首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
K Huang  W Liu  T Lan  X Xie  J Peng  J Huang  S Wang  X Shen  P Liu  H Huang 《PloS one》2012,7(8):e43874
The accumulation of glomerular extracellular matrix (ECM) is one of the critical pathological characteristics of diabetic renal fibrosis. Fibronectin (FN) is an important constituent of ECM. Our previous studies indicate that the activation of the sphingosine kinase 1 (SphK1)-sphingosine 1- phosphate (S1P) signaling pathway plays a key regulatory role in FN production in glomerular mesangial cells (GMCs) under diabetic condition. Among the five S1P receptors, the activation of S1P2 receptor is the most abundant. Berberine (BBR) treatment also effectively inhibits SphK1 activity and S1P production in the kidneys of diabetic models, thus improving renal injury. Based on these data, we further explored whether BBR could prevent FN production in GMCs under diabetic condition via the S1P2 receptor. Here, we showed that BBR significantly down-regulated the expression of S1P2 receptor in diabetic rat kidneys and GMCs exposed to high glucose (HG) and simultaneously inhibited S1P2 receptor-mediated FN overproduction. Further, BBR also obviously suppressed the activation of NF-κB induced by HG, which was accompanied by reduced S1P2 receptor and FN expression. Taken together, our findings suggest that BBR reduces FN expression by acting on the S1P2 receptor in the mesangium under diabetic condition. The role of BBR in S1P2 receptor expression regulation could closely associate with its inhibitory effect on NF-κB activation.  相似文献   

3.
The molecular mechanism(s) by which high glucose induces fibronectin expression via G-protein activation in the kidney are largely unknown. This investigation describes the effect of high glucose (HG) on a small GTP-binding protein, Rap1b, expression and activation, and the relevance of protein kinase C (PKC) and Raf pathways in fibronectin synthesis in cultured renal glomerular mesangial cells (MCs). In vivo experiments revealed a dose-dependent increase in Rap1b expression in glomeruli of diabetic rat kidneys. Similarly, in vitro exposure of MCs to HG led to an up-regulation of Rap1b with concomitant increase in fibronectin (FN) mRNA and protein expression. The up-regulation of Rap1b mRNA was mitigated by the PKC inhibitors, calphostin C, and bisindolymaleimide, while also reducing HG- induced FN expression in non-transfected MCs. Overexpression of Rap1b by transfection with pcDNA 3.1/Rap1b in MCs resulted in the stimulation of FN synthesis; however, the PKC inhibitors had no significant effect in reducing FN expression in Rap1b-transfected MCs. Transfection of Rap1b mutants S17N (Ser --> Asn) or T61R (Thr --> Arg) in MCs inhibited the HG-induced increased FN synthesis. B-Raf and Raf-1 expression was investigated to assess whether Rap1b effects are mediated via the Raf pathway. B-Raf, and not Raf-1, expression was increased in MCs transfected with Rap1b. HG also caused activation of Rap1b, which was largely unaffected by anti-platelet-derived growth factor (PDGF) antibodies. HG-induced activation of Rap1b was specific, since Rap2b activation and expression of Rap2a and Rap2b were unaffected by HG. These findings indicate that hyperglycemia and HG cause an activation and up-regulation of Rap1b in renal glomeruli and in cultured MCs, which then stimulates FN synthesis. This effect appears to be PKC-dependent and PDGF-independent, but involves B-Raf, suggesting a novel PKC-Rap1b-B-Raf pathway responsible for HG-induced increased mesangial matrix synthesis, a hallmark of diabetic nephropathy.  相似文献   

4.
Renal hypertrophy and extracellular matrix accumulation are early features of diabetic nephropathy. Hyperglycemia-induced oxidative stress is implicated in the etiology of diabetic nephropathy. Resveratrol has potent antioxidative and protective effects on diabetic nephropathy. We aimed to examine whether high glucose (HG)-induced NADPH oxidase activation and reactive oxygen species (ROS) production contribute to glomerular mesangial cell proliferation and fibronectin expression and the effect of resveratrol on HG action in mesangial cells. By using rat mesangial cell line and primary mesangial cells, we found that NADPH oxidase inhibitor (apocynin) and ROS inhibitor (N-acetyl cysteine) both inhibited HG-induced mesangial cell proliferation and fibronectin expression. HG-induced elevation of NADPH oxidase activity and production of ROS in mesangial cells was inhibited by apocynin. These results suggest that HG induces mesangial cell proliferation and fibronectin expression through NADPH oxidase-mediated ROS production. Mechanistic studies revealed that HG upregulated NADPH oxidase subunits p22(phox) and p47(phox) expression through JNK/NF-κB pathway, which resulted in elevation of NADPH oxidase activity and consequent ROS production. Resveratrol prevented HG-induced mesangial cell proliferation and fibronectin expression through inhibiting HG-induced JNK and NF-κB activation, NADPH oxidase activity elevation and ROS production. These results demonstrate that HG enhances mesangial cell proliferation and fibronectin expression through JNK/NF-κB/NADPH oxidase/ROS pathway, which was inhibited by resveratrol. Our findings provide novel therapeutic targets for diabetic nephropathy.  相似文献   

5.
Glomerular endothelial cell injury plays an important role in the development and progression of diabetic nephropathy (DN). The expression and function of klotho in glomerular endothelial cells remain unclear. Thus, this study aimed to investigate the expression and the functional role of klotho in DN progression in mice and in high glucose (HG)-induced cell injury of human renal glomerular endothelial cells (HRGECs) and the underlying mechanism. In this study, HRGECs were cultured with media containing HG to induce endothelial cell injury and db/db mice were used as DN model mice. Klotho was overexpressed or knocked down in HRECs to evaluate its role in HG-induced HRGECs injury. klotho-overexpressing adenovirus (rAAV-klotho) was injected into db/db mice via the tail vein to further validate the protective effect of klotho in DN. Decreased klotho expression was observed in DN patients, DN mice, and HG-exposed HRGECs. Furthermore, klotho overexpression significantly abolished the HG-induced HRGECs injury and activation of Wnt/β-catenin pathway and RAAS. In contrast, klotho knockdown exerted the opposite effects. Moreover, klotho attenuated diabetic nephropathy in db/db mice, which was also associated with inhibition of the Wnt/β-catenin pathway and RAAS. In conclusion, klotho attenuates DN in db/db mice and ameliorates HG-induced injury of HRGECs.  相似文献   

6.
Sphingosine 1-phosphate (S1P), produced by two sphingosine kinase isoenzymes, denoted SphK1 and SphK2, is the ligand for a family of five specific G protein-coupled receptors that regulate cytoskeletal rearrangements and cell motility. Whereas many growth factors stimulate SphK1, much less is known of the regulation of SphK2. Here we report that epidermal growth factor (EGF) stimulated SphK2 in HEK 293 cells. This is the first example of an agonist-dependent regulation of SphK2. Chemotaxis of HEK 293 cells toward EGF was inhibited by N,N-dimethylsphingosine, a competitive inhibitor of both SphKs, implicating S1P generation in this process. Down-regulating expression of SphK1 in HEK 293 cells with a specific siRNA abrogated migration toward EGF, whereas decreasing SphK2 expression had no effect. EGF contributes to the invasiveness of human breast cancer cells, and EGF receptor expression is associated with poor prognosis. EGF also stimulated SphK2 in MDA-MB-453 breast cancer cells. Surprisingly, however, down-regulation of SphK2 in these cells completely eliminated migration toward EGF without affecting fibronectin-induced haptotaxis. Our results suggest that SphK2 plays an important role in migration of MDA-MB-453 cells toward EGF.  相似文献   

7.
8.
Human umbilical vein endothelial cells (HUVEC), like most normal cells, are resistant to tumor necrosis factor-alpha (TNF)-induced apoptosis in spite of TNF activating sphingomyelinase and generating ceramide, a known inducer of apoptosis. Here we report that TNF activates another key enzyme, sphingosine kinase (SphK), in the sphingomyelin metabolic pathway resulting in production of sphingosine-1-phosphate (S1P) and that S1P is a potent antagonist of TNF-mediated apoptosis. The TNF-induced SphK activation is independent of sphingomyelinase and ceramidase activities, suggesting that TNF affects this enzyme directly other than through a mass effect on sphingomyelin degradation. In contrast to normal HUVEC, in a spontaneously transformed endothelial cell line (C11) TNF stimulation failed to activate SphK and induced apoptosis as characterized by morphological and biochemical criteria. Addition of exogenous S1P or increasing endogenous S1P by phorbol ester markedly protected C11 cell line from TNF-induced apoptosis. Conversely, N, N-dimethylsphingosine, an inhibitor of SphK, profoundly sensitized normal HUVEC to killing by TNF. Thus, we demonstrate that the activation of SphK by TNF is an important signaling for protection from the apoptotic effect of TNF in endothelial cells.  相似文献   

9.
Transforming growth factor-beta (TGF-beta) signaling plays a pivotal role in extracellular matrix deposition by stimulating collagen production and other extracellular matrix proteins and by inhibiting matrix degradation. The present study was undertaken to define the role of sphingosine kinase (SphK) in TGF-beta signaling. TGF-beta markedly up-regulated SphK1 mRNA and protein amounts and caused a prolonged increase in SphK activity in dermal fibroblasts. Concomitantly, TGF-beta reduced sphingosine-1-phosphate phosphatase activity. Consistent with the changes in enzyme activity, corresponding changes in sphingolipid levels were observed such that sphingosine 1-phosphate (S1P) was increased (approximately 2-fold), whereas sphingosine and ceramide were reduced after 24 h of TGF-beta treatment. Given the relatively early induction of SphK gene expression in response to TGF-beta, we examined whether SphK1 may be involved in the regulation of TGF-beta-inducible genes that exhibit compatible kinetics, e.g. tissue inhibitor of metalloproteinase-1 (TIMP-1). We demonstrate that decreasing SphK1 expression by small interfering RNA (siRNA) blocked TGF-beta-mediated up-regulation of TIMP-1 protein suggesting that up-regulation of SphK1 contributes to the induction of TIMP-1 in response to TGF-beta. The role of SphK1 as a positive regulator of TIMP-1 gene expression was further corroborated by using ectopically expressed SphK1 in the absence of TGF-beta. Adenovirally expressed SphK1 led to a 2-fold increase of endogenous S1P and to increased TIMP-1 mRNA and protein production. In addition, ectopic SphK1 and TGF-beta cooperated in TIMP-1 up-regulation. Mechanistically, experiments utilizing TIMP-1 promoter constructs demonstrated that the action of SphK1 on the TIMP-1 promoter is through the AP1-response element, consistent with the SphK1-mediated up-regulation of phospho-c-Jun levels, a key component of AP1. Together, these experiments demonstrate that SphK/S1P are important components of the TGF-beta signaling pathway involved in up-regulation of the TIMP-1 gene.  相似文献   

10.
Berberine (BBR) was previously found to have beneficial effects on renal injury in experimental diabetic rats. However, the mechanisms underlying the effects are not fully understood. Sphingosine kinase-Sphingosine 1-phosphate (SphK-S1P) signaling pathway has been implicated in the pathogenesis of diabetic nephropathy (DN). The aim of this study was to investigate the effects of BBR on renal injury and the activation of SphK-S1P signaling pathway in alloxan-induced diabetic mice with nephropathy. Alloxan-induced diabetic mice were treated orally with BBR (300 mg/kg/day) or vehicle for 12 weeks. BBR inhibited the increases in fasting blood glucose, kidney/body weight ratio, blood urea nitrogen, serum creatinine and 24-h albuminuria in diabetic mice. It also prevented renal hypertrophy, TGF-β1 synthesis, FN and Col IV accumulation. Moreover, BBR down-regulated the elevated staining, activity and levels of mRNA and protein of SphK1, and S1P production as well. These findings suggest that the inhibitory effect of BBR on the activation of SphK-S1P signaling pathway in diabetic mouse kidney is a novel mechanism by which BBR partly exerts renoprotective effects on DN.  相似文献   

11.
Adipocyte lipolysis can increase the production of inflammatory cytokines such as interleukin-6 (IL-6) that promote insulin resistance. However, the mechanisms that link lipolysis with inflammation remain elusive. Acute activation of β3-adrenergic receptors (ADRB3) triggers lipolysis and up-regulates production of IL-6 in adipocytes, and both of these effects are blocked by pharmacological inhibition of hormone-sensitive lipase. We report that stimulation of ADRB3 induces expression of sphingosine kinase 1 (SphK1) and increases sphingosine 1-phosphate production in adipocytes in a manner that also depends on hormone-sensitive lipase activity. Mechanistically, we found that adipose lipolysis-induced SphK1 up-regulation is mediated by the c-Jun N-terminal kinase (JNK)/activating protein-1 signaling pathway. Inhibition of SphK1 by sphingosine kinase inhibitor 2 diminished the ADRB3-induced IL-6 production both in vitro and in vivo. Induction of IL-6 by ADRB3 activation was suppressed by siRNA knockdown of Sphk1 in cultured adipocytes and was severely attenuated in Sphk1 null mice. Conversely, ectopic expression of SphK1 increased IL-6 expression in adipocytes. Collectively, these data demonstrate that SphK1 is a critical mediator in lipolysis-triggered inflammation in adipocytes.  相似文献   

12.
The two ubiquitously expressed sphingosine kinases (SphK) 1 and 2 are key regulators of the sphingolipid signaling pathway. Despite the formation of an identical messenger, i.e. sphingosine 1-phosphate (S1P), they exert strikingly different functions. Particularly, SphK2 is necessary for the phosphorylation of the sphingosine analog fingolimod (FTY720), which is protective in rodent stroke models. Using gene deficient mice lacking either SphK1 or SphK2, we investigated the role of the two lipid kinases in experimental stroke.We performed 2 h transient middle cerebral artery occlusion (tMCAO) and analyzed lesion size and neurological function after 24 h. Treatment groups received 1 mg/kg FTY720. Neutrophil infiltration, microglia activation, mRNA and protein expression of SphK1, SphK2 and the S1P1 receptor after tMCAO were studied.Genetic deletion of SphK2 but not SphK1 increased ischemic lesion size and worsened neurological function after tMCAO. The protective effect of FTY720 was conserved in SphK1−/− mice but not in SphK2−/− mice.This suggests that SphK2 activity is an important endogenous protective mechanism in cerebral ischemia and corroborates that the protective effect of FTY720 is mediated via phospho-FTY720.  相似文献   

13.
14.
15.
16.
17.
MicroRNAs (miRs) play important roles in initiation and progression of many pathologic processes. However, the roles of miRs in diabetic nephropathy remain unclear. This study was to determine whether miR-21 was involved in diabetic nephropathy and to explore the relationship between miR-21 and MMP9/TIMP1 expression in diabetic nephropathy. In situ hybridization studies showed that miR-21 was primarily localized and distributed in cortical glomerular and renal tubular cells in diabetic kk-ay kidney. Real-time quantitative RT-PCR demonstrated that the expression of miR-21 was significantly increased in kk-ay mice, compared with control C57BL mice. Interestingly, miR-21 expression positively correlated with urine albumin creatine ratio (ACR), TIMP1, collagen IV (ColIV), and fibronectin (FN); while negatively correlated with creatine clearance ratio (Ccr) and MMP-9 protein. Importantly, antagomir-21 not only ameliorated Ccr and ACR but also decreased TIMP1, ColIV, and FN proteins. In conclusion, our data demonstrate that miR-21 contributes to renal fibrosis by mediating MMP9/TIMP1 and that inhibition of miR-21 may be a novel target for diabetic nephropathy.  相似文献   

18.
The potent sphingolipid metabolite sphingosine 1-phosphate is produced by phosphorylation of sphingosine catalyzed by sphingosine kinase (SphK) types 1 and 2. In contrast to pro-survival SphK1, the putative BH3-only protein SphK2 inhibits cell growth and enhances apoptosis. Here we show that SphK2 catalytic activity also contributes to its ability to induce apoptosis. Overexpressed SphK2 also increased cytosolic free calcium induced by serum starvation. Transfer of calcium to mitochondria was required for SphK2-induced apoptosis, as cell death and cytochrome c release was abrogated by inhibition of the mitochondrial Ca(2+) transporter. Serum starvation increased the proportion of SphK2 in the endoplasmic reticulum and targeting SphK1 to the endoplasmic reticulum converted it from anti-apoptotic to pro-apoptotic. Overexpression of SphK2 increased incorporation of [(3)H]palmitate, a substrate for both serine palmitoyltransferase and ceramide synthase, into C16-ceramide, whereas SphK1 decreased it. Electrospray ionizationmass spectrometry/mass spectrometry also revealed an opposite effect on ceramide mass levels. Importantly, specific down-regulation of SphK2 reduced conversion of sphingosine to ceramide in the recycling pathway and conversely, down-regulation of SphK1 increased it. Our results demonstrate that SphK1 and SphK2 have opposing roles in the regulation of ceramide biosynthesis and suggest that the location of sphingosine 1-phosphate production dictates its functions.  相似文献   

19.
SphK (sphingosine kinase) is the major source of the bioactive lipid and GPCR (G-protein-coupled receptor) agonist S1P (sphingosine 1-phosphate). S1P promotes cell growth, survival and migration, and is a key regulator of lymphocyte trafficking. Inhibition of S1P signalling has been proposed as a strategy for treatment of inflammatory diseases and cancer. In the present paper we describe the discovery and characterization of PF-543, a novel cell-permeant inhibitor of SphK1. PF-543 inhibits SphK1 with a K(i) of 3.6 nM, is sphingosine-competitive and is more than 100-fold selective for SphK1 over the SphK2 isoform. In 1483 head and neck carcinoma cells, which are characterized by high levels of SphK1 expression and an unusually high rate of S1P production, PF-543 decreased the level of endogenous S1P 10-fold with a proportional increase in the level of sphingosine. In contrast with past reports that show that the growth of many cancer cell lines is SphK1-dependent, specific inhibition of SphK1 had no effect on the proliferation and survival of 1483 cells, despite a dramatic change in the cellular S1P/sphingosine ratio. PF-543 was effective as a potent inhibitor of S1P formation in whole blood, indicating that the SphK1 isoform of sphingosine kinase is the major source of S1P in human blood. PF-543 is the most potent inhibitor of SphK1 described to date and it will be useful for dissecting specific roles of SphK1-driven S1P signalling.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号