首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
K Zhang  P Zhuang  Z Wang  Y Li  Z Jiang  Q Hu  M Liu  Q Zhao 《Carbohydrate polymers》2012,90(4):1515-1521
For the development of biocompatible and degradable biomaterials, a kind of well-defined graft copolymer consisting of chitosan back-bone and amphiphilic PEO-PLLA-PEO branch chains was synthesized by Cu(0) catalyzed one-pot strategy combining "click" chemistry and single electron transfer-nitroxide radical coupling (SET-NRC) reaction. First, the precursors of 6-azide-N-phthaloyl-chitosan, TEMPO-PEO-alkyne and mPEO-PLLA-Br were designed and produced. Then, the one-pot coupling reactions between these precursors were performed in the presence of nanosized Cu and PMDETA. The efficiencies of the coupling reactions were greater than 90% determined by the FTIR and ESR spectra. The structure of graft copolymer with 43% of the grafting ratio was confirmed by the spectral analysis. This work provided a route to prepare chitosan graft copolymer.  相似文献   

2.
The in vivo fate of nanomaterials strongly determines their biomedical efficacy. Accordingly, much effort has been invested into the development of library screening methods to select targeting ligands for a diversity of sites in vivo. Still, broad application of chemical and biological screens to the in vivo targeting of nanomaterials requires ligand attachment chemistries that are generalizable, efficient, covalent, orthogonal to diverse biochemical libraries, applicable under aqueous conditions, and stable in in vivo environments. To date, the copper(I)-catalyzed Huisgen 1,3-dipolar cycloaddition or "click" reaction has shown considerable promise as a method for developing targeted nanomaterials in vitro. Here, we investigate the utility of "click" chemistry for the in vivo targeting of inorganic nanoparticles to tumors. We find that "click" chemistry allows cyclic LyP-1 targeting peptides to be specifically linked to azido-nanoparticles and to direct their binding to p32-expressing tumor cells in vitro. Moreover, "click" nanoparticles are able to stably circulate for hours in vivo following intravenous administration (>5 h circulation time), extravasate into tumors, and penetrate the tumor interstitium to specifically bind p32-expressing cells in tumors. In the future, in vivo use of "click" nanomaterials should expedite the progression from ligand discovery to in vivo evaluation and diversify approaches toward multifunctional nanoparticle development.  相似文献   

3.
A series of 1,2,3-triazole linked saccharide nucleosides were synthesized in high yield and selectivity via "click chemistry" of the 3'-azido-2'-deoxythymidine and the propargyl carbohydrates. [image omitted].  相似文献   

4.
Functionalized collagen is attractive for the development of synthetic biomaterials. Herein we present the functionalization of azidoproline containing collagen model peptides with various alkynes using click chemistry. The influence on the stability of the collagen triple helix of the stereochemistry of the introduced triazolyl prolines (4R or 4S), the position of their incorporation (Xaa or Yaa) and the substituents attached to them are shown. The results provide a useful guide for the optimal functionalization of collagen using click chemistry.  相似文献   

5.
Click chemistry is applied to selectively modify, lable and ligate peptides for their use as therapeutics, in biomaterials or analytical investigations. The inverse electron demand Diels‐Alder (IEDDA) reaction is a catalyst‐free click reaction with pronounced chemoselectivity and fast reaction rates. Applications and achievements of the IEDDA reaction in peptide chemistry since 2008 are described in this review.  相似文献   

6.
Branched DNA was synthesized from tripropargylated oligonucleotides by the Huisgen-Meldal-Sharpless cycloaddition using "stepwise and double click" chemistry. Dendronized oligonucleotides decorated with 7-tripropargylamine side chains carrying two terminal triple bonds were further functionalized with bis-azides to give derivatives with two terminal azido groups. Then, the branched side chains with two azido groups or two triple bonds were combined with DNA-fragments providing the corresponding clickable function. Both concepts afforded branched (Y-shaped) three-armed DNA. Annealing of branched DNA with complementary oligonucleotides yielded supramolecular assemblies. The concept of "stepwise and double click" chemistry combined with selective hybridization represents a flexible tool to generate DNA nanostructures useful for various purposes in DNA diagnostics, delivery, and material science applications.  相似文献   

7.
Successful purification of biological molecules by affinity chromatography requires the attachment of desired ligands to biocompatible chromatographic supports. The Cu(I)-catalyzed cycloaddition of azides and alkynes-the premier example of "click chemistry"-is an efficient way to make covalent connections among diverse molecules and materials. Both azide and alkyne units are highly selective in their reactivity, being inert to most chemical functionalities and stable to wide ranges of solvent, temperature, and pH. We show that agarose beads bearing alkyne and azide groups can be easily made and are practical precursors to functionalized agarose materials for affinity chromatography.  相似文献   

8.
Nanomaterials functionalized with targeting ligands are increasingly recognized as useful materials for molecular imaging and drug delivery. Here we describe the development and validation of azide-alkyne reactions ("click chemistry") for the rapid, site-specific modification of nanoparticles with small molecules. The facile preparation of stable nanoparticles bearing azido or alkyne groups capable of reaction with their corresponding counterpart functionalized small molecules is demonstrated. The Cu(I)-catalyzed cycloaddition of azides and alkynes is shown to be a highly efficient and selective method for point functionalization of magnetic nanoparticles. Derivatized nanoparticles bearing biotin, fluorochrome, or steroid moieties are stable for several months. Nanoparticle click chemistry will be useful for other nanomaterials, design of novel sensors, and drug delivery vehicles.  相似文献   

9.
In an attempt to develop an alternative method to extract DNA from complex samples with much improved sensitivity and efficiency, here we report a proof-of-concept work for a new DNA extraction method using DNA methyltransferase (Mtase) and "click" chemistry. According to our preliminary data, the method has improved the current methods by (i) employing a DNA-specific enzyme, TaqI DNA Mtase, for improved selectivity, and by (ii) capturing the DNA through covalent bond to the functionalized surface, enabling a broad range of treatments yielding the final sample DNA with minimal loss and higher purity such that it will be highly compatible with downstream analyses. By employing Mtase, a highly DNA specific and efficient enzyme, and click chemistry, we demonstrated that as little as 0.1 fg of λ-DNA (close to copy number 1) was captured on silica (Si)-based beads by forming a covalent bond between an azide group on the surface and the propargyl moiety on the DNA. This method holds promise in versatile applications where extraction of minute amounts of DNA plays critical roles such as basic and applied molecular biology research, bioforensic and biosecurity sciences, and state-of-the-art detection methods.  相似文献   

10.
Plant cell walls are the most abundant biomaterials on Earth and serve a multitude of purposes in human society. These complex extracellular matrices are mainly composed of polysaccharides, including cellulose, hemicelluloses, and pectins, which cannot be cytologically examined using conventional techniques. Click chemistry, which exploits a bio-orthogonal cycloaddition reaction between alkynyl and azido groups, has proven to be useful for the metabolic incorporation and detection of modified sugars in polysaccharides in animals, fungi, and bacteria, but its use to interrogate the biosynthesis or dynamics of plant cell walls has not been previously reported. Recently, we found that an alkynylated analog of fucose can be metabolically incorporated into Arabidopsis thaliana cell walls and click labeled with fluorescent probes, facilitating imaging of cell wall carbohydrates. Despite the presence of fucose in several classes of wall polysaccharides, fucose-alkyne was primarily incorporated into rhamnogalacturonan-I, a type of pectin. Using timecourse and pulse-labeling experiments, we observed the dynamics of pectin delivery and reorganization in expanding cell walls. The use of click chemistry to investigate plant cell wall architecture should help bridge the gap between biochemical characterization of isolated cell wall components and an understanding of how those components interact in intact cell walls.  相似文献   

11.
1,3-Dipolar [3 + 2] cycloaddition between azides and alkynes--an archetypal "click" chemistry--has been used increasingly for the functionalization of nucleic acids. Copper(I)-catalyzed 1,3-dipolar cycloaddition reactions between alkyne-tagged DNA molecules and azides work well, but they require optimization of multiple reagents, and Cu ions are known to mediate DNA cleavage. For many applications, it would be preferable to eliminate the Cu(I) catalyst from these reactions. Here, we describe the solid-phase synthesis and characterization of 5'-dibenzocyclooctyne (DIBO)-modified oligonucleotides, using a new DIBO phosphoramidite, which react with azides via copper-free, strain-promoted alkyne-azide cycloaddition (SPAAC). We found that the DIBO group not only survived the standard acidic and oxidative reactions of solid-phase oligonucleotide synthesis (SPOS), but that it also survived the thermal cycling and standard conditions of the polymerase chain reaction (PCR). As a result, PCR with DIBO-modified primers yielded "clickable" amplicons that could be tagged with azide-modified fluorophores or immobilized on azide-modified surfaces. Given its simplicity, SPAAC on DNA could streamline the bioconjugate chemistry of nucleic acids in a number of modern biotechnologies.  相似文献   

12.
13.
A modular dendrimer-based drug delivery platform was designed to improve upon existing limitations in single dendrimer systems. Using this modular strategy, a biologically active platform containing receptor mediated targeting and fluorescence imaging modules was synthesized by coupling a folic acid (FA) conjugated dendrimer with a fluorescein isothiocyanate (FITC) conjugated dendrimer. The two different dendrimer modules were coupled via the 1,3-dipolar cycloaddition reaction ("click" chemistry) between an alkyne moiety on the surface of the first dendrimer and an azide moiety on the second dendrimer. Two simplified model systems were also synthesized to develop appropriate "click" reaction conditions and aid in spectroscopic assignments. Conjugates were characterized by (1)H NMR spectroscopy and NOESY. The FA-FITC modular platform was evaluated in vitro with a human epithelial cancer cell line (KB) and found to specifically target the overexpressed folic acid receptor.  相似文献   

14.
We report on the development of azide-coronatine as a useful platform for azide alkyne cycloaddition ("click chemistry")-mediated synthesis of molecular probes. (+)-Azido-coronatine was synthesized in 10 steps with 11% yield using improved synthesis of coronafacic acid, in which the highly exo-selective Diels-Alder reaction (endo:exo > 1:25) is the key step. Azido coronatine was as effective as the original coronatine in a stomatal opening assay, and was easily modified to a fluorescein isothiocyanate (FITC)-labeled probe with high yield.  相似文献   

15.
Oligonucleotides incorporating 5-(octa-1,7-diynyl)-2'-deoxycytidine 1a, 5-(octa-1,7-diynyl)-2'-deoxyuridine 2a and 7-deaza-7-(octa-1,7-diynyl)-2'-deoxyguanosine 3a, 7-deaza-7-(octa-1,7-diynyl)-2'-deoxyadenosine 4a were prepared. For this, the phosphoramidites 7, 10, and 13 were synthesized and employed in solid-phase oligonucleotide synthesis. The octa-1,7-diynyl nucleosides 1a- 4a were obtained from their corresponding iodo derivatives using the palladium-assisted Sonogashira cross-coupling reaction. The Tm values demonstrated that DNA duplexes containing octa-1,7-diynyl nucleosides show a positive influence on the DNA duplex stability when they are introduced at the 5-position of pyrimidines or at the 7-position of 7-deazapurines. The terminal alkyne residue of oligonucleotides were selectively conjugated to the azide residue of the nonfluorescent 3-azido-7-hydroxycoumarin ( 38) using the protocol of copper(I)-catalyzed [3 + 2] Huisgen--Sharpless--Meldal cycloaddition "click chemistry" resulting in the formation of strongly fluorescent 1,2,3-triazole conjugates. The fluorescence properties of oligonucleotides with covalently linked coumarin--nucleobase assemblies were investigated. Among the four modified bases, the 7-deazapurines show stronger fluorescence quenching than that of pyrimidines.  相似文献   

16.
An efficient and convenient chemoselective conjugation method based on "click chemistry" was developed for coupling ligands to the surface of preformed liposomes. It can be performed under mild conditions in aqueous buffers; the use of a water soluble Cu(I) chelator, such as bathophenanthrolinedisulfonate, was essential to obtain good yields in reasonable reaction times. A model reaction was achieved in which, in a single step, an unprotected alpha-D-mannosyl derivative carrying a spacer arm functionalized with an azide group was conjugated to the surface of vesicles presenting a synthetic lipid carrying a terminal alkyne function. When liposomes composed of saturated phospholipids were used, the reaction conditions developed in the present work did not damage the membranes as measured by the absence of leakage of entrapped 5,6-carboxyfluorescein. Moreover, as assessed by agglutination experiments using concanavalin A, the mannose residues were perfectly accessible on the surface of the targeted vesicles.  相似文献   

17.
Academic researchers and many in industry often lack the financial resources available to scientists working in "big pharma." High costs include those associated with high-throughput screening and chemical synthesis. In order to address these challenges, many researchers have in part turned to alternate methodologies. Virtual screening, for example, often substitutes for high-throughput screening, and click chemistry ensures that chemical synthesis is fast, cheap, and comparatively easy. Though both in silico screening and click chemistry seek to make drug discovery more feasible, it is not yet routine to couple these two methodologies. We here present a novel computer algorithm, called AutoClickChem, capable of performing many click-chemistry reactions in silico. AutoClickChem can be used to produce large combinatorial libraries of compound models for use in virtual screens. As the compounds of these libraries are constructed according to the reactions of click chemistry, they can be easily synthesized for subsequent testing in biochemical assays. Additionally, in silico modeling of click-chemistry products may prove useful in rational drug design and drug optimization. AutoClickChem is based on the pymolecule toolbox, a framework that may facilitate the development of future python-based programs that require the manipulation of molecular models. Both the pymolecule toolbox and AutoClickChem are released under the GNU General Public License version 3 and are available for download from http://autoclickchem.ucsd.edu.  相似文献   

18.
We have developed a new methodology for producing new molecules that bind to dsDNA using DNA-templated click chemistry. The click reactions between the minor groove binding peptide and acridine intercalators were accelerated by the addition of dsDNA. Furthermore, the resulting peptide–acridine conjugate showed a slightly stronger binding to dsDNA. These results indicate that the DNA-templated click chemistry is applicable for screening new binding molecules.  相似文献   

19.
The development of novel macromolecular contrast agents that offer enhanced relaxivity profiles at high magnetic fields have the potential to greatly improve the diagnosis, understanding, and treatment of disease. To this end, we have designed a monodiperse paramagnetic beta-cyclodextrin click cluster decorated with seven paramagnetic arms. A novel alkyne-functionalized diethylenetriaminetetraacetic acid (DTTA) chelate (6) has been created and coupled to a per-azido-beta-cyclodextrin core (7) to yield the precursor macromolecule (8). After removal of the protecting groups and titrating with Gd (3+), the final paramagnetic click cluster, Gd10, was obtained. Luminescence measurements were carried out in H 2O and D 2O on an analogous structure, Eu10, and indicated that at each lanthanide has an average of 1.8 water exchange sites, which is important for enhancing relaxivity and MRI resolution. This discrete paramagnetic click cluster yields a high relaxivity profile (43.4 mM (-1) s (-1) per molecule and 6.2 mM (-1) s (-1) per Gd (3+) at 9.4 T) and enhanced contrast on a human MRI scanner as compared to a commercial agent, Magnevist (3.2 mM (-1) s (-1) at 9.4 T). Moreover, the useful inclusion properties exhibited by beta-cyclodextrin also make this an excellent host scaffold to functionalize via noncovalent assembly with receptor specific targeting moieties for biomolecular imaging.  相似文献   

20.
A simple and versatile method for the preparation of functional enzyme-gold nanoparticle conjugates using "click" chemistry has been developed. In a copper-catalyzed 1,2,3-triazole cycloaddition, an acetylene-functionalized Thermomyces lanuginosus lipase has been attached to azide-functionalized water-soluble gold nanoparticles under retention of enzymatic activity. The products have been characterized by gel electrophoresis and a fluorometric lipase activity assay. It is estimated that the equivalent of approximately seven fully active lipase molecules are attached to each nanoparticle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号