首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Myosin heavy chain composition of muscle spindles in human biceps brachii.   总被引:1,自引:0,他引:1  
Data on the myosin heavy chain (MyHC) composition of human muscle spindles are scarce in spite of the well-known correlation between MyHC composition and functional properties of skeletal muscle fibers. The MyHC composition of intrafusal fibers from 36 spindles of human biceps brachii muscle was studied in detail by immunocytochemistry with a large battery of antibodies. The MyHC content of isolated muscle spindles was assessed with SDS-PAGE and immunoblots. Four major MyHC isoforms (MyHCI, IIa, embryonic, and intrafusal) were detected with SDS-PAGE. Immunocytochemistry revealed very complex staining patterns for each intrafusal fiber type. The bag(1) fibers contained slow tonic MyHC along their entire fiber length and MyHCI, alpha-cardiac, embryonic, and fetal isoforms along a variable part of their length. The bag(2) fibers contained MyHC slow tonic, I, alpha-cardiac, embryonic, and fetal isoforms with regional variations. Chain fibers contained MyHCIIa, embryonic, and fetal isoforms throughout the fiber, and MyHCIIx at least in the juxtaequatorial region. Virtually each muscle spindle had a different allotment of numbers of bag(1), bag(2) and chain fibers. Taken together, the complexity in intrafusal fiber content and MyHC composition observed indicate that each muscle spindle in the human biceps has a unique identity.  相似文献   

2.
3.
The sarcomeric myosin heavy chain (MyHC) proteins are a family of molecular motors responsible for the transduction of chemical energy into mechanical work in striated muscle. The vertebrate genome contains multiple copies of the MyHC gene, and expression of different isoforms correlates with differences in the physiological properties of muscle fibers. Most MyHC isoforms are found in two arrays, one containing the "fast-twitch" skeletal muscle isoforms and the other the "slow-twitch" or cardiac isoforms. To extend our understanding of MyHC evolution, we have examined the genome of the anuran Xenopus tropicalis. The X. tropicalis genome includes15 full-length MyHC genes organized in seven genomic locations. One unique array of MyHC genes is similar to the mammalian fast-skeletal array, but is not found in amniotes. The isoforms in this array are expressed during larval stages and in muscles of the adult larynx. Duplication of the fast-skeletal MyHC array appears to have led to expression divergence of muscle proteins in the larval and adult stages of the anuran life cycle. A striking similarity of gene order between regions flanking X. tropicalis MyHC arrays and human arrays was evident; genomic organization of MyHC isoforms may thus be highly conserved across tetrapods.  相似文献   

4.
Muscle phenotype is determined by combined effects of intrinsic genetic and extrinsic factors like innervation, hormonal levels and mechanical factors or muscle activity. We have been studying the effect of altered thyroid hormone levels on the expression of myosin heavy chain (MyHC) isoforms in control and regenerating soleus and extensor digitorum longus muscles of euthyroid, hypothyroid or hyperthyroid female inbred Lewis rats. The fiber type composition has been determined according to the mATPase activity and immunocytochemical staining of MyHC isoforms, the content of MyHC isoforms has been determined by SDS-PAGE, the mRNA levels have been measured by RT-PCR and the ultrastructural transformation has been analyzed by electron-microscopy. Our results indicate that although the innervation plays a decisive role in the determination of muscle phenotype, levels of thyroid hormones contribute to the extent of muscle phenotype transformation.  相似文献   

5.
Differential expression of multiple myosin heavy chain (MyHC) genes largely determines the diversity of critical physiological, histochemical, and enzymatic properties characteristic of skeletal muscle. Hypotheses to explain myofiber diversity range from intrinsic control of expression based on myoblast lineage to extrinsic control by innervation, hormones, and usage. The unique innervation and specialized function of crayfish (Procambarus clarkii) appendicular and abdominal musculature provide a model to test these hypotheses. The leg opener and superficial abdominal extensor muscles are innervated by tonic excitatory motoneurons. High resolution SDS-PAGE revealed that these two muscles express the same MyHC profile. In contrast, the deep abdominal extensor muscles, innervated by phasic motoneurons, express MyHC profiles different from the tonic profiles. The claw closer muscles are dually innervated by tonic and phasic motoneurons and a mixed phenotype was observed, albeit biased toward the phasic profile seen in the closer muscle. These results indicate that multiple MyHC isoforms are present in the crayfish and that differential expression is associated with diversity of muscle type and function.  相似文献   

6.
7.
This study investigates the myosin heavy chain (MyHC) isoform composition in the gluteus medius muscle of the Akhal-Teke horses using SDS-PAGE (sodium dodecyl sulfate polyacrylamide gel electrophoresis). Fifteen horses aged between 1.5 and 23.5 years were used in this study and divided into three age groups: 1.5 to 4 (n = 6), 9 to 13 (n = 5) and 18.5 to 23.5 years (n = 4). The average content of the MyHC I isoform was 11.72 ± 1.07% (variation between individuals: 7.09% to 20.14%). The relative content of the MyHC IIa and IIx isoforms was subsequently 38.20 ± 1.46% (30.73% to 48.78%) and 50.07 ± 1.10% (43.8% to 56.78%) from the total MyHC. The MyHC pattern in the skeletal muscles of the Akhal-Teke horses shows that the muscles of these horses have a high capacity both for endurance and speed.  相似文献   

8.
Effects of drug-induced hypothyroidism on myosin heavy chain (MyHC) content and fibre types of fast skeletal muscles were studied in a small marsupial, Antechinus flavipes. SDS-PAGE of MyHCs from the tibialis anterior and gastrocnemius revealed four isoforms, 2B, 2X, 2A and slow, in that order of decreasing abundance. After 5 weeks treatment with methimazole, the functionally fastest 2B MyHC significantly decreased, while 2X, 2A and slow MyHCs increased. Immunohistochemistry using monospecific antibodies to each of the four MyHCs revealed decreased 2b and 2x fibres, and increased 2a and hybrid fibres co-expressing two or three MyHCs. In the normally homogeneously fast superficial regions of these muscles, evenly distributed slow-staining fibres appeared, resembling the distribution of slow primary myotubes in fast muscles during development. Hybrid fibres containing 2A and slow MyHCs were virtually absent. These results are more detailed but broadly similar to the earlier studies on eutherians. We hypothesize that hypothyroidism essentially reverses the effects of thyroid hormone on MyHC gene expression of muscle fibres during myogenesis, which differ according to the developmental origin of the fibre: it induces slow MyHC expression in 2b fibres derived from fast primary myotubes, and shifts fast MyHC expression in fibres of secondary origin towards 2A, but not slow, MyHC.  相似文献   

9.
The aim of this investigation was to determine whether 10 weeks of three different types of training can alter the myosin heavy chain (MyHC) composition of the trapezius muscle. Twenty-one women were randomly assigned to three training groups that performed strength (n=9), endurance (n=7) or coordination training (n=5). Pre and post biopsies were taken from the upper part of the descending trapezius muscle and were analysed for MyHC isoform content using 5% gel electrophoresis. In addition, we have studied the expression of embryonic and neonatal MyHCs using double-immunofluorescence staining. In the strength-trained group, there was a significant increase in the amount of MyHC IIA and a significant decrease in the amount of MyHC IIB and MyHC I. In the endurance group, there was a significant decrease in the amount of MyHC IIB. MyHC composition in the coordination group was not altered. Following the training period, myotubes and individual small-sized muscle fibres were observed in the strength and endurance trained groups. These structures were stained with the markers for early myogenesis (MyHC embryonic and neonatal). These data suggest that specific shifts in MyHC isoforms occur in the trapezius muscle following strength and endurance training. The presence of small-sized muscle fibres expressing the developmental isoforms of MyHC suggests that strength and endurance training induced the formation of new muscle fibres. Accepted: 31 March 1999  相似文献   

10.
11.
The patterns of myosin heavy chain (MyHC) isoform expression in the embryo and in the adult mouse are reasonably well characterized and quite distinct. However, little is known about the transition between these two states, which involves major decreases and increases in the expression of several MyHC genes. In the present study, the expression of seven sarcomeric MyHCs was analyzed in the hindlimb muscles of wild-type mice and in mice null for the MyHC IIb or IId/x genes at several time points from 1 day of postnatal life (dpn) to 20 dpn. In early postnatal life, the developmental isoforms (embryonic and perinatal) comprise >90% of the total MyHC expression, while three adult fast isoforms (IIa, IIb, and IId) comprise <1% of the total MyHC protein. However, between 5 and 20 dpn their expression increases to comprise >90% of the total MyHC. Expression of each of the three adult fast isoforms occurs in a spatially and temporally distinct manner. We also show that alpha MyHC, which is almost exclusively expressed in the heart, is expressed in scattered fibers in all hindlimb muscles during postnatal development. Surprisingly, the timing and localization of expression of the MyHC isoforms is unchanged in IIb and IId/x null mice, although the magnitude of expression is altered for some isoforms. Together these data provide a comprehensive overview of the postnatal expression pattern of the sarcomeric MyHC isoforms in the mouse hindlimb.  相似文献   

12.
In the fish heart, ventricular and atrial muscles contain different isoforms of native myosin and myosin heavy chain (MyHC) but the significance of this diversity is still not known. We have analysed ventricular and atrial myocardium of six freshwater fish species (goldfish, roach, bream, rudd, perch and pike-perch) using histochemical staining for myofibrillar ATPase activity as well as non-denaturing and SDS gel electrophoreses for native myosin and MyHC content. In the range of fish species studied, the intensity of ATPase reaction was higher in the atrial myocardium than in the ventricular myocardium and the composition of native myosin isoforms differed between these two muscles. The MyHC content in the cardiac muscle showed some species-related differences. In the goldfish, both atrial and ventricular cardiac muscle contained electrophoretically similar MyHC. In the other fish species, however, the ventricular myocardium showed electrophoretically faster MyHC than that present in the atrial myocardium. These results indicate that there are consistent and characteristic species-related differences between the ventricular and atrial muscles at the level of ATPase staining and the type of MyHC expressed. The findings suggest that fish ventricular and atrial muscles may differ in their contractile properties.  相似文献   

13.
Sarcomeric myosin heavy chains (MyHC) are the major contractile proteins of cardiac and skeletal muscles and belong to class II MyHC. In this study the sequences of nine sarcomeric MyHC isoforms were obtained by combining assembled contigs of the dog genome draft available in the NCBI database. With this information available the dog becomes the second species, after human, for which the sequences of all members of the sarcomeric MyHC gene family are identified. The newly determined sequences of canine MyHC isoforms were aligned with their orthologs in mammals, forming a set of 38 isoforms, to search for the molecular features that determine the structural and functional specificity of each type of isoform. In this way the structural motifs that allow identification of each isoform and are likely determinants of functional properties were identified in six specific regions (surface loop 1, loop 2, loop 3, converter, MLC binding region, and S2 proximal segment).  相似文献   

14.
To assess the influence of paralysis on the expression of phenotypic protein isoforms related to muscle relaxation, the effects of spinal cord transection (ST) on sarco(endo)plasmic reticulum calcium ATPase (SERCA) pump isoform protein levels in the slow rat soleus were measured. Western blotting using SERCA isoform specific antibodies demonstrated a rapid up-regulation (7 days post ST) of the fast fiber type-specific isoform (SERCA1). In contrast, the slow fiber type-specific isoform, SERCA2, was decreased with a slower time-course. The up-regulation of SERCA1 protein preceded the up-regulation of fast myosin heavy chain (MyHC) (i.e., MyHC-II). Immunohistochemical analyses of single muscle fibers showed that 15 days after ST there was a pronounced increase in the proportion of slow MyHC fibers with SERCA1 confirming that SERCA1 was up-regulated in the slow fibers of the soleus prior to MyHC-II. These data suggest that the expression of the SERCA isoforms (particularly SERCA1) may serve as more sensitive markers of phenotypic adaptation in response to altered levels of contractile activity than the MyHC isoforms. In addition, since the expression of SERCA isoforms was dissociated from MyHC isoforms, regulation of gene expression for these two different protein systems must involve different signaling events and/or synthetic processes.  相似文献   

15.
"Superfast" or masticatory myosin is the molecular motor in the powerful and specialized jaw-closing muscles of carnivores, folivores, and frugivores. This myosin presumably underpins the unusual high force and moderate shortening velocity of muscle fibers expressing it. Here, we report the cloning and sequencing of the cDNA encoding the full-length masticatory myosin heavy chain (MyHC) from cat temporalis muscle. This was obtained by immunoscreening a cDNA expression library and RACE-PCR (rapid amplification of cDNA ends–PCR). Sequence comparisons at the DNA and amino acid levels show that masticatory MyHC has less than 70% homology to known striated MyHCs, compared with 87–96% between other mammalian fast isoforms themselves. Nucleotide substitution rates at the nonsynonymous sites between masticatory MyHC and other mammalian striated MyHCs are considerably higher than between these striated MyHCs themselves. Phylogenetic analysis revealed that masticatory MyHC diverged from invertebrate MyHC before the avian cardiac MyHC subclass and the mammalian fast/developmental and slow/cardiac MyHC subclasses. Masticatory MyHC is thus a distinct new subclass of vertebrate striated myosins. The early divergence from invertebrate MyHC, combined with immunochemical evidence of its expression in reptilian and shark jaw-closing muscles, suggests that masticatory MyHC evolved in early gnathostomes, driven by benefits derived from powerful jaw closure. During the mammalian radiation, some taxa continued to express it, while others adapted to new types of food and eating habits by replacing masticatory MyHC with more appropriate isoforms normally found in limb and cardiac muscles.  相似文献   

16.
The aim of this study was to determine the amount of myosin heavy chain (MyHC) proteins and MyHC mRNA in muscles of patients with different positions of the mandible. Ten adult patients for orthognathic surgery were divided into two groups: distal and mesial malocclusion. The mRNA expression of two MyHC isoforms of the anterior and posterior part of the right and left side of the human masseter muscle was analysed with a competitive RT-PCR assay. An exogenous template that includes oligonucleotide sequences specific for sarcomeric MyHC isoforms (1 and 2x) was constructed and utilized as competitor. Different isoforms of the MyHC protein were identified by Western blot analysis. In the total mRNA pool of the masseter muscle, the MyHC 1 mRNA level was 25.5 +/- 7.6% and the MyHC 2x mRNA was 2.5 +/- 1.2%. The anterior part of the masseter muscle from patients with distal occlusion contained more type 1 and 2x MyHC mRNA, as compared to patients with mesial occlusion (P < 0.05). No difference in the protein distribution was observed. The differences in mRNA expression may be caused by the enforced stress of the masticatory muscle in distal occlusion because of the disadvantageous pivot.  相似文献   

17.
The purpose of this investigation was to evaluate changes in myosin heavy chain (MyHC) and titin isoforms after using various loads during explosive jump squat training. Twenty-four male athletic subjects were recruited for this study. Two experimental groups performed 8-weeks of jump squats using either 30% (n = 9) or 80% (n = 9) of their previously determined 1 repetition maximum. A third group served as controls (n = 6). Muscle biopsies were obtained before and after 8 weeks from vastus lateralis. The analysis of titin within these subjects confirmed that human skeletal muscle contains 2 isoforms of titin. There was no significant group x time interaction for MyHC or titin isoform expression. The data from this investigation indicates that a relatively short period of explosive resistance training results in negligible changes in the expression of MyHC or titin isoforms.  相似文献   

18.
19.
Skeletal muscle comprises several fiber types classified based on their contractile and metabolic properties. Skeletal muscle fiber types are classified according to their myosin heavy chain isoforms (MyHC I, IIa, IIx, and IIb). We attained good separation of MyHC isoforms in a mini-gel system by modifying a previously developed electrophoresis protocol. Increased glycerol and decreased cross-linking agent concentrations improved the separation of MyHC isoforms. Sample preparation with dithiothreitol and protease inhibitors produced clear MyHC band boundaries. This protocol included silver staining, with a linear range. The protocol provided high resolution and a highly accurate assay of rodent MyHC isoforms.  相似文献   

20.
During early postnatal development, the myosin heavy chain (MyHC) expression pattern in equine gluteus medius muscle shows adaptation to movement and load,resulting in a decrease in the number of fast MyHC fibers and an increase in the number of slow MyHC fibers. In the present study we correlated the expression of MyHC isoforms to the expression of sarcoplasmic(endo)reticulum Ca2+-ATPase 1 and 2a (SERCA), phospholamban (PLB), calcineurin A (CnA), and calcineurin B (CnB). Gluteus medius muscle biopsies were taken at 0, 2, 4, and 48 weeks and analyzed using immunofluorescence. Both SERCA isoforms and PLB were expressed in almost all fiber types at birth. From 4 weeks of age onward, SERCA1 was exclusively expressed in fast MyHC fibers and SERCA2a and PLB in slow MyHC fibers. At all time points, CnA and CnB proteins were expressed at a basal level in all fibers, but with a higher expression level in MyHC type 1 fibers. From 4 weeks onward, expression of only CnA was also higher in MyHC type 2a and 2ad fibers. We propose a double function of calcineurin in calcium homeostasis and maintenance of slow MyHC fiber type identity. Although equine muscle is already functional at birth, expression patterns of the monitored proteins still show adaptation, depending on the MyHC fiber type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号