首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《Autophagy》2013,9(11):1394-1396
Hepatitis C virus (HCV) infects approximately 130 million people worldwide. The clinical sequelae of this chronic disease include cirrhosis, functional failure and carcinoma of the liver. HCV induces autophagy, a fundamental cellular process for maintaining homeostasis and mediating innate immune response, and also inhibits autophagic protein degradation and suppresses antiviral immunity. In addition to this ploy, the HCV serine protease composed of the viral non-structural proteins 3/4A (NS3/4A) can enzymatically digest two cellular proteins, mitochondria-associated anti-viral signaling protein (MAVS) and Toll/interleukin-1 receptor domain containing adaptor inducing IFN-β (TRIF). Since these two proteins are the adaptor molecules in the retinoic acid-inducible gene I (RIG-I) and TLR3 pathways, respectively, their cleavage has been suggested as a pivotal mechanism by which HCV blunts the IFN-α/β signaling and antiviral responses. Thus far, how HCV perturbs autophagy and copes with IFN-α/β in the liver remains unclear.  相似文献   

2.
Yeonkyoung Park  Joori Park 《Autophagy》2018,14(6):1079-1081
Many neurodegenerative disorders feature the presence of misfolded polypeptide-containing intracellular inclusion bodies biochemically and morphologically analogous to cellular aggresomes. However, it is largely unknown how misfolded polypeptides form aggresomes and are eventually cleared by the aggresome-macroautophagy/autophagy pathway, so-called aggrephagy. Our recent study revealed that when the ubiquitin-proteasome system is impaired, the accumulated misfolded polypeptides are selectively recognized and transported to the aggresome by a CED complex. This complex is composed of CTIF, originally identified as a specific factor for nuclear cap-binding protein complex (a heterodimer of NCBP1/CBP80 and NCBP2/CBP20)-dependent translation (CT), and its associated factors EEF1A1 and DCTN1. Aggresomal targeting of a misfolded polypeptide via the CED complex is accompanied by CTIF release from the CT complex and thereby inhibits CT efficiency. Therefore, our study provides new mechanistic insights into the crosstalk between translational inhibition and aggresome formation under the influence of a misfolded polypeptide.  相似文献   

3.
Metallo-β-lactamases (MBLs) are zinc-dependent hydrolases that inactivate virtually all β-lactam antibiotics. The expression of MBLs by Gram-negative bacteria severely limits the therapeutic options to treat infections. MBLs bind the essential metal ions in the bacterial periplasm, and their activity is challenged upon the zinc starvation conditions elicited by the native immune response. Metal depletion compromises both the enzyme activity and stability in the periplasm, impacting on the resistance profile in vivo. Thus, novel inhibitory approaches involve the use of chelating agents or metal-based drugs that displace the native metal ion. However, newer MBL variants incorporate mutations that improve their metal binding abilities or stabilize the metal-depleted form, revealing that metal starvation is a driving force acting on MBL evolution. Future challenges require addressing the gap between in cell and in vitro studies, dissecting the mechanism for MBL metalation and determining the metal content in situ.  相似文献   

4.
Because susceptibility to celiac disease is associated strongly with HLA-DQ2 (DQA1*05/DQB1*02) and weakly with HLA-DQ8 (DQA1*03/DQB1*03), a subset of patients carries both HLA-DQ2 and HLA-DQ8. As a result, these patients may express two types of mixed HLA-DQ2/8 transdimers (encoded by DQA1*05/DQB1*03 and DQA1*03/DQB1*02) in addition to HLA-DQ2 and HLA-DQ8. Using T cells from a celiac disease patient expressing HLA-DQ8trans (encoded by DQA*0501/DQB*0302), but neither HLA-DQ2 nor HLA-DQ8, we demonstrate that this transdimer is expressed on the cell surface and can present multiple gluten peptides to T cell clones isolated from the duodenum of this patient. Furthermore, T cell clones derived from this patient and HLA-DQ2/8 heterozygous celiac disease patients respond to gluten peptides presented by HLA-DQ8trans, as well as HLA-DQ8, in a similar fashion. Finally, one gluten peptide is recognized better when presented by HLA-DQ8trans, which correlates with preferential binding of this peptide to HLA-DQ8trans. These results implicate HLA-DQ8trans in celiac disease pathogenesis and demonstrate extensive T cell cross-reactivity between HLA-DQ8 and HLA-DQ8trans. Because type 1 diabetes is strongly associated with the presence of HLA-DQ8trans, our findings may bear relevance to this disease as well.  相似文献   

5.
The Syrian hamster Harderian gland (HG) is a juxtaorbital organ exhibiting marked gender-associated morphological differences. Regarding contents of porphyrins, this gland is a good model for studying physiological oxidative stress effects, since both sexes present strong (in females) and moderate (in males) levels of this stress in normal conditions. We have recently showed that autophagic processes are in the Syrian hamster HG as the first result of an elevated porphyrin metabolism observed in both sexes. In this case, autophagy is not a cell death mechanism per se but a constant renovation system which allows to continuing with the normal gland activity. Moreover, we have also reported that this gland presents invasive processes, resembling to tumoral progression, and are, additionally, a consequence of a strong oxidative stress environment that is mainly observed in female Syrian hamster HG and in minor proportion in male HG. Here, we present additional data and discuss a model of melatonin action on these cited processes by which melatonin would be able to destroy the equilibrium between both detoxifying actions. We postulate that melatonin reduces oxidative stress level into HG as direct antioxidant. This decrease of free radicals produces the autophagy inhibition due to outbreak signal disappearance in HG. Under these events and regarding the huge contents of porphyrins that this gland supports, the invasive process triggers.  相似文献   

6.
Autophagy is a highly conserved and regulated intracellular lysosomal degradation pathway that is essential for cell survival. Dysregulation has been linked to the development of various human diseases, including neurodegeneration and tumorigenesis, infection, and aging. Besides, many viruses hijack the autophagosomal pathway to support their life cycle. The hepatitis C virus (HCV), a major cause of chronic liver diseases worldwide, has been described to induce autophagy. The autophagosomal pathway can be further activated in response to elevated levels of reactive oxygen species (ROS). HCV impairs the Nrf2/ARE-dependent induction of ROS-detoxifying enzymes by a so far unprecedented mechanism. In line with this, this review aims to discuss the relevance of HCV-dependent elevated ROS levels for the induction of autophagy as a result of the impaired Nrf2 signaling and the described crosstalk between p62 and the Nrf2/Keap1 signaling pathway. Moreover, autophagy is functionally connected to the endocytic pathway as components of the endosomal trafficking are involved in the maturation of autophagosomes. The release of HCV particles is still not fully understood. Recent studies suggest an involvement of exosomes that originate from the endosomal pathway in viral release. In line with this, it is tempting to speculate whether HCV-dependent elevated ROS levels induce autophagy to support exosome-mediated release of viral particles. Based on recent findings, in this review, we will further highlight the impact of HCV-induced autophagy and its interplay with the endosomal pathway as a novel mechanism for the release of HCV particles.  相似文献   

7.
Epithelial cells are a major port of entry for many viruses, but the molecular networks which protect barrier surfaces against viral infections are incompletely understood. Viral infections induce simultaneous production of type I (IFN-α/β) and type III (IFN-λ) interferons. All nucleated cells are believed to respond to IFN-α/β, whereas IFN-λ responses are largely confined to epithelial cells. We observed that intestinal epithelial cells, unlike hematopoietic cells of this organ, express only very low levels of functional IFN-α/β receptors. Accordingly, after oral infection of IFN-α/β receptor-deficient mice, human reovirus type 3 specifically infected cells in the lamina propria but, strikingly, did not productively replicate in gut epithelial cells. By contrast, reovirus replicated almost exclusively in gut epithelial cells of IFN-λ receptor-deficient mice, suggesting that the gut mucosa is equipped with a compartmentalized IFN system in which epithelial cells mainly respond to IFN-λ that they produce after viral infection, whereas other cells of the gut mostly rely on IFN-α/β for antiviral defense. In suckling mice with IFN-λ receptor deficiency, reovirus replicated in the gut epithelium and additionally infected epithelial cells lining the bile ducts, indicating that infants may use IFN-λ for the control of virus infections in various epithelia-rich tissues. Thus, IFN-λ should be regarded as an autonomous virus defense system of the gut mucosa and other epithelial barriers that may have evolved to avoid unnecessarily frequent triggering of the IFN-α/β system which would induce exacerbated inflammation.  相似文献   

8.
Here we show that low-dose cyclophosphamide (CY), that depends for its therapeutic effectiveness on the immunopotentiating activity of the drug for T cell-mediated tumor-eradicating immunity, is curative for ~80% of wild-type (WT) mice bearing a large s.c. MOPC-315 tumor, but only for ~10% of IFN-α/βR−/− mice bearing a large s.c. MOPC-315 tumor. Histopathological examination of the s.c. tumors of such mice on day 4 after the chemotherapy revealed that the low dose of CY led to accumulation of T lymphocytes in both the WT and the IFN-α/βR−/− mice. However, in the CY treated tumor bearing WT mice the T lymphocytes were present throughout the tumor mass and in direct contact with tumor cells, but in the CY treated tumor bearing IFN-α/βR−/− mice most of the T lymphocytes remained in blood vessels. In addition to being important for CY-induced transendothelial migration of T lymphocytes into the tumor mass, we show here that signaling via the IFN-α/βR is also important for CY-induced control of metastatic tumor progression in the spleen and liver of the tumor bearing mice. Finally, CY cured tumor bearing WT mice were resistant to a subsequent challenge with MOPC-315 tumor cells, but the few CY cured tumor bearing IFN-α/βR−/− mice were not. Thus, signaling via the IFN-α/βR on host cells in MOPC-315 tumor bearers is important for CY-induced: (a) transendothelial migration of T lymphocytes into the tumor mass and the eradication of the primary tumor, (b) control of metastatic tumor progression, and (c) resistance to a subsequent tumor challenge. This work was supported by Research Grant 03-19 from the American Cancer Society-Illinois Division.  相似文献   

9.
The Epstein-Barr virus (EBV)-coded nuclear antigen (EBNA) 1, a latent cycle protein endogenously expressed in EBV-transformed B lymphoblastoid cell lines (LCLs), is reported to be processed for CD4(+) T cell recognition by an intracellular route involving antigen delivery to the endosome/lyosome (MHC class II loading) compartment via macroautophagy. In contrast we find that, in the same cell type, two other virus-coded nuclear proteins of the latent cycle, EBNA2 and EBNA3C, are processed by a different route that is unaffected by autophagy inhibition. This involves the intercellular transfer of an antigenic moiety, detectable in cell-free culture supernatants, and its uptake and processing as exogenous antigen by neighboring cells. The process is cumulative and leads over several days of LCL culture to high levels of CD4+ T cell epitope display. The presentation of certain EBV lytic cycle proteins to CD4+ T cells has also recently been found to involve a similar intercellular antigen transfer. It becomes important to know why, even in the same cell type, some antigens but not others appear to access the MHC class II presentation pathway by autophagy.  相似文献   

10.
At the start of the 21st century, respiratory syncytial virus (RSV) remains a serious global health concern. Although RSV has traditionally been acknowledged as a leading cause of morbidity and mortality in the paediatric population, the elderly and people with suppressed immune systems are now also recognised as being at risk from serious RSV infection. This problem is currently exacerbated by the lack of an effective vaccine to prevent RSV infection. Although the virus proteins play a variety of roles during the virus replication cycle, in many cases these tasks are performed via specific interactions with host-cell factors, including proteins, carbohydrates and lipids. The way in which RSV interacts with the host cell is currently being examined using a battery of different techniques, which encompass several scientific disciplines. This is providing new and interesting insights into how RSV interacts with the host cell at the molecular level, which in turn is offering the hope of new strategies to prevent RSV infection.  相似文献   

11.
Recent advances in the understanding of the molecular processes contributing to autophagy have provided insight into the relationship between autophagy and apoptosis. In contrast to the concept of “autophagic cell death,” accumulating evidence suggests that autophagy serves a largely cytoprotective role in physiologically relevant conditions. The cytoprotective function of autophagy is mediated in many circumstances by negative modulation of apoptosis. Apoptotic signaling, in turn, serves to inhibit autophagy. While the mechanisms mediating the complex counter-regulation of apoptosis and autophagy are not yet fully understood, important points of crosstalk include the interactions between Beclin-1 and Bcl-2/Bcl-xL and between FADD and Atg5, caspase- and calpain-mediated cleavage of autophagy-related proteins, and autophagic degradation of caspases. Continued investigation of these and other means of crosstalk between apoptosis and autophagy is necessary to elucidate the mechanisms controlling the balance between survival and death both under normal conditions and in diseases including cancer.  相似文献   

12.
13.
We previously reported that mice lacking alpha/beta and gamma interferon receptors (IFN-α/βR and -γR) uniformly exhibit paralysis following infection with the dengue virus (DENV) clinical isolate PL046, while only a subset of mice lacking the IFN-γR alone and virtually no mice lacking the IFN-α/βR alone develop paralysis. Here, using a mouse-passaged variant of PL046, strain S221, we show that in the absence of the IFN-α/βR, signaling through the IFN-γR confers approximately 140-fold greater resistance against systemic vascular leakage-associated dengue disease and virtually complete protection from dengue-induced paralysis. Viral replication in the spleen was assessed by immunohistochemistry and flow cytometry, which revealed a reduction in the number of infected cells due to IFN-γR signaling by 2 days after infection, coincident with elevated levels of IFN-γ in the spleen and serum. By 4 days after infection, IFN-γR signaling was found to restrict DENV replication systemically. Clearance of DENV, on the other hand, occurred in the absence of IFN-γR, except in the central nervous system (CNS) (brain and spinal cord), where clearance relied on IFN-γ from CD8+ T cells. These results demonstrate the roles of IFN-γR signaling in protection from initial systemic and subsequent CNS disease following DENV infection and demonstrate the importance of CD8+ T cells in preventing DENV-induced CNS disease.  相似文献   

14.
HSP90 continues to be a target of interest for neurodegeneration indications. Selective knockdown of the HSP90 cytosolic isoforms α and β is sufficient to reduce mutant huntingtin protein levels in vitro. Chemotype-dependent binding conformations of HSP90α/β appear to strongly influence isoform selectivity. The rational design of HSP90α/β inhibitors selective versus the mitochondrial (TRAP1) and endoplasmic reticulum (GRP94) isoforms offers a potential mitigating strategy for mechanism-based toxicities. Better tolerated HSP90 inhibitors would be attractive for targeting chronic neurodegenerative diseases such as Huntington’s disease.  相似文献   

15.
Interactions between environmental stressors play an important role in shaping the health of an organism. This is particularly true in terms of the prevalence and severity of infectious disease, as stressors in combination will not always act to simply decrease the immune function of a host, but may instead interact to compound or even oppose the influence of parasitism on the health of an organism. Here, we explore the impact of environmental stress on host–parasite interactions using the water flea Daphnia magna and it is obligate parasite Pasteuria ramosa. Utilising an ecologically relevant stressor, we focus on the combined effect of salinity and P. ramosa on the fecundity and survival of the host, as well as on patterns of infectivity and the proliferation of the parasite. We show that in the absence of the parasite, host fecundity and survival was highest in the low salinity treatments. Once a parasite was introduced into the environment, however, salinity and parasitism acted antagonistically to influence both host survival and fecundity, and these patterns of disease were unrelated to infection rates or parasite spore loads. By summarising the form of interactions found in the broader Daphnia literature, we highlight how the combined effect of stress and parasitism will vary with the type of stressor, the trait used to describe the health of Daphnia and the host–parasite combination under observation. Our results highlight how the context-dependent nature of interactions between stress and parasitism inevitably complicates the link between environmental factors and the prevalence and severity of disease.  相似文献   

16.
Zheng L  Marcusson J  Terman A 《Autophagy》2006,2(2):143-145
Intraneuronal accumulation of amyloid beta-protein (Abeta) is believed to be responsible for degeneration and apoptosis of neurons and consequent senile plaque formation in Alzheimer disease (AD), the main cause of senile dementia. Oxidative stress, an early determinant of AD, has been recently found to induce intralysosomal Abeta accumulation in cultured differentiated neuroblastoma cells through activation of macroautophagy. Because Abeta is known to destabilize lysosomal membranes, potentially resulting in apoptotic cell death, this finding suggests the involvement of oxidative stress-induced macroautophagy in the pathogenesis of AD.  相似文献   

17.
Peripheral blood and tissue eosinophilia characterize trichinellosis in humans, and present in addition to the increased total IgE levels that occur in many helminth infections. Both processes are the consequence of T-helper 2 activation. Blood and tissue eosinophilia begins with eosinophilopoiesis in the bone marrow, which is followed by the migration of eosinophils through the circulatory system, the eosinophil infiltration of tissues at the inflammatory foci and, finally, degranulation and cell death. Recently, some aspects of eosinophilia caused by Trichinella spiralis infection have been elucidated; however, the protective role of this population of cells against Trichinella parasites remains controversial. Furthermore, when eosinophils are numerous, they can be toxic for host tissues. This review discusses these issues in both human and rodent infection models.  相似文献   

18.
Despite its clinical significance, the mechanisms of joint morphogenesis are elusive. By combining laser-capture microdissection for RNA sampling with microarrays, we show that the setting in which joint-forming interzone cells develop is distinct from adjacent growth plate chondrocytes and is characterized by downregulation of chemokines, such as monocyte-chemoattractant protein-5 (MCP-5). Using in vivo, ex vivo, and in vitro approaches, we show that low levels of interzone-MCP-5 are essential for joint formation and contribute to proper growth plate organization. Mice lacking the TGF-β-type-II-receptor (TβRII) in their limbs (Tgfbr2(Prx1KO)), which lack joint development and fail chondrocyte hypertrophy, show upregulation of interzone-MCP-5. In vivo and ex vivo blockade of the sole MCP-5 receptor, CCR2, led to the rescue of joint formation and growth plate maturation in Tgfbr2(Prx1KO) but an acceleration of growth plate mineralization in control mice. Our study characterized the TβRII/MCP-5 axis as an essential crossroad for joint development and endochondral growth.  相似文献   

19.
20.
Liprins are highly conserved scaffold proteins that regulate cell adhesion, cell migration, and synapse development by binding to diverse target proteins. The molecular basis governing liprin/target interactions is poorly understood. The liprin-α2/CASK complex structure solved here reveals that the three SAM domains of liprin-α form an integrated supramodule that binds to the CASK kinase-like domain. As supported by biochemical and cellular studies, the interaction between liprin-α and CASK is unique to vertebrates, implying that the liprin-α/CASK interaction is?likely to regulate higher-order brain functions in mammals. Consistently, we demonstrate that three recently identified X-linked mental retardation mutants of CASK are defective in binding to liprin-α. We also solved the liprin-α/liprin-β SAM domain complex structure, which uncovers the mechanism underlying liprin heterodimerizaion. Finally, formation of the CASK/liprin-α/liprin-β ternary complex suggests that liprins can mediate assembly of target proteins into large protein complexes capable of regulating numerous cellular activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号