱼类分子群体遗传学和鱼类系统学研究中的应用。  相似文献   

6.
蚕类昆虫线粒体DNA研究及其在起源与进化研究中的应用   总被引:1,自引:0,他引:1  
房守敏  张烈  鲁成 《昆虫知识》2010,47(3):439-445
线粒体DNA(mtDNA)属母系遗传,进化速率较核基因快且基因组结构相对简单,已作为理想的分子标记广泛应用于昆虫群体遗传学及分子系统学等研究。本文对蚕类昆虫线粒体DNA在分子水平上的最新研究进展进行了较详细的阐述,重点介绍了蚕类昆虫线粒体基因组的组成及特征、mtDNA克隆与多态性及在蚕类昆虫分子系统学研究中的应用等。  相似文献   

7.
Xue L  Chen H  Meng YZ  Wang Y  Lu ZQ  Lu JX  Guan MX 《遗传》2011,33(9):911-918
线粒体DNA(mtDNA)突变是高血压发病的分子机制之一。已经报道的与原发性高血压相关的mtDNA突变包括:tRNAMet A4435G,tRNAMet/tRNAGln A4401G,tRNAIle A4263G,T4291C和A4295G突变。这些高血压相关的mtDNA突变改变了相应的线粒体tRNA的结构,导致线粒体tRNA的代谢障碍。而线粒体tRNAs的代谢缺陷则影响蛋白质合成,造成氧化磷酸化缺陷,降低ATP的合成,增加活性氧的产生。因此,线粒体的功能缺陷可能在高血压的发生发展中起一定的作用。mtDNA突变发病的组织特异性则可能与线粒体tRNAs的代谢以及核修饰基因相关。目前发现的这些高血压相关的mtDNA突变则应该作为今后高血压诊断的遗传风险因子。高血压相关的线粒体功能缺陷的深入研究也将进一步诠释母系遗传高血压的分子致病机制,为高血压的预防、控制和治疗提供依据。文章对高血压相关的mtDNA突变进行了综述。  相似文献   

8.
一种改进的鱼类线粒体DNA的快速制备方法   总被引:9,自引:0,他引:9  
线粒体DNA(mitOChondrialDNA:mtDNA)是双链环状核外遗传物质,以其分子量小,易于分离,突变率高,进化速度快和母系遗传等特性,已广泛应用于分类学,种系鉴定,种群遗传学,系统发育和进化研究.    相似文献   

9.
线粒体DNA( mtDNA)分析在揭示物种亲缘关系、遗传比较、系统进化和遗传结构等领域的研究中得到了广泛的应用,尤其是在海洋动物的遗传结构研究中发挥了重要的作用.介绍线粒体DNA的结构特征、多态性研究方法,并对其在海洋动物群体遗传结构研究中的应用进行了综述.  相似文献   

10.
Y染色体、线粒体DNA多态性与云南宁蒗摩梭人的族源研究   总被引:7,自引:0,他引:7  
居住于云南宁蒗县泸沽湖畔的摩梭人是中国大陆目前惟一的母系社会群体. 在第一次民族识别中被定为纳西族, 但是大部分摩梭人认为自己与纳西族有本质的区别, 后来通过云南省人民代表大会决议, 称之为“摩梭人”. 将遗传学的方法引入摩梭人的族源研究, 对摩梭人以及居住于云南的纳西族、藏族、白族、彝族和普米族6个群体线粒体DNA第一高变区、Y染色体上的13个SNP和8个STR位点进行了基因分型, 结果显示摩梭人相对缺乏南方民族特异的Y染色体类型, 而mtDNA具有南北双重特征. 主成分分析和分子系统学分析进一步表明, 摩梭人的父系遗传结构与云南藏族最接近, 而母系遗传结构最接近丽江纳西族, 提示其父系和母系基因库具有不同的来源. 摩梭人特殊的母系社会结构可能是导致其母系、父系遗传结构存在明显差异的原因之一. 该结果为摩梭人的族源研究提供了遗传学方面的线索.  相似文献   

11.
Mitochondrial DNA (mtDNA) is a pivotal tool in molecular ecology, evolutionary and population genetics. The power of mtDNA analyses derives from a relatively high mutation rate and the apparent simplicity of mitochondrial inheritance (maternal, without recombination), which has simplified modelling population history compared to the analysis of nuclear DNA. However, in biology things are seldom simple, and advances in DNA sequencing and polymorphism detection technology have documented a growing list of exceptions to the central tenets of mitochondrial inheritance, with paternal leakage, heteroplasmy and recombination now all documented in multiple systems. The presence of paternal leakage, recombination and heteroplasmy can have substantial impact on analyses based on mtDNA, affecting phylogenetic and population genetic analyses, estimates of the coalescent and the myriad of other parameters that are dependent on such estimates. Here, we review our understanding of mtDNA inheritance, discuss how recent findings mean that established ideas may need to be re‐evaluated, and we assess the implications of these new‐found complications for molecular ecologists who have relied for decades on the assumption of a simpler mode of inheritance. We show how it is possible to account for recombination and heteroplasmy in evolutionary and population analyses, but that accurate estimates of the frequencies of biparental inheritance and recombination are needed. We also suggest how nonclonal inheritance of mtDNA could be exploited, to increase the ways in which mtDNA can be used in analyses.  相似文献   

12.
Hoolahan AH  Blok VC  Gibson T  Dowton M 《Genetica》2012,140(1-3):19-29
Recombination is typically assumed to be absent in animal mitochondrial genomes (mtDNA). However, the maternal mode of inheritance means that recombinant products are indistinguishable from their progenitor molecules. The majority of studies of mtDNA recombination assess past recombination events, where patterns of recombination are inferred by comparing the mtDNA of different individuals. Few studies assess contemporary mtDNA recombination, where recombinant molecules are observed as direct mosaics of known progenitor molecules. Here we use the potato cyst nematode, Globodera pallida, to investigate past and contemporary recombination. Past recombination was assessed within and between populations of G. pallida, and contemporary recombination was assessed in the progeny of experimental crosses of these populations. Breeding of genetically divergent organisms may cause paternal mtDNA leakage, resulting in heteroplasmy and facilitating the detection of recombination. To assess contemporary recombination we looked for evidence of recombination between the mtDNA of the parental populations within the mtDNA of progeny. Past recombination was detected between a South American population and several UK populations of G. pallida, as well as between two South American populations. This suggests that these populations may have interbred, paternal mtDNA leakage occurred, and the mtDNA of these populations subsequently recombined. This evidence challenges two dogmas of animal mtDNA evolution; no recombination and maternal inheritance. No contemporary recombination between the parental populations was detected in the progeny of the experimental crosses. This supports current arguments that mtDNA recombination events are rare. More sensitive detection methods may be required to adequately assess contemporary mtDNA recombination in animals.  相似文献   

13.
Maternal inheritance is one of the hallmarks of animal mitochondrial DNA (mtDNA) and central to its success as a molecular marker. This mode of inheritance and subsequent lack of heterologous recombination allows us to retrace evolutionary relationships unambiguously down the matriline and without the confounding effects of recombinant genetic information. Accumulating evidence of biparental inheritance of mtDNA (paternal leakage), however, challenges our current understanding of how this molecule is inherited. Here, using Drosophila simulans collected from an East African metapopulation exhibiting recurring mitochondrial heteroplasmy, we conducted single fly matings and screened F1 offspring for the presence of paternal mtDNA using allele-specific PCR assays (AS–PCR). In all, 27 out of 4092 offspring were identified as harboring paternal mtDNA, suggesting a frequency of 0.66% paternal leakage in this species. Our findings strongly suggest that recurring mtDNA heteroplasmy as observed in natural populations of Drosophila simulans is most likely caused by repeated paternal leakage. Our findings further suggest that this phenomenon to potentially be an integral part of mtDNA inheritance in these populations and consequently of significance for mtDNA as a molecular marker.  相似文献   

14.
Hoolahan AH  Blok VC  Gibson T  Dowton M 《Genetica》2011,139(11-12):1509-1519
Animal mtDNA is typically assumed to be maternally inherited. Paternal mtDNA has been shown to be excluded from entering the egg or eliminated post-fertilization in several animals. However, in the contact zones of hybridizing species and populations, the reproductive barriers between hybridizing organisms may not be as efficient at preventing paternal mtDNA inheritance, resulting in paternal leakage. We assessed paternal mtDNA leakage in experimental crosses of populations of a cyst-forming nematode, Globodera pallida. A UK population, Lindley, was crossed with two South American populations, P5A and P4A. Hybridization of these populations was supported by evidence of nuclear DNA from both the maternal and paternal populations in the progeny. To assess paternal mtDNA leakage, a ~3.4?kb non-coding mtDNA region was analyzed in the parental populations and in the progeny. Paternal mtDNA was evident in the progeny of both crosses involving populations P5A and P4A. Further, paternal mtDNA replaced the maternal mtDNA in 22 and 40?% of the hybrid cysts from these crosses, respectively. These results indicate that under appropriate conditions, paternal leakage occurs in the mtDNA of parasitic nematodes, and supports the hypothesis that hybrid zones facilitate paternal leakage. Thus, assumptions of strictly maternal mtDNA inheritance may be frequently violated, particularly when divergent populations interbreed.  相似文献   

15.
Strict maternal inheritance is considered a hallmark of animal mtDNA. Although recent reports suggest that paternal leakage occurs in a broad range of species, it is still considered an exceptionally rare event. To evaluate the impact of paternal leakage on the evolution of mtDNA, it is essential to reliably estimate the frequency of paternal leakage in natural populations. Using allele‐specific real‐time quantitative PCR (RT‐qPCR), we show that heteroplasmy is common in natural populations with at least 14% of the individuals carrying multiple mitochondrial haplotypes. However, the average frequency of the minor mtDNA haplotype is low (0.8%), which suggests that this pervasive heteroplasmy has not been noticed before due to a lack of power in sequencing surveys. Based on the distribution of mtDNA haplotypes in the offspring of heteroplasmic mothers, we found no evidence for strong selection against one of the haplotypes. We estimated that the rate of paternal leakage is 6% and that at least 100 generations are required for complete sorting of mtDNA haplotypes. Despite the high proportion of heteroplasmic individuals in natural populations, we found no evidence for recombination between mtDNA molecules, suggesting that either recombination is rare or recombinant haplotypes are counter‐selected. Our results indicate that evolutionary studies using mtDNA as a marker might be biased by paternal leakage in this species.  相似文献   

16.
More than 100 species of bivalve mollusks are currently known to carry two highly diverged mitochondrial DNA (mtDNA) molecules, one of which is transmitted through the egg and the other through the sperm generation after generation, faithfully and uninterruptedly. This mtDNA system, which has become known as doubly uniparental inheritance (DUI), is most likely unique in eukaryotes and constitutes a striking deviation from the strictly maternal inheritance (SMI) of mtDNA that is the rule in the animal kingdom. Here, I present a model of how the paternal mtDNA may escape the mitochondrial destruction that occurs prior to sperm formation and enter the male germ line in the newly formed embryo. In essence, the model treats the sperm-transmitted mtDNA as a molecule that takes a ride with the sperm. The model can be easily tested and, if passed the tests, may open the way for the understanding of DUI at the molecular level and throw light on the mechanisms and evolution of mtDNA transmission in general. In addition, the model shifts attention from nuclear control of paternal mtDNA inheritance, whether systematic (as DUI) or leaky (as the cases reported in a wide variety of animal species), to the mtDNA itself as the protagonist of its own transmission. This possibility has been, so far, ignored in studies of paternal mtDNA transmission in other species including humans.  相似文献   

17.
Lost in the zygote: the dilution of paternal mtDNA upon fertilization   总被引:1,自引:0,他引:1  
Wolff JN  Gemmell NJ 《Heredity》2008,101(5):429-434
The mechanisms by which paternal inheritance of mitochondrial DNA (mtDNA) (paternal leakage) and, subsequently, recombination of mtDNA are prevented vary in a species-specific manner with one mechanism in common: paternally derived mtDNA is assumed to be vastly outnumbered by maternal mtDNA in the zygote. To date, this dilution effect has only been described for two mammalian species, human and mouse. Here, we estimate the mtDNA content of chinook salmon oocytes to evaluate the dilution effect operating in another vertebrate; the first such study outside a mammalian system. Employing real-time PCR, we determined the mtDNA content of chinook salmon oocytes to be 3.2 x 10(9)+/-1.0 x 10(9), and recently, we determined the mtDNA content of chinook salmon sperm to be 5.73+/-2.28 per gamete. Accordingly, the ratio of paternal-to-maternal mtDNA if paternal leakage occurs is estimated to be 1:5.5 x 10(8). This contribution of paternal mtDNA to the overall mtDNA pool in salmon zygotes is three to five orders of magnitude smaller than those revealed for the mammalian system, strongly suggesting that paternal inheritance of mtDNA per offspring will be much less likely in this system than in mammals.  相似文献   

18.
Maternal transmission of mitochondrial DNA (mtDNA) in animals is thought to prevent the spread of selfish deleterious mtDNA mutations in the population. Various mechanisms have been evolved independently to prevent the entry of sperm mitochondria in the embryo. However, the increasing number of instances of paternal mtDNA leakage suggests that these mechanisms are not very effective. The destruction of sperm mitochondria in mammalian embryos is mediated by nuclear factors. Also, the destruction of paternal mitochondria in intraspecific crosses is more effective than in interspecific ones. These observations have led to the hypothesis that leakage of paternal mtDNA (and consequently mtDNA recombination owing to ensuing heteroplasmy) might be more common in inter‐ than in intraspecific crosses and that it should increase with phylogenetic distance of hybridizing species. We checked paternal leakage in inter‐ and intraspecific crosses in Drosophila and found little evidence for this hypothesis. In addition, we have observed a higher level of leakage among male than among female progeny from the same cross. This is the first report of sex‐specific leakage of paternal mtDNA. It suggests that paternal mtDNA leakage might not be a stochastic result of an error‐prone mechanism, but rather, it may be under complex genetic control.  相似文献   

19.
Homologous recombination is restricted to sequences of low divergence. This is attributed to the mismatch repairing system (MMR), which does not allow recombination between sequences that are highly divergent. This acts as a safeguard against recombination between nonhomologous sequences that could result in genome imbalance. Here, we report recombination between maternal and paternal mitochondrial genomes of the sea mussel, whose sequences differ by >20%. We propose that the strict maternal inheritance of the animal mitochondrial DNA and the ensuing homoplasmy has relieved the MMR system of the animal mitochondrion from the pressure to tolerate recombination only among sequences with a high degree of similarity.  相似文献   

20.
Slate J  Phua SH 《Molecular ecology》2003,12(3):597-608
Mitochondrial DNA (mtDNA) is a widely employed molecular tool in phylogeography, in the inference of human evolutionary history, in dating the domestication of livestock and in forensic science. In humans and other vertebrates the popularity of mtDNA can be partially attributed to an assumption of strict maternal inheritance, such that there is no recombination between mitochondrial lineages. The recent demonstration that linkage disequilibrium (LD) declines as a function of distance between polymorphic sites in hominid mitochondrial genomes has been interpreted as evidence of recombination between mtDNA haplotypes, and hence nonclonal inheritance. However, critics of mtDNA recombination have suggested that this association is an artefact of an inappropriate measure of LD or of sequencing error, and subsequent studies of other populations have failed to replicate the initial finding. Here we report the analysis of 16 ruminant populations and present evidence that LD significantly declines with distance in five of them. A meta-analysis of the data indicates a nonsignificant trend of LD declining with distance. Most of the earlier criticisms of patterns between LD and distance in hominid mtDNA are not applicable to this data set. Our results suggest that either ruminant mtDNA is not strictly clonal or that compensatory selection has influenced patterns of variation at closely linked sites within the mitochondrial control region. The potential impact of these processes should be considered when using mtDNA as a tool in vertebrate population genetic, phylogenetic and forensic studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号