首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The yolk proteins stored in Drosophila, oocytes for utilisation during embryogenesis are an ideal system for studying the regulation of gene expression during development. The 3 major polypeptides found in yolk in D. melanogaster are synthesised in the fat body and ovarian follicle cells and selectively accumulated by the oocyte during vitellogenesis. In order to understand more about their regulation and the mechanism of uptake, studies on other species are necessary.Three yolk polypeptides have previously been identified in the D. melanogaster sibling species (D. melanogaster, D. simulans, D. mauritiana, D. erecta, D. teissieri, D. orena and D. yakuba). In D. melanogaster three genes located on the X chromosome are known to code for these yolk polypeptides. in this study genomic Southern transfers and in situ hybridisation experiments were carried out on the sibling species. Using the three cloned yolk protein genes from D. melanogaster, homologous sequences could be detected in the sibling species. It is suggested that three yolk protein genes occur in each of these species, all being located on the X chromosome, and that two of the genes are very closely linked in these same species. Yolk protein gene-homologous DNA sequences have also been identified in two more distantly related species D. funebris and D. virilis.  相似文献   

2.
Drosophila hydei rRNA genes from different chromosomes and from different stocks have been studied by restriction enzyme analysis. In DNA from wild-type females, about half of the X chromosomal rRNA genes are interrupted by an intervening sequence within the 28S coding region. In contrast to D. melanogaster, the intervening sequences belong to a single size class of 6.0 kb. Although there are two nucleolus organizers on the Y chromosome, genes containing the intervening sequence seem to be restricted to the X chromosome. — As shown in four cloned rDNA fragments, the nontranscribed spacers differ in length by having varying numbers of a 242 base pair sequence located in tandem in the right section of the spacer. In genomic rDNA, the spacers also differ in length by a regular 0.25 kb interval. Spacers with between 5 and 15 subrepeats occur frequently within the X and Y chromosomal nucleolus organizers in different D. hydei stocks; shorter and longer spacers are also present but are relatively rare. — Although each genotype is characterized by different frequencies of some spacer classes, the prominent spacer length heterogeneity pattern is similar among the different nucleolus organizers and, therefore, seems to be conserved during evolution.This paper is dedicated to Professor Dr. W. Beermann on the occasion of his 60th birthday  相似文献   

3.
Although heterochromatin makes up a significant portion of the malaria mosquito genome, its organization, function, and evolution are poorly understood. Sibling species of the Anopheles maculipennis subgroup, the European malaria mosquitoes, are characterized by striking differences in the morphology of pericentric heterochromatin; however, the molecular basis for the rapid evolutionary transformation of heterochromatin is not known. This study reports an initial survey of the molecular organization of the pericentric heterochromatin in nonmodel species from the A. maculipennis subgroup. Molecular identity and chromosomal localization were established for short DNA fragments obtained by microdissection from the pericentric diffuse β-heterochromatin of A. atroparvus. Among 102 sequenced clones of the Atr2R library, twenty had sequence similarity to transposable elements (TEs) from the Anopheles gambiae and Aedes aegypti genomes. At least six protein-coding single-copy genes from A. gambiae and four single-copy genes from Drosophila melanogaster were homologous to eight clones from the library. Most of these conserved genes were heterochromatic in A. gambiae but euchromatic in D. melanogaster. The remaining 74 clones were characterized as noncoding repetitive DNA. Comparative chromosome mapping of twelve clones in the sibling species A. atroparvus and A. messeae demonstrated that the noncoding repetitive sequences and the TEs have undergone independent chromosome-specific and species-specific gains and losses in the morphologically different pericentric heterochromatic regions, in accordance with the “library model.”  相似文献   

4.
Chromosome mapping of three common markers, ie major and 5S rRNA genes (rDNA) and telomeric repeats, and conventional chromosome bandings were applied to two sibling species, Apodemus sylvaticus Linnaeus, 1758 and A. flavicollis Melchior, 1834, to further investigate intra- and interspecific karyological differentiation in the genus Apodemus. A slight variation of the rDNA-patterns was detected between the two Apodemus species. In both of them, the major NORs were located on autosome pairs 8, 11, 12 and 22, while the two other rDNA sites detected on chromosomes 7 and 21 were variable in, respectively, A. sylvaticus and A. flavicollis. Several tiny rDNA sites were present on the sex chromosomes in both species, but their incidence was lower in A. flavicollis. Single 5S rDNA chromosomal sites were conserved on chromosome pair 20. No interstitial sites of telomeric repeats were present in either species. In the Sicilian population of A. sylvaticus, the constitutive heterochromatin pattern corresponded to the “sylvaticus-E1” cytotype, while A. flavicollis had a species-specific pattern restricted to centromeres of all chromosomes. The results are discussed in relation to cytogenetic data available for the genus, with emphasis on the Sylvaemus group/subgenus.  相似文献   

5.
The intragenomic distribution of five retrotransposon families (297, 1731, copia, mdg1 and roo) in the species of the melanogaster complex was studied by comparing results of the Southern blotting technique in males and females with those of in situ hybridization. The degree of structural polymorphism of each family in the different species was also investigated by restriction enzyme analysis. It was found that genomic distribution is a trait that depends on the family and species. The distribution of roo is mainly euchromatic in the four species and 1731 is heterochromatic, but the distribution of families 297, copia and mdg1 is markedly different in the melanogaster and simulans clades. These families were mainly euchromatic in D. melanogaster but heterochromatic in its sibling species. In the simulans clade most copia and mdg1 elements are located on chromosome Y. Differences in genomic distribution are unrelated with structural conservation. The relation of intragenomic distribution to phylogeny, transpositional activity and the role of the host genome are discussed.  相似文献   

6.
7.
Common Mechanisms of Y Chromosome Evolution   总被引:5,自引:0,他引:5  
Steinemann M  Steinemann S 《Genetica》2000,109(1-2):105-111
Y chromosome evolution is characterized by the expansion of genetic inertness along the Y chromosome and changes in the chromosome structure, especially the tendency of becoming heterochromatic. It is generally assumed that the sex chromosome pair has developed from a pair of homologues. In an evolutionary process the proto-Y-chromosome, with a very short differential segment, develops in its final stage into a completely heterochromatic and to a great extends genetically eroded Y chromosome. The constraints evolving the Y chromosome have been the objects of speculation since the discovery of sex chromosomes. Several models have been suggested. We use the exceptional situation of the in Drosophila mirandato analyze the molecular process in progress involved in Y chromosome evolution. We suggest that the first steps in the switch from a euchromatic proto-Y-chromosome into a completely heterochromatic Y chromosome are driven by the accumulation of transposable elements, especially retrotransposons inserted along the evolving nonrecombining part of the Y chromosome. In this evolutionary process trapping and accumulation of retrotransposons on the proto-Y-chromosome should lead to conformational changes that are responsible for successive silencing of euchromatic genes, both intact or already mutated ones and eventually transform functionally euchromatic domains into genetically inert heterochromatin. Accumulation of further mutations, deletions, and duplications followed by the evolution and expansion of tandem repetitive sequence motifs of high copy number (satellite sequences) together with a few vital genes for male fertility will then represent the final state of the degenerated Y chromosome. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
The elements of the transposon families G, copia, mdg 1, 412, and gypsy that are located in the heterochromatin and on the Y chromosome have been identified by the Southern blotting technique in Drosophila simulans and D. melanogaster populations. Within species, the abundance of such elements differs between transposon families. Between species, the abundance in the heterochromatin and on the Y chromosome of the elements of the same family can differ greatly suggesting that differences within a species are unrelated to structural features of elements. By shedding some new light on the mechanism of accumulation of transposable elements in the heterochromatin, these data appear relevant to the understanding of the long-term interaction between transposable elements and the host genome. Received: 8 August 1997 / Accepted: 11 December 1997  相似文献   

9.
10.
Summary The technique of chromosome walking was used to isolate approximately 60 kb of DNA from the region containing the complementation group uncoordinated of Drosophila melanogaster, located in that part of the X chromosome which spans the euchromatin-heterochromatin junction. The cloned DNA can be divided into two distinct regions. The first contains sequences that are low copy number or unique and are largely conserved between strains. The second region is characterized by units repeated in tandem arrays and is polymorphic within, and between, strains. Each repetitive unit is separated by a member of an abundant sequence family, part of which is homologous to the ribosomal type 1 insertion sequence of D. melanogaster. The molecular organization of the cloned DNA was compared with that of sequences isolated from regions of intercalary heterochromatin and also with genes which have been characterized from more conventional euchromatic regions.  相似文献   

11.
Chromosoma Focus     
Bruce D. McKee 《Chromosoma》1996,105(3):135-141
  相似文献   

12.
The view that the Y chromosome is of little importance for phenotypic evolution stems from early studies of Drosophila melanogaster. This species’ Y chromosome contains only 13 protein‐coding genes, is almost entirely heterochromatic and is not necessary for male viability. Population genetic theory further suggests that non‐neutral variation can only be maintained at the Y chromosome under special circumstances. Yet, recent studies suggest that the D. melanogaster Y chromosome trans‐regulates hundreds to thousands of X and autosomal genes. This finding suggests that the Y chromosome may play a far more active role in adaptive evolution than has previously been assumed. To evaluate the potential for the Y chromosome to contribute to phenotypic evolution from standing genetic variation, we test for Y‐linked variation in lifespan within a population of D. melanogaster. Assessing variation for lifespan provides a powerful test because lifespan (i) shows sexual dimorphism, which the Y is primarily predicted to contribute to, (ii) is influenced by many genes, which provides the Y with many potential regulatory targets and (iii) is sensitive to heterochromatin remodelling, a mechanism through which the Y chromosome is believed to regulate gene expression. Our results show a small but significant effect of the Y chromosome and thus suggest that the Y chromosome has the potential to respond to selection from standing genetic variation. Despite its small effect size, Y‐linked variation may still be important, in particular when evolution of sexual dimorphism is genetically constrained elsewhere in the genome.  相似文献   

13.

Background

Chromosome four of Drosophila melanogaster, known as the dot chromosome, is largely heterochromatic, as shown by immunofluorescent staining with antibodies to heterochromatin protein 1 (HP1) and histone H3K9me. In contrast, the absence of HP1 and H3K9me from the dot chromosome in D. virilis suggests that this region is euchromatic. D. virilis diverged from D. melanogaster 40 to 60 million years ago.

Results

Here we describe finished sequencing and analysis of 11 fosmids hybridizing to the dot chromosome of D. virilis (372,650 base-pairs) and seven fosmids from major euchromatic chromosome arms (273,110 base-pairs). Most genes from the dot chromosome of D. melanogaster remain on the dot chromosome in D. virilis, but many inversions have occurred. The dot chromosomes of both species are similar to the major chromosome arms in gene density and coding density, but the dot chromosome genes of both species have larger introns. The D. virilis dot chromosome fosmids have a high repeat density (22.8%), similar to homologous regions of D. melanogaster (26.5%). There are, however, major differences in the representation of repetitive elements. Remnants of DNA transposons make up only 6.3% of the D. virilis dot chromosome fosmids, but 18.4% of the homologous regions from D. melanogaster; DINE-1 and 1360 elements are particularly enriched in D. melanogaster. Euchromatic domains on the major chromosomes in both species have very few DNA transposons (less than 0.4 %).

Conclusion

Combining these results with recent findings about RNAi, we suggest that specific repetitive elements, as well as density, play a role in determining higher-order chromatin packaging.  相似文献   

14.
15.
Hybrid females from crosses between Drsophila melanogaster males and females of its sibling species, D. simulans, D. mauritiana, or D. sechellia die as embryos. This lethality is believed to be caused by incompatibility between the X chromosome of D. melanogaster and the maternal cytoplasm. Zygotic hybrid rescue (Zhr) prevents this embryonic lethality and has been cytogenetically mapped to a proximal region of the X chromosome of D. melanogaster, probably in the centromeric heterochromatin. We have carried out high resolution cytological mapping of Zhr using deficiencies and duplications of the X heterochromatin. Deletions of the Zhr + gene from the hybrid genome exhibit the Zhr phenotype. On the contrary, addition of the wild-type gene to the hybrid genome causes embryonic lethality, regardless of sex. The Zhr locus has been narrowed down to the region covered by Dp(1;f)1162 but not covered Dp(1;f)1205, a chromosome carrying a duplication of heterochromatin located slightly distal to the In(1)sc 8 heterochromatic breakpoint.  相似文献   

16.
Summary Chromosomal sites which have DNA homology to the 1 kb (kilobase pair) BamHI restrictable fragment of the 5 kb type I insertion present in many ribosomal genes in Drosophila melanogaster, were identified by using in situ hybridization and autoradiography. XX and XY complements of polytene chromosomes showed the nucleolus and chromocenter to be heavily labeled. Of the light label over euchromatic regions, the 102C band of chromosome 4 labeled particularly intensely. In mitotic XX and XY complements, the NORs (nucleolus organizer regions) of both sex chromosomes labeled as did the centromeric heterochromatin of autosomes. Label also appeared less frequently over telomeric and euchromatic regions.  相似文献   

17.
Morphology of the Drosophila melanogasterpolytene X chromosome section 20 in normal flies, in strains carrying inversions that break pericentric heterochromatin at different points, and at the background of the Su(UR)ESmutation has been examined. In all of the strains carrying the Su(UR)ESmutation section 20 displayed a distinct banding pattern till to the section 20F, while in the wild-type strains this region was represented by -heterochromatin. The strains carrying different inversions substantially differed in the number and morphology of bands forming section 20. In the Su(UR)ESmutants the most proximal X chromosome euchromatic gene,su(f), is mapped to the boundary between sections 20E and F, while rDNA forming the middle part of the X chromosome mitotic heterochromatin is located in the proximal part of section 20. All large bands observed in section 20 of the w; Su(UR)ESstrain were also present inIn(1)sc 4; Su(UR)ES, which breaks heterochromatin in the distal part. Hence, the bands of polytene chromosome section 20 are virtually devoid of mitotic heterochromatin.  相似文献   

18.
The heterochromatin distribution and the position of 18-5.8-26S, and 5S rDNA loci were determined in 13 species of Solanum of the Morelloid and Dulcamaroid clades. The CMA/DAPI staining and FISH were employed. Two types of constitutive heterochromatin were determined: CMA+/DAPI? associated to NOR and CMA+/DAPI? distributed as terminal bands. In the Morelloid clade, CMA+/DAPI? bands were found in five species while in the Dulcamaroid clade, only S. angustifidum presented this feature. In the Morelloid clade, two to four 18-5.8-26S rDNA loci occupied terminal positions and two rDNA 5S loci were found with variable positions (terminal, intercalary, and centromeric). In the Dulcamaroid clade, two terminal 18-5.8-26S rDNA loci were detected with the exception of S. salicifolium which possessed four such loci and two to four 5S rDNA loci. Solanum crispum is the only species possessing the 5S in synteny with 18-5.8-26S rDNA loci. Karyotype features chromosome banding pattern as well as the location of ribosomal genes which varied among the species, reflecting the chromosome differentiation and evolutionary divergence. The findings obtained contributed to the development of tools that can be used for establishing chromosomic homeologies among species and hence to clarify their taxonomic relationships.  相似文献   

19.
He-T DNA is a complex set of repeated DNA sequences with sharply defined locations in the polytene chromosomes of Drosophila melanogaster. He-T sequences are found only in the chromocenter and in the terminal (telomere) band on each chromosome arm. Both of these regions appear to be heterochromatic and He-T sequences are never detected in the euchromatic arms of the chromosomes (Young et al. 1983). In the study reported here, in situ hybridization to metaphase chromosomes was used to study the association of He-T DNA with heterochromatic regions that are under-replicated in polytene chromosomes. Although the metaphase Y chromosome appears to be uniformly heterochromatic, He-T DNA hybridization is concentrated in the pericentric region of both normal and deleted Y chromosomes. He-T DNA hybridization is also concentrated in the pericentric regions of the autosomes. Much lower levels of He-T sequences were found in pericentric regions of normal X chromosomes; however compound X chromosomes, constructed by exchanges involving Y chromosomes, had large amounts of He-T DNA, presumably residual Y sequences. The apparent co-localization of He-T sequences with satellite DNAs in pericentric heterochromatin of metaphase chromosomes contrasts with the segregation of satellite DNA to alpha heterochromatin while He-T sequences hybridize to beta heterochromatin in polytene nuclei. This comparison suggests that satellite sequences do not exist as a single block within each chromosome but have interspersed regions of other sequences, including He-T DNA. If this is so, we assume that the satellite DNA blocks must associate during polytenization, leaving the interspersed sequences looped out to form beta heterochromatin. DNA from D. melanogaster has many restriction fragments with homology to He-T sequences. Some of these fragments are found only on the Y. Two of the repeated He-T family restriction fragments are found entirely on the short arm of the Y, predominantly in the pericentric region. Under conditions of moderate stringency, a subset of He-T DNA sequences cross-hybridizes with DNA from D. simulans and D. miranda. In each species, a large fraction of the cross-hybridizing sequences is on the Y chromosome.  相似文献   

20.
Hoechst 33258 banding of Drosophila nasutoides metaphase chromosomes   总被引:1,自引:1,他引:0  
Hoechst 33258 banding of D. nasutoides metaphase chromosomes is described and compared with Q and C bands. The C band positive regions of the euchromatic autosomes, the X and the Y fluoresce brightly, as is typical of Drosophila and other species. The fluorescence pattern of the large heterochromatic chromosome is atypical, however. Contrary to the observations on other species, the C negative bands of the large heterochromatic chromosome are brightly fluorescent with both Hoechst 33258 and quinacrine. Based on differences in the various banding patterns, four classes of heterochromatin are described in the large heterochromatic chromosome and it is suggested that each class may correspond to an AT-rich DNA satellite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号