首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
《Autophagy》2013,9(11):1371-1378
Autophagy is a major intracellular pathway for the degradation and recycling of long-lived proteins, mature ribosomes and even entire organelles. The best studied autophagic marker is the LC3B and it is believed that only the amount of the LC3B-II correlates with the amount of the autophagic membranes. Whether the LC3A processing, aside to LC3B, is a valuable endogenous 'autophagic flux' marker is far less clear. The specificity of rabbit polyclonal antibodies to the LC3A and the LC3B was tested against the commercial available human recombinant proteins LC3A and LC3B. In order to measure 'autophagic flux' in mouse liver, lung, kidney and heart we used: i. a lysosomotropic reagent chloroquine, which inhibit the intra-lysosomal acidification or their fusion with autophagosome, ii. nutrient starvation as an autophagic stimulus and iii. ionizing radiation, which is known to destabilize lysosomes. According to the immunoblotting work the LC3A protein follows discrete patterns of LC3A-I and LC3A-II changes in liver, lung, kidney and heart tissues of mice, whereas the LC3B protein didn't follow the same pattern under stressor conditions. We conclude that the endogenous LC3A processing is a major marker of autophagy flux in mouse model. Fractionated samples (soluble vs. membrane fractions) should be used in immunobloting to allow discrimination between the LC3-I soluble and the LC3-II membrane protein and kinetics. Further, when dealing with in vivo models it is necessary to check the specificity of the antibodies used against the LC3A and LC3B proteins as their expression and responsiveness is not overlapping.  相似文献   

2.
Transmission electron microscopy (TEM) is an indispensable standard method to monitor macroautophagy in tissue samples. Because TEM is time consuming and not suitable for daily routine, many groups try to identify macroautophagy in tissue by conventional immunohistochemistry. The aim of the present study was to evaluate whether immunohistochemical assessment of macroautophagy-related marker proteins such as LC3, ATG5, CTSD/cathepsin D, BECN1/Beclin 1 or SQSTM1/p62 is feasible and autophagy-specific. For this purpose, livers from starved mice were used as a model because hepatocytes are highly sensitive to autophagy induction. ATG7-deficient mouse livers served as negative control. Our findings indicate that unambiguous immunodetection of LC3 in paraffin-embedded tissue specimens was hampered due to low in situ levels of this protein. Maximum sensitivity could only be obtained using high-quality, isoform-specific antibodies, such as antibody 5F10, in combination with Envision+ signal amplification. Moreover, LC3 stains were optimal in neutral-buffered formalin-fixed tissue, immersed in citrate buffer during antigen retrieval. However, even when using this methodology, LC3 monitoring required overexpression of the protein, e.g., in GFP-LC3 transgenic mice. This was not only the case for the liver but also for other organs including heart, skeletal muscle, kidney and gut. Immunohistochemical detection of the autophagy-related proteins ATG5, CTSD or BECN1 is not recommendable for monitoring autophagy, due to lack of differential gene expression or doubtful specificity. SQSTM1 accumulated in autophagy-deficient liver, thus it is not a useful marker for tissue with autophagic activity. We conclude that TEM remains an indispensable technique for in situ evaluation of macroautophagy, particularly in clinical samples for which genetic manipulation or other in vitro techniques are not feasible.  相似文献   

3.
《Autophagy》2013,9(7):929-935
Reliable and quantitative assays to measure in vivo autophagy are essential. Currently, there are varied methods for monitoring autophagy; however, it is a challenge to measure "autophagic flux" in an in vivo model system. Conversion and subsequent degradation of the microtubule-associated protein light chain 3 (MAP1-LC3/LC3) to the autophagosome associated LC3II isoform can be evaluated by immunoblot. However, static levels of endogenous LC3II protein may render possible misinterpretations since LC3II levels can increase, decrease or remain unchanged in the setting of autophagic induction. Therefore, it is necessary to measure LC3II protein levels in the presence and absence of lysomotropic agents that block the degradation of LC3II, a technique aptly named the "autophagometer". In order to measure autophagic flux in mouse skeletal muscle, we treated animals with the microtubule depolarizing agent colchicine. Two days of 0.4 mg/kg/day intraperitoneal colchicine blocked autophagosome maturation to autolysosomes and increased LC3II protein levels in mouse skeletal muscle by >100%. The addition of an autophagic stimulus such as dietary restriction or rapamycin led to an additional increase in LC3II above that seen with colchicine alone. Moreover, this increase was not apparent in the absence of a "colchicine block." Using this assay, we evaluated the autophagic response in skeletal muscle upon denervation induced atrophy. Our studies highlight the feasibility of performing an "in vivo autophagometer" study using colchicine in skeletal muscle.  相似文献   

4.
《Autophagy》2013,9(4):436-437
Autophagy, a cellular program for organelle and protein turnover, represents primarily a cell survival mechanism. However, the role of autophagy in the regulation of apoptosis remains unclear. We have observed increases in morphological and biochemical indicators of autophagy in human lung from patients with chronic obstructive pulmonary disease (COPD). Furthermore, we observed induction of autophagic markers in mouse lung subjected to chronic cigarette smoke exposure. Recently, we investigated the role of the autophagic protein microtubule-associated protein 1 light chain 3B (LC3B) as a regulator of lung cell death. We found that LC3B knockout (LC3B-/-) mice subjected to chronic cigarette smoke exposure have reduced lung apoptosis, and resist airspace enlargement, relative to wild-type mice. We therefore examined the mechanisms by which LC3B can regulate apoptosis in epithelial cells. We found that LC3B forms a complex with the death receptor Fas in lipid rafts of epithelial cells, which requires the caveolae-resident protein caveolin-1. Genetic interference of caveolin-1 in epithelial cells augments cigarette smoke-induced apoptosis. Caveolin-1 knockout mice exhibit increased autophagic markers, apoptosis, and airspace enlargement in the lung in response to chronic cigarette smoke. These studies demonstrate that LC3B can promote tissue injury during chronic cigarette smoke exposure, and suggest a mechanism by which LC3B, through interactions with caveolin-1 and Fas, can regulate apoptosis. Targeting the autophagic pathway may represent an experimental therapeutic strategy when designing new approaches to COPD treatment.  相似文献   

5.
Ryter SW  Lam HC  Chen ZH  Choi AM 《Autophagy》2011,7(4):436-437
Autophagy, a cellular program for organelle and protein turnover, represents primarily a cell survival mechanism. However, the role of autophagy in the regulation of apoptosis remains unclear. We have observed increases in morphological and biochemical indicators of autophagy in human lung from patients with chronic obstructive pulmonary disease (COPD). Furthermore, we observed induction of autophagic markers in mouse lung subjected to chronic cigarette smoke exposure. Recently, we investigated the role of the autophagic protein microtubule-associated protein 1 light chain 3B (LC3B) as a regulator of lung cell death. We found that LC3B knockout (LC3B(-/-)) mice subjected to chronic cigarette smoke exposure have reduced lung apoptosis, and resist airspace enlargement, relative to wild-type mice. We therefore examined the mechanisms by which LC3B can regulate apoptosis in epithelial cells. We found that LC3B forms a complex with the death receptor Fas in lipid rafts of epithelial cells, which requires the caveolae-resident protein caveolin-1. Genetic interference of caveolin-1 in epithelial cells augments cigarette smoke-induced apoptosis. Caveolin-1 knockout mice exhibit increased autophagic markers, apoptosis, and airspace enlargement in the lung in response to chronic cigarette smoke. These studies demonstrate that LC3B can promote tissue injury during chronic cigarette smoke exposure, and suggest a mechanism by which LC3B, through interactions with caveolin-1 and Fas, can regulate apoptosis. Targeting the autophagic pathway may represent an experimental therapeutic strategy when designing new approaches to COPD treatment.  相似文献   

6.
7.
Immunocytochemical investigations have previously shown that antibodies specific for mammal connexins labeled in situ rat and mouse brain gap junctions. However brain gap-junction proteins have neither been identified with certainty, nor purified. By immunoblotting, anti-peptide antibodies directed against rat heart connexin 43 (CX43) detect a major protein of 41 kDa in rat brain homogenates. The specificity of these antibodies made it possible to establish an affinity-chromatography purification procedure of the 41-kDa protein. Purified antibodies specific for the sequence SAEQNRMGQ (residues 314-322) of rat heart CX43 were covalently bound to a protein-A-Sepharose-CL-4B matrix. Rat brain homogenates were recycled through the immunomatrix and the material specifically bound to the matrix was then competitively eluted with the peptide SAEQNRMGQY. Analysis by SDS/PAGE of eluates demonstrated that they contain a 41-kDa protein associated with low amounts of high-molecular-mass proteins. By immunoblotting, these proteins were shown to be specifically recognized by antibodies directed against residues 5-17, 55-56, and 314-322 of rat heart CX43. The NH2-terminal partial sequence for the 41-kDa protein was determined by microsequencing and shown to be similar to alpha 1 connexins. This is the first successful purification of a junctional protein from brain tissue and provides direct evidence that the 41-kDa protein is a CX43 gene product.  相似文献   

8.
《Autophagy》2013,9(8):1227-1244
Autophagy involves the isolation and targeting of unwanted cellular components to lysosomes for their digestion and reuse. Autophagic dysregulation has recently been implicated in a wide range of disease processes, yet facile methods for quantifying autophagy have been lacking in the field. Here we describe the generation of a quantitative plate reader assay for measuring the autophagic activity of cells. One of the best characterized autophagy markers is the protein LC3B, which normally resides in the cytosol (LC3B-I) but upon induction of autophagy becomes lipidated and embedded in autophagosomal membranes (LC3B-II). To quantify autophagy, we reasoned that GFP-tagged LC3B could serve as a time-resolved fluorescence resonance energy transfer (TR-FRET) acceptor upon cell lysis in the presence of terbium-labeled LC3B antibodies. Using this TR-FRET immunoassay approach, we screened a panel of LC3B antibodies and identified an antibody that exhibits strong preferential affinity toward autophagosome-associated LC3B-II and thereby facilitates specific detection of autophagic activity. The plate reader format provides both a quantitative and an objective result, thus overcoming some of the key limitations of the traditional immunoblotting and imaging approaches used to monitor autophagy. Moreover, since the assay step requires only a single addition of cell lysis buffer containing the detection antibody its simple workflow is both automation-friendly and scalable, which renders it suitable for high-throughput screening. We demonstrate how this TR-FRET immunoassay for GFP-tagged LC3B-II can be applied to quantitatively detect changes in the autophagy activity of cells, including estimating effects on autophagic flux.  相似文献   

9.
Disruption of autophagy leads to accumulation of intracellular multilamellar inclusions morphologically similar to organised smooth endoplasmic reticulum (OSER) membranes. However, the relation of these membranous compartments to autophagy is unknown. The purpose of this study was to test whether OSER plays a role in the autophagic protein degradation pathway. Here, GFP‐LC3 is shown to localise to the OSER membranes induced by calnexin expression both in transiently transfected HEK293 cells and in mouse embryo fibroblasts. In contrast to GFP‐LC3, endogenous LC3 is excluded from these membranes under normal conditions as well as after cell starvation. Furthermore, YFP‐Atg5, a protein essential for autophagy and known to reside on autophagic membranes, is excluded from the calnexin‐positive inclusion structures. In cells devoid of Atg5, a protein essential for autophagy and known to reside on autophagic membranes, colocalisation of calnexin with GFP‐LC3 within the multilamellar bodies is preserved. I show that calnexin, a protein enriched in the OSER, is not subject to autophagic or lysosomal degradation. Finally, GFP‐LC3 targeting to these membranes is independent of its processing and insensitive to drugs modulating autophagic and lysosomal protein degradation. These observations are inconsistent with a role of autophagic/lysosomal degradation in clearance of multilamellar bodies comprising OSER. Furthermore, GFP‐LC3, a fusion protein widely used as a marker for autophagic vesicles and pre‐autophagic compartments, may be trapped in this compartment and this artefact must be taken into account if the construct is used to visualise autophagic membranes. J. Cell. Biochem. 107: 86–95, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

10.
《Autophagy》2013,9(4):496-509
Autophagy is a highly conserved cellular response to starvation that leads to the degradation of organelles and long-lived proteins in lysosomes and is important for cellular homeostasis, tissue development and as a defense against aggregated proteins, damaged organelles and infectious agents. Although autophagy has been studied in many animal species, reagents to study autophagy in avian systems are lacking. Microtubule-associated protein 1 light chain 3 (MAP1LC3/LC3) is an important marker for autophagy and is used to follow autophagosome formation. Here we report the cloning of avian LC3 paralogs A, B and C from the domestic chicken, Gallus gallus domesticus, and the production of replication-deficient, recombinant adenovirus vectors expressing these avian LC3s tagged with EGFP and FLAG-mCherry. An additional recombinant adenovirus expressing EGFP-tagged LC3B containing a G120A mutation was also generated. These vectors can be used as tools to visualize autophagosome formation and fusion with endosomes/lysosomes in avian cells and provide a valuable resource for studying autophagy in avian cells. We have used them to study autophagy during replication of infectious bronchitis virus (IBV). IBV induced autophagic signaling in mammalian Vero cells but not primary avian chick kidney cells or the avian DF1 cell line. Furthermore, induction or inhibition of autophagy did not affect IBV replication, suggesting that classical autophagy may not be important for virus replication. However, expression of IBV nonstructural protein 6 alone did induce autophagic signaling in avian cells, as seen previously in mammalian cells. This may suggest that IBV can inhibit or control autophagy in avian cells, although IBV did not appear to inhibit autophagy induced by starvation or rapamycin treatment.  相似文献   

11.
Role of Hrs in maturation of autophagosomes in mammalian cells   总被引:2,自引:0,他引:2  
Autophagy is an evolutionarily conserved system responsible for the degradation of cellular components and contributes to the increasing of amino acid pool, organelle turnover, and elimination of intracellular bacteria. The molecular process of autophagy is still unclear. Here we demonstrate that Hrs, a master regulator in endosomal protein sorting, plays critical roles for the autophagic degradation of non-specific proteins and Streptococcus pyogenes. We found that Hrs containing FYVE domain is localized to autophagosomes. Hrs depletion resulted in a significant decrease in the number of mature autophagosomes (autophagolysosomes) detected by the co-localization of autophagosome marker LC3 and lysosome marker LAMP-1. In contrast, formation of the primary autophagosome, detected by LC3 immunoblotting and lysosomal degradation of non-specific proteins, were not significantly altered by Hrs depletion. Based on these results, we propose a novel function of Hrs, as a crucial player in the maturation of autophagosomes.  相似文献   

12.
LC3s (MAP1-LC3A, B and C) are structural proteins of autophagosomal membranes, widely used as biomarkers of autophagy. Whether these three LC3 proteins have a similar biological role in autophagy remains obscure. We examine in parallel the subcellular expression patterns of the three LC3 proteins in a panel of human cancer cell lines, as well as in normal MRC5 fibroblasts and HUVEC, using confocal microscopy and western blot analysis of cell fractions. In the cytoplasm, there was a minimal co-localization between LC3A, B and C staining, suggesting that the relevant autophagosomes are formed by only one out of the three LC3 proteins. LC3A showed a perinuclear and nuclear localization, while LC3B was equally distributed throughout the cytoplasm and localized in the nucleolar regions. LC3C was located in the cytoplasm and strongly in the nuclei (excluding nucleoli), where it extensively co-localized with the LC3A and the Beclin-1 autophagy initiating protein. Beclin 1 is known to contain a nuclear trafficking signal. Blocking nuclear export function by Leptomycin B resulted in nuclear accumulation of all LC3 and Beclin-1 proteins, while Ivermectin that blocks nuclear import showed reduction of accumulation, but not in all cell lines. Since endogenous LC3 proteins are used as major markers of autophagy in clinical studies and cell lines, it is essential to check the specificity of the antibodies used, as the kinetics of these molecules are not identical and may have distinct biological roles. The distinct subcellular expression patterns of LC3s provide a basis for further studies.  相似文献   

13.
During starvation-induced autophagy in mammals, autophagosomes form and fuse with lysosomes, leading to the degradation of the intra-autophagosomal contents by lysosomal proteases. During the formation of autophagosomes, LC3 is lipidated, and this LC3-phospholipid conjugate (LC3-II) is localized on autophagosomes and autolysosomes. While intra-autophagosomal LC3-II may be degraded by lysosomal hydrolases, recent studies have regarded LC3-II accumulation as marker of autophagy. The effect of lysosomal turnover of endogenous LC3-II in this process, however, has not been considered. We therefore investigated the lysosomal turnover of endogenous LC3-II during starvation-induced autophagy using E64d and pepstatin A, which inhibit lysosomal proteases, including cathepsins B, D and L. We found that endogenous LC3-II significantly accumulated in the presence of E64d and pepstatin A under starvation conditions, increasing about 3.5 fold in HEK293 cells and about 6.7 fold in HeLa cells compared with that in their absence, whereas the amount of LC3-II in their absence is cell-line dependent. Morphological analyses indicated that endogenous LC3-positive puncta and autolysosomes increased in HeLa cells under starvation conditions in the presence of these inhibitors. These results indicate that endogenous LC3-II is considerably degraded by lysosomal hydrolases after formation of autolysosomes, and suggest that lysosomal turnover, not a transient amount, of this protein reflects starvation-induced autophagic activity.  相似文献   

14.
《Autophagy》2013,9(2):84-91
During starvation-induced autophagy in mammals, autophagosomes form and fuse with lysosomes, leading to the degradation of the intra-autophagosomal contents by lysosomal proteases. During the formation of autophagosomes, LC3 is lipidated, and this LC3-phospholipid conjugate (LC3-II) is localized on autophagosomes and autolysosomes. While intra-autophagosomal LC3-II may be degraded by lysosomal hydrolases, recent studies have regarded LC3-II accumulation as marker of autophagy. The effect of lysosomal turnover of endogenous LC3-II in this process, however, has not been considered. We therefore investigated the lysosomal turnover of endogenous LC3-II during starvation-induced autophagy using E64d and pepstatin A, which inhibit lysosomal proteases, including cathepsins B, D, and L. We found that endogenous LC3-II significantly accumulated in the presence of E64d and pepstatin A under starvation conditions, increasing about 3.5 fold in HEK293 cells and about 6.7 fold in HeLa cells compared with that in their absence, whereas the amount of LC3-II in their absence is cell-line dependent. Morphological analyses indicated that endogenous LC3-positive puncta and autolysosomes increased in HeLa cells under starvation conditions in the presence of these inhibitors. These results indicate that endogenous LC3-II is considerably degraded by lysosomal hydrolases after formation of autolysosomes, and suggest that lysosomal turnover, not a transient amount, of this protein reflects starvation-induced autophagic activity.  相似文献   

15.
During lung development type II alveolar epithelial cells produce extracellular pulmonary surfactant. Polyclonal antibodies were produced against nonserum proteins associated with human surfactant. The present studies were designed (i) to determine if mouse surfactant proteins were antigenically cross-reactive with polyclonal antibodies directed against human surfactant proteins; and (ii) to determine surfactant protein localization during fetal, neonatal, and adult mouse lung development. Two-dimensional gel electrophoresis studies in conjunction with immunologic techniques provided evidence that mouse and human surfactant proteins shared antigenic determinants. The major monomeric form of mouse surfactant protein in a glycoprotein of approximately Mr 35,000 under reducing conditions. A less abundant form was identified as a Mr 45,000 polypeptide. Immunohistochemical localization showed that type II cells contain surfactant protein at Theiler stage 26. A gradient of immunostaining was localized within alveolar surfaces. The antigen was not detected in heart, blood vessels, or pulmonary interstitial cells. Surfactant protein was detected lining alveolar surfaces in mature adult lung. The distribution of this protein during fetal and neonatal lung morphogenesis suggests that this extracellular constituent of pulmonary surfactant may be extremely useful as a phenotypic marker with which to evaluate normal and abnormal lung development.  相似文献   

16.
Rat microtubule-associated protein light chain 3 (LC3) is a homologue of yeast Atg8, an essential component of autophagy. Following synthesis, the C-terminus of rat LC3 is cleaved by a cysteine protease-Atg4, to produce LC3-I, which is located in cytosolic fraction. LC3-I can be converted to LC3-II through the processing by Atg7 (E1-like enzyme) and Atg3 (E2-like enzyme). LC3-II is modified by phosphatidylethanolamine on C-terminus and binds tightly to autophagosomal membrane. Here we reported the cloning of two novel variants of rat LC3, named LC3A and LC3B, respectively, and LC3B is an alternative splicing variant of LC3. LC3A, LC3B, and LC3 showed different expression patterns in rat tissues, suggesting a functional divergence among these proteins. When LC3A and LC3B were overexpressed, both exhibited two forms (18 and 16 kDa, representing types of I and II, separately), which might be due to post-translational modification including the characteristic C-terminal cleavage at these two proteins as similar to that found in rat LC3 and yeast Atg8. Subcellular localization demonstrated that both LC3A and LC3B are colocalized with LC3 and associated with the autophagic membranes. Mutation analysis further revealed that the conserved Gly120 residues of LC3A and LC3B are essential for their characteristic C-terminal cleavage and localization to autophagic membranes. Present data suggested that LC3A and LC3B could also be used as two novel autophagosomal markers.  相似文献   

17.
Atg8 is a yeast protein involved in the autophagic process and in particular in the elongation of autophagosomes. In mammals, several orthologs have been identified and are classed into two subfamilies: the LC3 subfamily and the GABARAP subfamily, referred to simply as the LC3 or GABARAP families. GABARAPL1 (GABARAP-like protein 1), one of the proteins belonging to the GABARAP (GABA(A) receptor-associated protein) family, is highly expressed in the central nervous system and implicated in processes such as receptor and vesicle transport as well as autophagy. The proteins that make up the GABARAP family demonstrate conservation of their amino acid sequences and protein structures. In humans, GABARAPL1 shares 86% identity with GABARAP and 61% with GABARAPL2 (GATE-16). The identification of the individual proteins is thus very limited when working in vivo due to a lack of unique peptide sequences from which specific antibodies can be developed. Actually, and to our knowledge, there are no available antibodies on the market that are entirely specific to GABARAPL1 and the same may be true of the anti-GABARAP antibodies. In this study, we sought to examine the specificity of three antibodies targeted against different peptide sequences within GABARAPL1: CHEM-CENT (an antibody raised against a short peptide sequence within the center of the protein), PTG-NTER (an antibody raised against the N-terminus of the protein) and PTG-FL (an antibody raised against the full-length protein). The results described in this article demonstrate the importance of testing antibody specificity under the conditions for which it will be used experimentally, a caution that should be taken when studying the expression of the GABARAP family proteins.  相似文献   

18.
Kim KB  Lee JW  Lee CS  Kim BW  Choo HJ  Jung SY  Chi SG  Yoon YS  Yoon G  Ko YG 《Proteomics》2006,6(8):2444-2453
In order to detect and identify ubiquitous lipid raft marker proteins, we isolated lipid rafts from different mouse organs, including the liver, lung, large brain, and kidney, and analyzed their proteins via 2-DE. Many protein spots were determined to be ubiquitous in all of the lipid rafts, and were annotated via LC and MS/MS. Twelve proteins were identified as ubiquitous raft proteins, and most of these were determined to be mitochondrial proteins, including mortalin, prohibitin, voltage-dependent anion channel, ATP synthase, NADH dehydrogenase, and ubiquinol-cytochrome c reductase. Via immunoblotting, these proteins were shown to exist in detergent-resistant lipid rafts prepared using different organ tissues. Since these oxidation-reduction respiratory chains and ATP synthase complex were detected in detergent-resistant lipid raft fractions which had been isolated from the plasma membrane but not from the mitochondria, and found in the cell surface when determined by immunofluoresence and immunohistochemistry, we conclude that plasma membrane lipid rafts might contain oxidation-reduction respiratory chains and ATP synthase complex.  相似文献   

19.
Toll‐like receptors (TLRs) are essential immunoreceptors involved in host defence against invading microbes. Recent studies indicate that certain TLRs activate immunological autophagy to eliminate microbes. It remains unknown whether TLRs regulate autophagy to play a role in the heart. This study examined this question. The activation of TLR3 in cultured cardiomyocytes was observed to increase protein levels of autophagic components, including LC3‐II, a specific marker for autophagy induction, and p62/SQSTM1, an autophagy receptor normally degraded in the final step of autophagy. The results of transfection with a tandem mRFP‐GFP‐LC3 adenovirus and use of an autophagic flux inhibitor chloroquine both suggested that TLR3 in cardiomyocytes promotes autophagy induction without affecting autophagic flux. Gene‐knockdown experiments showed that the TRIF‐dependent pathway mediated the autophagic effect of TLR3. In the mouse model of chronic myocardial infarction, persistent autophagy was observed, concomitant with up‐regulated TLR3 expression and increased TLR3‐Trif signalling. Germline knockout (KO) of TLR3 inhibited autophagy, reduced infarct size, attenuated heart failure and improved survival. These protective effects were abolished by in vivo administration of an autophagy inducer rapamycin. Similar to the results obtained in cultured cardiomyocytes, TLR3‐KO did not prevent autophagic flux in mouse heart. Additionally, this study failed to detect the involvement of inflammation in TLR3‐KO‐derived protection, as wild‐type and TLR3‐KO hearts were comparable in inflammatory activity. It is concluded that up‐regulated TLR3 expression and signalling contributes to persistent autophagy following MI, which promotes heart failure and lethality.  相似文献   

20.
Microtubule-associated protein 1 (MAP1) light chain 3 (LC3) has proven useful as autophagosomal marker in studies on the interaction between pathogens and the host autophagic machinery. However, the function of LC3 is known to extend above and beyond its role in autophagosome formation. We previously reported that intrinsic LC3 is associated with the intracellular Chlamydia trachomatis inclusion in human epithelial cells. Here we show that LC3, most likely the cytoplasmic nonlipidated form, interacts with the C. trachomatis inclusion as a microtubule-associated protein rather than an autophagosome-associated component. In contrast, N-terminally GFP-tagged LC3 exclusively targets autophagosomes rather than chlamydial inclusions. Immunofluorescence analysis revealed an association of LC3 and MAP1 subunits A and B with the inclusion as early as 18 h post infection. Inclusion-bound LC3 was connected with the microtubular network. Depolymerization of the microtubular architecture disrupted the association of LC3/MAP1s with the inclusion. Furthermore, siRNA-mediated silencing of the MAP1 and LC3 proteins revealed their essential function in the intracellular growth of C. trachomatis. Interestingly, defective autophagy remarkably enhanced chlamydial growth, suggesting a suppressive effect of the autophagic machinery on bacterial development. However, depletion of LC3 in autophagy-deficient cells noticeably reduced chlamydial propagation. Thus, our findings demonstrate a new function for LC3, distinct from autophagy, in intracellular bacterial pathogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号