首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Wnt信号通过直接参与细胞的增殖、极化和命运特化,控制胚胎发育和成体稳态,其信号异常不仅会造成发育缺陷,而且与多种癌症和代谢性疾病的发生密切相关。分泌型卷曲相关蛋白(secreted frizzled-related proteins,sFRPs)是一种可溶性蛋白质,因其结构与Wnt信号的卷曲蛋白(frizzled,Fz)受体高度同源而被认为是一类Wnt通路拮抗剂。但随着对sFRPs家族的深入研究,发现sFRPs在Wnt信号通路传导过程中并不局限于作为一种拮抗因子,还发挥激活因子的功能。最新研究还发现,sFRPs不仅作为经典的胞外因子发挥作用,在一些肿瘤干细胞中还可进入细胞核双向调节(拮抗或激活)Wnt信号传导。本文结合最新研究,全面综述了sFRPs家族蛋白在Wnt信号传导中的双向调节作用,这有助于理解sFRPs蛋白在生物体器官发育和疾病发生中的作用。  相似文献   

2.
The extracellular ligand, Wnt, and its receptors are involved in sign al transduction and play an important role in axis formation and neural development. In neurodegenerative disorders such as Alzheimer’s disease (AD), a decrease of the intracellular Wnt effector, β-catenin, has been linked to amyloid-β-peptide-induced neurotoxicity. Despite this knowledge, targeting Wnt inhibitors as potential biomarkers has not been explored, and harnessing Wnt activators as therapeutic candidates remains largely not investigated. A wide acting family of Wnt mediators, secreted frizzled-related proteins (sFRPs), has not been probed so far as molecular indicators of disease occurrence and progression of Alzheimer’s. Unlike the effect of the Dickkopf (DKK) family of Wnt antagonists on AD, the sFRP molecules have a more pleiotropic impact on the Wnt signaling cascade and probably have a far-reaching involvement in neurodegeneration. The role of sFRPs has been poorly described in AD, and in this review, we analyze the present status of the role of sFRPs on neurodegeneration, their likely involvement, and potential implications in treatment modalities of AD. This information would provide valuable clues for the development of potential therapeutic targets for aberrant neurodegenerative disorders.  相似文献   

3.
Secreted Frizzled-related proteins (sFRPs) are modulators of the Wnt signaling pathway that plays important roles in both embryogenesis and oncogenesis. sFRPs have been proposed to antagonize Wnt activity by binding to Wnts. However, the affinity of this binding is unknown. Here we show, using surface plasmon resonance and purified proteins, that sFRP1, sFRP2, sFRP4, and Frzb bind directly to Wnt3a with affinities in the nanomolar range. However, only sFRP1 and sFRP2 antagonize Wnt3a activity by blocking Wnt3a induced β-catenin accumulation in L cells. Furthermore, sFRP2, but not Frzb, antagonizes Wnt3a signaling in an ES cell model of mesoderm differentiation. These results provide the first measurement of binding affinity of sFRPs for a Wnt, which together with the measurement of antagonistic activity of sFRPs could help understand how sFRPs regulate Wnt signaling.  相似文献   

4.
5.
ABSTRACT: Cell signaling mediated by morphogens is essential to coordinate growth and patterning, two key processes that govern the formation of a complex multi-cellular organism. During growth and patterning, cells are specified by both quantitative and directional information. While quantitative information regulates cell proliferation and differentiation, directional information is conveyed in the form of cell polarities instructed by local and global cues. Major morphogens like Wnts play critical roles in embryonic development and they are also important in maintaining tissue homeostasis. Abnormal regulation of these signaling events leads to a diverse array of devastating diseases including cancer. Wnts transduce their signals through several distinct pathways and they regulate vertebrate embryonic development by providing both quantitative and directional information. Here, taking the developing skeletal system as an example, we review our work on Wnt signaling pathways in various aspects of development. We focus particularly on our most recent findings that showed that in vertebrates, Wnt5a acts as a global cue to establishing planar cell polarity (PCP). Our work suggests that Wnt morphogens regulate development by integrating quantitative and directional information. Our work also provides important insights in disease like Robinow syndrome, brachydactyly type B1 (BDB1) and spina bifida, which can be caused by human mutations in the Wnt/PCP signaling pathway.  相似文献   

6.
Wnt signaling plays a key role in embryonic patterning and morphogenetic movements. The secreted Frizzled‐related proteins (sFRPs) antagonize Wnt signaling, but their roles in development are poorly understood. To determine whether function of sFRPs is conserved between amphioxus and vertebrates, we characterized sFRP2‐like function in the amphioxus, Branchiostoma belcheri tsingtauense (B. belcheri). As in other species of Branchiostome, in B. belcheri, expression of sFRP2‐like is restricted to the mesendoderm during gastrulation and to the anterior mesoderm and endoderm during neurulation. Functional analyses in frog (Xenopus laevis) indicate that amphioxus sFRP2‐like potently inhibits both canonical and non‐canonical Wnts. Thus, sFRP‐2 probably functions in amphioxus embryos to inhibit Wnt signaling anteriorly. Moreover, dorsal overexpression of amphioxus sFRP2‐like in Xenopus embryos, like inhibition of Wnt11, blocks gastrulation movements. This implies that sFRP2‐like may also modulate Wnt signaling during gastrulation movements in amphioxus.  相似文献   

7.
8.
9.
Wnt signaling in disease and in development   总被引:30,自引:0,他引:30  
Nusse R 《Cell research》2005,15(1):28-32
The highly conserved Wnt secreted proteins are critical mediators of cell-to-cell signaling during development of animals. Recent biochemical and genetic analyses have led to significant insight into understanding how Wnt signals work. The catalogue of Wnt signaling components has exploded. We now realize that multiple extracellular, cytoplasmic, and nuclear components modulate Wnt signaling. Moreover, receptor-ligand specificity and multiple feedback loops determine Wnt signaling outputs. It is also clear that Wnt signals are required for adult tissue maintenance. Perturbations in Wnt signaling cause human degenerative diseases as well as cancer.  相似文献   

10.
11.
Frizzled related proteins (FRPs) comprise a family of secreted molecules that contain an N-terminal cysteine-rich domain (CRD) highly similar to the CRDs of the frizzled family of membrane-anchored Wnt receptors. FRPs have been shown to interact with Wnt proteins and antagonize Wnt signaling in a Xenopus developmental model. We demonstrated that FRP antagonizes the Wnt-induced increase in uncomplexed beta-catenin in both transient cotransfection and stable transformation models, where Wnt-induced morphological alterations are inhibited as well. We showed further that FRP inhibits Wnt signaling in a paracrine mode using a T-cell factor luciferase reporter to measure Wnt function. Investigation of the mechanisms responsible for FRP inhibition revealed that FRP forms complexes with WNT-1 or WNT-2 through its CRD domain. Transfection analysis with FRPs containing different tags revealed that FRP itself forms complexes and that this ability is conferred by its CRD domain. Finally, we demonstrated by cotransfection that FRP forms complexes with a prototype frizzled. All of these findings are consistent with a model by which FRP inhibits Wnt signaling through interactions with Wnt and/or formation of nonfunctional complexes with the frizzled receptor.  相似文献   

12.
The role of persistent activation of pancreatic stellate cells (PSCs) in the fibrosis associated with chronic pancreatitis (CP) is increasingly being recognized. Recent studies have shown that Wnt signaling is involved in the development of fibrosis in multiple organs, however, the role of specific Wnts in pancreatic fibrosis remains unknown. We investigated the role of Wnt signaling during PSC activation in CP and the effect of β-catenin inhibition and Dickkopf-related protein 1 (Dkk1) restoration on the phenotype of PSCs. CP was induced in mice by repetitive caerulein injection and mouse PSCs were isolated and activated in vitro. The expression of Wnts, β-catenin, secreted frizzled-related proteins (sFRPs) and Dkks was analyzed by quantitative RT-PCR and western blotting. The canonical Wnt signaling pathway was examined by immunofluorescence and western blot detection of nuclear β-catenin expression. The effect of recombinant mouse Dkk-1 (rmDkk-1) on cell proliferation and apoptosis was assessed by flow cytometry, immunofluorescence, immunocytochemistry and Cell Counting Kit-8 (CCK-8) analysis. The expression of β-catenin, collagen1α1, TGFβRII, PDGFRβ and α-SMA in PSCs treated with different concentrations of rmDkk-1 or siRNA against β-catenin was determined by quantitative RT-PCR and western blotting. Wnt2 was the only Wnt whose expression was significantly upregulated in response to PSC activation, and Wnt2 and β-catenin protein levels were significantly increased in the pancreas of CP mice, whereas Dkk-1 expression was evidently decreased. Nuclear β-catenin levels were markedly increased in activated PSCs, and rmDkk-1 suppressed the nuclear translocation of β-catenin and the proliferation and extracellular matrix production of PSCs through the downregulation of PDGFRβ and TGFβRII. Upregulation of Dkk-1 expression increased apoptosis in cultured PSCs. These results indicate that Wnt signaling may mediate the profibrotic effect of PSC activation, and Wnt2/Dkk-1 could be potential therapeutic targets for CP.  相似文献   

13.
Wnt蛋白是一组调控胚胎形成期间细胞间信号传导的高度保守的分泌信号分子.在过去的几年里,由Wnt蛋白触发的不同信号通路已经得到了详尽的研究.Wnt基因与Wnt信号通路组成分子的突变可引起发育缺陷,异常的Wnt信号传导可导致人类疾病包括肿瘤的发生.许多证据都表明,Wnt信号通路的失调与乳腺癌的发生发展密切相关.micro...  相似文献   

14.
15.
Wnt signaling through the canonical beta-catenin pathway plays essential roles in development and disease. Low-density-lipoprotein receptor-related proteins 5 and 6 (Lrp5 and Lrp6) in vertebrates, and their Drosophila ortholog Arrow, are single-span transmembrane proteins that are indispensable for Wnt/beta-catenin signaling, and are likely to act as Wnt co-receptors. This review highlights recent progress and unresolved issues in understanding the function and regulation of Arrow/Lrp5/Lrp6 in Wnt signaling. We discuss Arrow/Lrp5/Lrp6 interactions with Wnt and the Frizzled family of Wnt receptors, and with the intracellular beta-catenin degradation apparatus. We also discuss the regulation of Lrp5/Lrp6 by other extracellular ligands, and LRP5 mutations associated with familial osteoporosis and other disorders.  相似文献   

16.
Aberrant activation of Wingless-type (Wnt) signaling pathway plays a critical role in oncogenesis of various human cancers. Wnt inhibitory factor-1 (WIF-1) is a secreted antagonist of Wnt signaling and acts through direct binding to Wnt in the extracellular space. Recently, we reported Wnt signaling in various human malignancies. In addition, we identified in lung cancer that WIF-1 is silenced due to promoter hypermethylation. In this study, we found constitutive activation of Wnt signaling and WIF-1 silencing in nasopharyngeal carcinoma (NPC) cell lines. Furthermore, by utilizing methylation-specific PCR and sequence analysis, we demonstrated that frequent hypermethylation of the WIF-1 promoter correlates with WIF-1 silencing in NPC cell lines. Our results indicate that aberrant Wnt signaling is a common event in NPC carcinogenesis linked with WIF-1 silencing in at least cell lines. Strategies targeting these molecules should be potentially promising in treating NPC.  相似文献   

17.
Members of the Wnt gene family are proposed to function in both normal development and differentiation as well as in mammary tumorigenesis. To understand the function of Wnt proteins in these two processes, we present here a biochemical characterization of seven Wnt family members. For these studies, AtT-20 cells, a neuroendocrine cell line previously shown to efficiently process and secrete Wnt-1, was transfected with expression vectors encoding Wnt family members. All of the newly characterized Wnt proteins are glycosylated, secreted proteins that are tightly associated with the cell surface or extracellular matrix. We have also identified native Wnt proteins in retinoic acid-treated P19 embryonal carcinoma cells, and they exhibit the same biochemical characteristics as the recombinant proteins. These data suggest that Wnt family members function in cell to cell signaling in a fashion similar to Wnt-1.  相似文献   

18.
During development, secreted signaling proteins of the Wingless/Wnt, Hedgehog and Decapentaplegic (Dpp)/Bone Morphogenic Protein (BMP) families act as morphogens. Previous work had shown that these molecules act directly on distant cells, although until recently nothing was known about how they reach those distant cells. During the past two years, work carried out on Drosophila using genetic and cell biology approaches have revealed that endocytosis plays a central part in the mechanisms that control the spread of morphogens.  相似文献   

19.
During development, precise temporal and spatial gradients are responsible for guiding axons to their appropriate targets. Within the developing ventral midbrain (VM) the cues that guide dopaminergic (DA) axons to their forebrain targets remain to be fully elucidated. Wnts are morphogens that have been identified as axon guidance molecules. Several Wnts are expressed in the VM where they regulate the birth of DA neurons. Here, we describe that a precise temporo-spatial expression of Wnt5a accompanies the development of nigrostriatal projections by VM DA neurons. In mice at E11.5, Wnt5a is expressed in the VM where it was found to promote DA neurite and axonal growth in VM primary cultures. By E14.5, when DA axons are approaching their striatal target, Wnt5a causes DA neurite retraction in primary cultures. Co-culture of VM explants with Wnt5a-overexpressing cell aggregates revealed that Wnt5a is capable of repelling DA neurites. Antagonism experiments revealed that the effects of Wnt5a are mediated by the Frizzled receptors and by the small GTPase, Rac1 (a component of the non-canonical Wnt planar cell polarity pathway). Moreover, the effects were specific as they could be blocked by Wnt5a antibody, sFRPs and RYK-Fc. The importance of Wnt5a in DA axon morphogenesis was further verified in Wnt5a-/- mice, where fasciculation of the medial forebrain bundle (MFB) as well as the density of DA neurites in the MFB and striatal terminals were disrupted. Thus, our results identify a novel role of Wnt5a in DA axon growth and guidance.  相似文献   

20.
Regulation of Wnt signaling during adipogenesis   总被引:17,自引:0,他引:17  
We have identified Wnt10b as a potent inhibitor of adipogenesis that must be suppressed for preadipocytes to differentiate in vitro. Here, we demonstrate that a specific inhibitor of glycogen synthase kinase 3, CHIR 99021, mimics Wnt signaling in preadipocytes. CHIR 99021 stabilizes free cytosolic beta-catenin and inhibits adipogenesis by blocking induction of CCAAT/enhancer-binding protein alpha and peroxisome proliferator-activated receptor gamma. Preadipocyte differentiation is inhibited when 3T3-L1 cells are exposed to CHIR 99021 for any 24 h period during the first 3 days of adipogenesis. Consistent with this time frame of inhibition, expression of Wnt10b mRNA is suppressed upon induction of differentiation, with a 50% decline by 6 h and complete inhibition by 36 h. Of the agents used to induce differentiation, exposure of 3T3-L1 cells to methyl-isobutylxanthine or cAMP is sufficient to suppress expression of Wnt10b mRNA. Inhibition of adipogenesis by Wnt10b is likely mediated by Wnt receptors, Frizzled 1, 2, and/or 5, and co-receptors low density lipoprotein receptor-related proteins 5 and 6. These receptors, like Wnt10b, are highly expressed in preadipocytes and stromal vascular cells. Finally, we demonstrate that disruption of extracellular Wnt signaling by expression of secreted Frizzled related proteins causes spontaneous adipocyte conversion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号