共查询到20条相似文献,搜索用时 15 毫秒
1.
Stimulation of 1,25-dihydroxyvitamin D3 production by 1,25-dihydroxyvitamin D3 in the hypocalcaemic rat. 总被引:5,自引:0,他引:5 下载免费PDF全文
Serum 1,25-dihydroxyvitamin D3 concentration and renal 25-hydroxyvitamin D 1 alpha-hydroxylase activity were measured in rats fed various levels of calcium, phosphorus and vitamin D3. Both calcium deprivation and phosphorus deprivation greatly increased circulating levels of 1,25-dihydroxyvitamin D3. The circulating level of 1,25-dihydroxyvitamin D3 in rats on a low-calcium diet increased with increasing doses of vitamin D3, whereas it did not change in rats on a low-phosphorus diet given increasing doses of vitamin D3. In concert with these results, the 25-hydroxyvitamin D 1 alpha-hydroxylase activity was markedly increased by vitamin D3 administration to rats on a low-calcium diet, whereas the same treatment of rats on a low-phosphorus diet had no effect and actually suppressed the 1 alpha-hydroxylase in rats fed an adequate-calcium/adequate-phosphorus diet. The administration of 1,25-dihydroxyvitamin D3 to vitamin D-deficient rats on a low-calcium diet also increased the renal 25-hydroxy-vitamin D 1 alpha-hydroxylase activity. These results demonstrate that the regulatory action of 1,25-dihydroxyvitamin D3 on the renal 25-hydroxyvitamin D3 1 alpha-hydroxylase is complex and not simply a suppressant of this system. 相似文献
2.
Evidence for calcium-dependent control of 1,25-dihydroxyvitamin D3 production by rat kidney proximal tubules 总被引:4,自引:0,他引:4
The role of calcium in the parathyroid hormone-mediated increase in 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) production was evaluated using isolated proximal tubules from rats fed a low calcium diet (0.002% Ca) for 14 days. Tubules were prepared by collagenase digestion and centrifugation through Percoll. Tubules from rats fed a low calcium diet produced 1,25-(OH)2D3 at rates 10 times that of tubules from rats fed normal calcium diet (1.2% Ca). In vitro 1,25-(OH)2D3 biosynthesis was highly dependent upon extracellular calcium with inhibition in the absence of medium calcium and maximal production at 0.25 mM medium calcium (0.9 +/- 0.25 versus 15.1 +/- 2.3 nmol/mg protein/5 min, p less than 0.03). Inhibition of 1,25-(OH)2D3 production was partly due to depressed ATP content (0 versus 1.2 mM calcium, 6.8 +/- 0.6 versus 12.7 +/- 0.6 nmol/mg protein, p less than 0.006). EGTA reduced 1,25-(OH)2D3 synthesis and total cell calcium and ATP production. Ruthenium red blocked the inhibitory effects of EGTA on 1,25-(OH)2D3 production. Barium (1.0 mM) inhibited 1,25-(OH)2D3 production (7.2 +/- 0.5 versus 3.4 +/- 0.3, p less than 0.001) without altering ATP production. The calcium ionophore A23187 increased 1,25-(OH)2D3 production in a calcium-dependent manner. It is concluded that parathyroid hormone-mediated increases in 1,25-(OH)2D3 production, as during low calcium diet, require extracellular calcium. Extracellular calcium maintains mitochondrial calcium at optimal concentrations for normal ATP production, a requirement for 25-hydroxyvitamin D3-1-hydroxylase (25-OH-D3-1-hydroxylase) activity. Inhibition of 25-OH-D3-1-hydroxylase activity by barium without an alteration of ATP suggests calcium may also control 1,25-(OH)2D3 production independent of its effects on oxidative phosphorylation, perhaps through a direct interaction with one or more components of the 25-OH-D3-1-hydroxylase. 相似文献
3.
The nature of the 1,25-dihydroxyvitamin D3 receptor from chick intestine was examined in regard to its response to sodium molybdate. Sodium molybdate (10 mM) stabilized the receptor from crude nuclear extract but not that from the supernatant or cytoplasmic fraction, suggesting the molybdate may act by binding to the DNA binding region of the receptor. At a concentration of 50 mM, sodium molybdate prevented aggregation of the nuclear receptor. This concentration of sodium molybdate also inhibited the receptor from binding to DNA cellulose while the same ionic strength KCl (90 mM) did not. These properties also suggest that molybdate interacts with the DNA binding region. Purification of the receptor using DNA cellulose chromatography has also been improved by using a sodium molybdate gradient (0-0.2 M) instead of the KCl gradient used previously. 相似文献
4.
Calcium accumulation by chick intestinal mitochondria. Regulation by vitamin D-3 and 1,25-dihydroxyvitamin D-3 总被引:2,自引:0,他引:2
D D Bikle E W Askew D T Zolock R L Morrissey R H Herman 《Biochimica et biophysica acta》1980,598(3):561-574
We have the evaluated the effect of vitamin D-3 and its metabolite 1,25-dihydroxyvitamin D-3 on Ca2+ accumulation by chick intestinal mitochondria. Ca2+ accumulation appears to occur in two phases: an early, transient accumulation into an Na+-labile pool followed by an ATP-dependent accumulation into an Na+-resistant pool. Ca2+ accumulation is extensive at free Ca2+ concentrations greater than 3 . 10(-6) M in the presence of ATP. Ruthenium red and dinitrophenol block Ca2+ accumulation, but atractyloside does not. Oligomycin blocks ATP-supported accumulation completely with a partial inhibition of ATP and malate-supported accumulation. Little difference could be found in mitochondrial preparations from vitamin D-deficient chicks compared to those from vitamin D-3 (or 1,25(OH)2D-3)-supplemented chicks with respect to respiratory control, oxygen consumption, efficiency of oxidative phosphorylation, affinity for Ca2+, or the rate and extent of ATP-supported Ca2+ accumulation. Intestinal cytosol stimulated Ca2+ accumulation, but this was not specific with respect to vitamin D status or tissue of origin, nor was it duplicated by chick intestinal Ca2+-binding protein. 30 ng/ml 1,25(OH)2D-3 stimulated Ca2+ accumulation directly, regardless of the presence of intestinal cytosol. Other vitamin D metabolites were less potent: 25-hydroxyvitamin D-3 greater than 24,25-dihydroxyvitamin D-3 = vitamin D-3. Since increasing the free Ca2+ concentration from 3 . 10(-6) to 1 . 10(-5) M increased Ca2+ accumulation approx. 50-fold, whereas direct stimulation by 1,25(OH)2D-3 in vitro increased Ca2+ accumulation less than 2-fold, we conclude that 1,25(OH)2D-3 influences mitochondrial accumulation of Ca2+ in vivo primarily by altering cytosol concentrations of free Ca2+. 相似文献
5.
Daniel D. Bikle E. Wayne Askew David T. Zolock Robert L. Morrissey Robert H. Herman 《生物化学与生物物理学报:生物膜》1980,598(3):561-574
We have evaluated the effect of vitamin D-3 and its metabolite 1,25-dihydroxyvitamin D-3 on Ca2+ accumulation by chick intestinal mitochondria. Ca2+ accumulation appears to occur in two phases: an early, transient accumulation into an Na+-labile pool followed by an ATP-dependent accumulation into an Na+-resistant pool. Ca2+ accumulation is extensive at free Ca2+ concentrations greater than 3 · 10?6 M in the presence of ATP. Ruthenium red and dinitrophenol block Ca2+ accumulation, but atractyloside does not. Oligomycin blocks ATP-supported accumulation completely with a partial inhibition of ATP and malate-supported accumulation. Little difference could be found in mitochondrial preparations from vitamin D-deficient chicks compared to those from vitamin D-3 (or 1,25(OH)2D-3)-supplemented chicks with respect to respiratory control, oxygen consumption, efficiency of oxidative phosphorylation, affinity for Ca2+, or the rate and extent of ATP-supported Ca2+ accumulation. Intestinal cytosol stimulated Ca2+ accumulation, but this was not specific with respect to vitamin D status or tissue of origin, nor was it duplicated by chick intestinal Ca2+-binding protein. 30 ng/ml 1,25(OH)2D-3 stimulated Ca2+ accumulation directly, regardless of the presence of intestinal cytosol. Other vitamin D metabolites were less potent: 25-hydroxyvitamin D-3 > 24,25-dihydroxyvitamin D-3 = vitamin D-3. Since increasing the free Ca2+ concentration from 3 · 10?6 to 1 · 10?5 M increased Ca2+ accumulation approx. 50-fold, whereas direct stimulation by 1,25(OH)2D-3 in vitro increased Ca2+ accumulation less than 2-fold, we conclude that 1,25(OH)2D-3 influences mitochondrial accumulation of Ca2+ in vivo primarily by altering cytosol concentrations of free Ca2+. 相似文献
6.
Side-chain oxidation of vitamin D3 in mouse kidney mitochondria: effect of the Hyp mutation and 1,25-dihydroxyvitamin D3 treatment 总被引:1,自引:0,他引:1
Side-chain oxidation of vitamin D is an important degradative pathway. In the present study we compared the enzymes involved in side-chain oxidation in normal and Hyp mouse kidney. Homogenates of normal mouse kidney catalyze the conversion of 25-hydroxyvitamin D3 to 24,25-dihydroxyvitamin D3, 24-oxo-25-hydroxyvitamin D3 and 24-oxo-23,25-dihydroxyvitamin D3. After subcellular fractionation, total side-chain oxidative activity, estimated by the sum of the three products synthesized per milligram protein under initial rate conditions, coincided with the mitochondrial enzyme marker succinate-cytochrome-c reductase. Treatment of normal mice with 1,25-dihydroxyvitamin D3 (1.5 ng/g) resulted in an eightfold increase in mitochondrial enzyme activity, with no change in apparent Km but a significant rise in Vmax. With 24,25-dihydroxyvitamin D3 as the substrate, normal renal mitochondria produced 24-oxo-25-hydroxyvitamin D3 and 24-oxo-23,25-dihydroxyvitamin D3, and the synthesis of these metabolites could be increased sixfold by pretreatment with 1,25-dihydroxyvitamin D3. In the Hyp mouse, the side-chain oxidation pathway showed similar subcellular distribution of enzyme activity. However, product formation from 25-hydroxyvitamin D3 and 24,25-dihydroxyvitamin D3 was twofold greater in mutant than in normal mitochondria. Furthermore, 1,25-dihydroxyvitamin D3 pretreatment of Hyp mice resulted in a 3.4-fold increase over basal metabolism of both 25-hydroxyvitamin D3 and 24,25-dihydroxyvitamin D3. These results demonstrate that (i) kidneys from normal and Hyp mice possess basal and 1,25-dihydroxyvitamin D3 inducible enzyme system(s) in the mitochondrial fraction, which catalyze the side-chain oxidation of 25-hydroxyvitamin D3 and 24,25-dihydroxyvitamin D3, and (ii) the Hyp mutation appears to perturb the renal metabolism of both substrates only in the basal state. 相似文献
7.
We have studied the binding of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] to its crude chromatin chick intestinal receptor in the absence or presence of a ten-fold excess of 24R,25-dihydroxyvitamin D3 [24R,25(OH)2D3] for each concentration of [3H]-1,25(OH)2D3 studied. We have found a significant shift to the right in the binding of 1,25(OH)2D3 to its receptor in the presence of this excess of 24R,25(OH)2D3. As a result, the affinity was found to be significantly reduced, the apparent dissociation constants varied from 0.97 +/- 0.09 (n = 5) to 1.36 +/- 0.04 nM (p less than 0.01). This reduction was related to a significant decrease in the positive cooperativity for the apparent Hill coefficient from nH = 1.49 +/- 0.06 to nH = 1.26 +/- 0.06 (p less than 0.03) in the binding of 1,25(OH)2D3 to its receptor. There was no significant change in the capacity of the receptor (189 +/- 11 compared to 200 +/- 9 fmoles/mg protein). These results suggest that the intestinal 1,25(OH)2D3 receptor must also have a binding recognition site for 24R,25(OH)2D3 which is postulated to play a regulatory role in the 1,25(OH)2D3 receptor's ligand binding properties. 相似文献
8.
The contents of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) in plasma and intestinal mucose were increased by dietary calcium and by dietary phosphorus restriction. The concentration of intestinal occupied receptors for 1,25(OH)2D3 was higher in calcium-restricted birds. The affinity (association constant) of intestinal receptors for 1,25(OH)2D3 was lower in phosphorus-restricted chicks, as compared to control or calcium-restricted chicks. The number of binding sites were not influenced by dietary calcium or phosphorus restriction. 相似文献
9.
gamma-Interferon stimulates production of 1,25-dihydroxyvitamin D3 by normal human macrophages 总被引:12,自引:0,他引:12
H P Koeffler H Reichel J E Bishop A W Norman 《Biochemical and biophysical research communications》1985,127(2):596-603
We show for the first time that normal human pulmonary alveolar macrophages (PAM) markedly enhance their basal rate of the production of [3H]-1,25(OH)2D3 when cultured in the presence of recombinant gamma-interferon (gamma-IFN). The rate of conversion of [3H]-25(OH)D3 to [3H]-1,25(OH)2D3 was dose-dependent in a linear fashion. A maximal production of 1,25(OH)2D3 by PAM occurred after exposure of PAM to gamma-IFN for one day. This maximum plateau-level was sustained for at least five days. The authenticity of the putative 1,25(OH)2D3 obtained from PAM was tested by demonstrating the exact comigration of [3H]-1,25(OH)2D3 with chemically synthesized 1,25(OH)2D3 in four different HPLC-systems. 相似文献
10.
The appearance of the 1,25-dihydroxyvitamin D3 receptor in intestine, kidney, and chorioallantoic membrane of chick embryo was followed by sucrose density gradient sedimentation analysis and Scatchard plot analysis. The receptor from each of these organs sediments as a single 3.7S component. At 19 days of embryonic life, intestine had the highest specific 1,25-dihydroxyvitamin D3 binding activity followed by kidney and chorioallantoic membrane. The 1,25-dihydroxyvitamin D3 binding activity increased gradually at 12-15 days and rapidly until 20 days in intestine. In kidney, this protein increased rapidly from 12 to 16 days and did not change subsequently. In chorioallantoic membrane, the receptor increased slowly from 8 through 15 days, rapidly until 19 days, and decreased at 20 days. The injection of hydrocortisone into the chick embryo at 10 days increased receptor number in intestine, kidney, and chorioallantoic membrane by a factor of 2 at 12 days. Injection of this hormone after this time had little or no effect. 相似文献
11.
1,25-Dihydroxyvitamin D2 has been prepared from 25-hydroxyvitamin D2 using rachitic chick kidney mitochondria. This metabolite was highly purified by Sephadex LH-20 chromatography and by preparative high-pressure liquid chromatography. Its purity was assessed by analytical high-pressure liquid chromatography which revealed no other 254-nm absorbing material and by mass spectrometry. The concentration of dilute solutions of 1,25-dihydroxyvitamin D2 was determined by high-pressure liquid chromatography and deflection of the 254-nm column monitor. The 1,25-dihydroxyvitamin D2 was then shown to be 1/5 to 1/10 as active as 1,25-dihydroxyvitamin D3 in the chick while it had previously been shown to be equal in activity in the rat. Thus, discrimination against the vitamin D2 side chain by the chick persists in the metabolically active 1,25-dihydroxyvitamin D compounds. 相似文献
12.
13.
We have compared the relative responsiveness of pancreatic, intestinal and renal tissue calbindin-D28K protein content to the stimulatory actions of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] in vitamin D-deficient (-D) chicks. Tissue concentrations of calbindin-D28K were undetectable in the -D chick intestine but present, albeit at low concentrations (less than 1 microgram CaBP/mg protein) in the -D kidney and pancreas. Intestinal, pancreatic and renal calbindin-D28K content was stimulated 318, 9.8 and 2.9 fold respectively, 48 hours after -D chicks received a single dose of 1,25(OH)2D3 [6.5 nmol/animal]. The pancreatic calbindin-D28K content could be significantly stimulated as early as 5 hours after 1,25(OH)2D3 administrations in vivo. These findings support the contention that the pancreas is a target for vitamin D, and is consistent with the view that calbindin-D28K plays a role in normal pancreatic functions. 相似文献
14.
C. Tony Liang Janice Barnes Richard A. Balakir Bertram Sacktor 《The Journal of membrane biology》1986,90(2):145-156
Summary Thein vivo andin vitro effects of 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) on calcium uptake by isolated chick duodenal cells were studied.In vivo, 1,25-(OH)2D3 given orally to vitamin D-deficient chicks increased the initial rate of calcium uptake by cells prepared 1 hr after administration of the hormone. The rate was stimulated approximately 100%, 17 to 24 hr after repletion.In vitro, pre-incubation of 1,25-(OH)2D3 with cells from D-deficient chicks increased the cellular rate of calcium uptake in a concentration-dependent relationship. Enhancement was found with 10–15
m, was maximal at 10–13
m, and was diminished at higher (10–11
m) concentrations. Stimulation was observed after a pre-incubation period as brief as 1 hr. The potency order for vitamin D3 analogs was 1,25-(OH)2D3=1-(OH)D3>25-(OH)D3>1,24,25-(OH)3D3>24,25-(OH)2D3>D3. The maximal enhancement in calcium uptake induced by the analogs was the same, only the concentration at which the cell responded was different. The effectiveness of 1,25-(OH)2D3 was five orders of magnitude greater than D3. Kinetically, 1,25-(OH)2D3 increased theV
max of calcium uptake; the affinity for calcium (K
m=0.54mm) was unchanged. The enhanced uptake found after the cells were pre-incubated for 2 hr with the hormone was completely blocked by inhibitors of protein synthesis. 1,25-(OH)2D3,in vitro, also increased calcium uptake in cells isolated from D-replete chicks. The maximal rates of uptake were the same in cells from D-deficient and D-replete animals. The hormone had no effect of calcium efflux from cells. Calcium uptake in microvillar brush-border membrane vesicles was increased by 1,25-(OH)2D3. These findings suggest that thein vitro cell system described in this paper represents an appropriate model to examine the temporal relationships between 1,25-(OH)2D3 induction of calcium transport and specific biochemical correlates. 相似文献
15.
16.
N J Koszewski T A Reinhardt D C Beitz R L Horst 《Biochemical and biophysical research communications》1990,170(1):65-72
Kidney 1,25-dihydroxyvitamin D receptor (VDR) was examined in both young and aged male Fischer 344 rats. Cytosols prepared by direct homogenization of the kidney indicated no significant difference in the amount of unoccupied VDR in young (149 +/- 8 fmol/mg) and aged (155 +/- 8 fmol/mg) rats. Binding of kidney VDR to DNA-cellulose, however, was significantly different for the two groups. The assay indicated that about 44% and 24% of the VDR prepared from young and aged rats, respectively, were bound to calf thymus DNA. Elution profiles from DNA-cellulose chromatography displayed the presence of two peaks from young kidneys, while a single broad peak was evident from aged rats. Immunoblot analysis confirmed the existence of two receptor bands at 52K and 50K. The presence of the 50K band was greatly diminished or absent in aged samples. The 50K receptor form was observed to elute from DNA-cellulose at a higher salt concentration than the 52K-form. Similarly, prepared receptor extracts from intestinal tissue produced only a single band at 52K. These results demonstrate for the first time that the rat kidney possesses two forms of the receptor which have different affinities for DNA. 相似文献
17.
18.
19.
We have previously described a significant decrease in the positive cooperativity level and affinity of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] binding to its chick intestinal chromatin receptor induced in vitro by a physiological 10-fold molar excess of (24R)-25-dihydroxyvitamin D3 [24R,25(OH)2D3] [F. Wilhelm and A. W. Norman (1985) Biochem. Biophys. Res. Commun. 126, 496-501]. In this report, we have initiated a comparative study of the binding of 24R,25(OH)2[3H]D3 and 1,25(OH)2[3H]D3 to the the intestinal chromatin fraction obtained from vitamin D-replete birds. 24R,25(OH)2[3H]D3 specific binding to this chromatin fraction was characterized by a dissociation constant (Kd) of 34.0 +/- 6.4 nM, a positive cooperativity level (nH) of 1.40 +/- 0.13, and a capacity (Bmax) of 47 +/- 8 fmol/mg protein. The very low relative competitive index (RCI) of 24R,25(OH)2D3 (0.11 +/- 0.03%) for the 1,25(OH)2D3 binding site/receptor, as well as the inability of 1,25(OH)2D3 to displace 24R,25(OH)2D3 from its binding site at a physiological molar ratio of 1:10, strongly suggest the independence of 24R,25(OH)2D3 and 1,25(OH)2D3 binding sites. Stereospecificity of the 24R,25(OH)2D3 binding sites was attested by the displacement of only 45 +/- 6% of 24R,25(OH)2D3 specific binding by equimolar concentrations of 24S,25(OH)2D3. Collectively these results suggest the existence of a binding domain/receptor for 24,25(OH)2D3 in the chick intestine which is independent of the 1,25(OH)2D3 receptor. 相似文献
20.
Vitamin D-deficient chicks were injected intracardially with physiological doses of 1,25-dihydroxycholecalciferol (1,25-(OH)2D3) and the formation of intestinal brush-border proteins was followed in vitro. Within 4 h of receiving the hormone the incorporation of radioactive leucine into at least two proteins in the brush-borders was increased. The apparent molecular weights of these proteins were 45 000 and 84 000. The change in the synthesis of these proteins was followed with time and compared with the concomitant changes in intestinal calcium transport. The relationship of these changes is such that there is a strong possibility that the proteins are involved in calcium absorption. 相似文献