首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fifty transgenic lines expressing the tobacco vein mottling virus (TVMV) coat protein (CP) gene in five genetic backgrounds were evaluated under field conditions for response to mechanic inoculation with TVMV, tobacco etch virus (TEV) and potato virus Y (PVY). TVMV CP transgenic lines conferred resistance to TVMV, TEV and PVY under field conditions. Combining two strategies, coat protein-mediated resistance (CPMR) coupled with an endogenous resistance gene (Virgin A Mutant, VAM) significantly extended the range and magnitude of virus resistance and provided a potential valuable new source of protection against potyviruses. CP transgenic lines lacking the VAM gene had high resistance to TEV, medium resistance to PVY, and a recovery phenotype to TVMV. A series of hybrids involving transgenic lines were generated and tested under field conditions for response to virus inoculation. One copy of TVMV-CP gene presented in lines homozygous for the VAM gene provided effective resistance to all three potyviruses. These studies also suggested that selection of a suitable recipient genotype was critical and that field evaluation was necessary in order to select elite resistant transgenic lines. Engineering viral CP genes into genotypes possessing some level of virus resistance could be critical to achieve an effective level of resistance.  相似文献   

2.
3.
Transgenic tobacco plants expressing the coat protein (CP) gene of tobacco mosaic virus were tested for resistance against infection by five other tobamoviruses sharing 45-82% homology in CP amino acid sequence with the CP of tobacco mosaic virus. The transgenic plants (CP+) showed significant delays in systemic disease development after inoculation with tomato mosaic virus or tobacco mild green mosaic virus compared to the control (CP-) plants, but showed no resistance against infection by ribgrass mosaic virus. On a transgenic local lesion host, the CP+ plants showed greatly reduced numbers of necrotic lesions compared to the CP- plants after inoculation with tomato mosaic virus, pepper mild mottle virus, tobacco mild green mosaic virus, and Odontoglossum ringspot virus but not ribgrass mosaic virus. The implications of these results are discussed in relation to the possible mechanism(s) of CP-mediated protection.  相似文献   

4.
Coat protein-mediated resistance (CPMR), resistance conferred as a result of the expression of viral coat proteins in transgenic plants, has been illustrated to be an effective way of protecting plants against several plant viruses. Nonetheless, consistent protection has not been achieved for transgenic plants expressing the coat protein of potato virus Y (PVY), the type member of the potyvirus family. In this report, three different potato cultivars were transformed with a chimeric construct consisting of the capsid protein (CP) coding sequences of PVY flanked by the AUG codon and the translational enhancer from the coat protein gene of potato virus X (PVX). These cultivars were shown to express high levels of PVY CP and confer a high degree of protection against PVYo and PVYN under both greenhouse and field conditions. In addition, transgenic plants infected with potato virus A (PVA), a related potyvirus, exhibited a delay in virus accumulation, which could be easily overcome with increasing virus concentrations. Received: 26 October 1995 / Accepted: 14 June 1996  相似文献   

5.
Plants can be protected against infection by potyviruses by expressing different portions of potyviral genomes as transgenes. This strategy has proven effective with several potyvirus genes, including the Nla, Nlb, and coat protein coding regions. Given the effectiveness of separate potyvirus coding regions as determinants of resistance, we tested the hypothesis that combinations of potyvirus coding regions would provide additively greater protection of plants against potyviruses. For this, we compared transgenic plant lines that expressed either the coat protein (CP) or the Nla+Nlb+coat protein (NNC) coding regions from tobacco vein mottling virus (TVMV). We found that plants that carry the NNC gene combination were invariably less resistant to TVMV than were lines that contain a CP gene alone. Additionally, we found that NNC lines displayed virtually no resistance to tobacco etch virus (TEV), in contrast to the CP lines. We conclude that combining more than one virus-derived resistance determinant in a single construct is detrimental to the production of virus-resistant plants.  相似文献   

6.
7.
Potato virus Y (PVY) is a main viral pathogen infecting economic crops such as potato and tobacco plants. Genetic engineering has been so far the most effective method to produce viral resistant plants. Be-cause of the shortage of viral resistant genes in plants, cDNAs derived from viral genes were often used for induction of resistance in transgenic plants (the so- called pathogen-derived resistance)[1]. Among the genes used in the pathogen-derived resistance strategy, the coat protein gen…  相似文献   

8.
The coat protein (CP) gene of the potato virus Y (PVY) strain N605 has been cloned into a plant binary expression vector and introduced into the potato variety Bintje. The transformed lines, Bt6, that contained two copies of the CP gene showed complete resistance to the homologous strain PVY-N605 and a good resistance to the related strain PVY-O803 in the greenhouse. The good resistance of Bt6 to primary and secondary infections by PVY was confirmed in two successive field tests where the virus was transmitted by its natural aphid vector.  相似文献   

9.
A chimeric vector was constructed to express cucumber mosaic virus (CMV) satellite (Sat) RNA and coat protein (CP). Transgenic lines of tobacco cultivar G-140 expressing CP and Sat-RNA were obtained; these lines had high resistance to CMV. Fifty to 70% of the transgenic plants were symptomless 90 days after inoculation with 25-50 micrograms/ml of CMV. Resistance was about twice that conferred by the Sat-RNA or the CP gene alone in transformed plants.  相似文献   

10.
11.
Transgenic tobacco (Nicotiana tabacum cv. Xanthi-nc) plants were regenerated after cocultivation of leaf explants withAgrobacterium tumefaciens strain LBA4404 harboring a plasmid that contained the coat protein (CP) gene of cucumber mosaic virus (CMV-As). PCR and Southern blot analyses revealed that the CMV CP gene was successfully introduced into the genomic DNA of the transgenic tobacco plants. Transgenic plants (CP+) expressing CP were obtained and used for screening the virus resistance. They could be categorized into three types after inoculation with the virus: virus-resistant, delay of symptom development, and susceptible type. Most of the CP+ transgenic tobacco plants failed to develop symptoms or showed systemic symptom development delayed for 5 to 42 days as compared to those of nontransgenic control plants after challenged with the same virus. However, some CP+ transgenic plants were highly susceptible after inoculation with the virus. Our results suggest that the CP-mediated viral resistance is readily applicable to CMV disease in other crops.  相似文献   

12.
Genetic transformation of plants allows us to obtain improved genotypes enriched with the desired traits. However, if transgenic lines were to be used in breeding programs the stability of inserted transgenes is essential. In the present study, we followed the inheritance of transgenes in hybrids originated from crossing two transgenic tobacco lines resistant to Potato virus Y (PVY): MN 944 LMV with the transgene containing Lettuce mosaic virus coat protein gene (LMV CP) and AC Gayed ROKY2 with PVY replicase gene (ROKY2). Progeny populations generated by successive self-pollination were analyzed with respect to the transgene segregation ratio and resistance to Potato virus Y in tests carried out under greenhouse conditions. The presence of the virus in inoculated plants was detected by DAS-ELISA method. The results demonstrated the Mendelian fashion of inheritance of transgenes which were segregated independently and stably. As a result, we obtained T4 generation of hybrid with both transgenes stacked and which was highly resistant to PVY.  相似文献   

13.
Transgenic tobacco plants over-expressing a salicylate- and pathogen-inducible glucosyltransferase (TOGT) acting on various phenylpropanoids show enhanced resistance against infection with potato virus Y (PVY). The transgenic plants are characterized by a several-fold increased glucosyltransferase activity in leaves as well as in roots. Under non-infectious conditions profiles of phenylpropanoids in leaves of transgenic lines were similar to that of controls. Feeding experiments with leaf-discs demonstrated a higher capacity for glucosylation of the coumarin scopoletin. After inoculation with PVY the transgenic lines showed similar formation of necrotic leaf lesions but significantly decreased levels of virus coat-protein when compared with control plants. Thus, our results imply that the activity of TOGT and the subsequent accumulation of glucosylated coumarins represent an important step in the cascade of events resulting in confinement of viral pathogens.  相似文献   

14.
15.
16.
Potato virus Y (PVY) infection may cause a severe yield depression up to 80%. To develop the potato (Solanum tuberosum L. ) cultivars that resist PVY infection is very crucial in potato production. The authors have been cloned the coat protein gene of PVY from its Chinese isolate. A chimaeric gene containing the cauliflower mosaic virus 35S promoter and PVY coat protein coding region was introduced into the potato cultivars “Favorita”, “Tiger head” and “K4” via Agrobacterium tumefaciens. Results from PCR and Southern blot analysis confirmed that the foreign gene has integrated into the potato chromosomes. These transgenic potato plants were mechanically inoculated with PVY virus (20 mg/L). The presence of the virus in the potato plants was determined by ELISA and method of back inoculation into tobacco. The authors observed a drastic reduction in the accumulation of virus in some transgenic potato lines. Furthermore, some transgenic potato lines produced more tubers per plant than the untransformed potato did, and the average weight of these transgenic plant tubers was also increased. In the field test, the morphology and development of these transgenic potato plants were normal, 3 transgenic lines of “Favorita” exhibited a higher yield than the untrasformed virus-free potato with an increase ranged from 20% to 30%. From these transgenic lines, it will be very hopeful to develop a potato cultivar which not only has a significant resistance to PVY infection, but also a good harvest in potato production.  相似文献   

17.
18.
19.
转不可翻译PVY^N CP基因烟草的抗病性分析   总被引:3,自引:0,他引:3  
我们曾报道表达不可翻译PVY^N CP基因的转基因烟草抗病性是由RNA介导的,其抗病性类似于转录后的基因沉默(PTGS)。本研究以这类不同抗性的T0代转基因烟草植株为材料,对自交后的T1代转基因植株的遗传和抗病性进行了分析,并选取部分T1代抗病株系自交留种。对T2代RNA介导抗病性转基因植株进行了分子分析和一系列抗病性研究。结果表明,含1—2个转基因拷贝的T0代感病植株,在T1代中的Km抗性分离符合单位点插入的3:1的遗传规律;含3个或3个以上转基因拷贝的T0代中抗或高抗植株,在T1代中的Km抗性分离符合多位点插入的15:1或63:1的遗传规律。大多数T1、T2代转基因植株的抗病性与转基因拷贝数成正相关,转基因在T1、T2代植株中能够转录表达,且转基因植株之间转基因mRNA在细胞质中的积累水平与转基因植株的抗病性成负相关。转基因植株的抗病性能够在T1、T2代中遗传,且T2代转基因植株的抗病性具有以下特征:1)既抗病毒粒体又抗病毒RNA的侵染,且这种抗病性不受接种物剂量的影响;2)抗病谱较窄,只对PVY的某些株系具有高度抗病性;3)与传毒方式无关,既抗摩擦接种又抗带毒蚜虫接种;4)与植株的发育阶段没有关系。  相似文献   

20.
The potato cv. Igor is susceptible to infection with Potato virus Y (PVY) and in Slovenia it has been so severely affected with NTN isolates of PVY causing potato tuber necrotic ringspot disease (PTNRD) that its cultivation has ceased. Plants of cv. Igor were transformed with two transgenes that contained coat protein gene sequence of PVYNTN. Both transgenes used PVY sequence in a sense (+) orientation, one in native translational context (N‐CP), and one with a frame‐shift mutation (FS‐CP). Although most transgenic lines were susceptible to infection with PVYNTN and PVYO, several lines showed resistance that could be classified into two types. Following manual or graft inoculation, plants of partially resistant lines developed some symptoms in foliage and tubers, and virus titre in the foliage, estimated by ELISA, was low or undetectable. In highly resistant (R) lines, symptoms did not develop in foliage and on tubers, and virus could not be detected in foliage by ELISA or infectivity assay. Four lines from 34 tested (two N‐CP and two FS‐CP) were R to PVYNTN and PVYO and one additional line was R to PVYO. When cv. Spey was transformed with the same constructs, they did not confer strong resistance to PVYO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号