首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The origin of the unoccupied nuclear oestrogen receptor (Rn) was studied. Three working hypotheses were investigated. (a) Rn is a dissociation product of the oestrogen occupied nuclear receptor (ERn). (b) ERn is only partially occupied, so that additional binding may occur at 0°C (the temperature at which oestradiol saturates unoccupied sites). (c) Rn is derived from the penetration of unoccupied cytoplasmic receptor (Rc) into the nucleus. The MCF-7 cell line was used as a model in the present investigation. The amount of unoccupied receptors was measured by saturation with 7.5nm-[3H]oestradiol at 0°C, whereas the occupied receptors were measured by exchange at 30°C. The cells at preconfluency were exposed to a medium fortified with 10nm-[3H]oestradiol for 1h, washed and cultured up to 5 days in fresh growth medium. The distribution of oestradiol receptors was determined before exposure and during the following 5 days. After 1h exposure only ERn was found in the nuclear fraction. Thereafter ERn declined continuously so that on day 5 it approached 15% of its value measured 1h after exposure. Although after 3 days about 80% of ERn disappeared no Rn appeared, which contradicts hypotheses (a) and (b). On day 4 Rn and Rc appeared simultaneously. The appearance of Rn and Rc was not prevented by culturing the cells in an oestrogen-free medium, supporting hypothesis (c). Exposure of cells to increasing concentration of [3H]oestradiol (0.1–10nm) for 1h resulted in a parallel increase in ERn without increasing the amount of unoccupied binding sites, which contradicts hypothesis (b). The present study supports the hypothesis (c), i.e., Rc may also penetrate the nucleus without binding to oestradiol.  相似文献   

2.
Ultrathin (black) lipid membranes were made from sheep red cell lipids dissolved in n-decane. The presence of aliphatic alcohols in the aqueous solutions bathing these membranes produced reversible changes in the ionic permeability, but not the osomotic permeability. Heptanol (8 mM), for example, caused the membrane resistance (Rm) to decrease from >108 to about 105 ohm-cm2 and caused a marked increase in the permeability to cations, especially potassium. In terms of ionic transference numbers, deduced from measurements of the membrane potential at zero current, T cat/T Cl increased from about 6 to 21 and T K/T Na increased from about 3 to 21. The addition of long-chain (C8ndash;C10) alcohols to the lipid solutions from which membranes were made produced similar effects on the ionic permeability. A plot of log Rm vs. log alcohol concentration was linear over the range of maximum change in Rm, and the slope was -3 to -5 for C2 through C7 alcohols, suggesting that a complex of several alcohol molecules is responsible for the increase in ionic permeability. Membrane permselectivity changed from cationic to anionic when thorium or ferric iron (10-4 M) was present in the aqueous phase or when a secondary amine (Amberlite LA-2) was added to the lipid solutions from which membranes were made. When membranes containing the secondary amine were exposed to heptanol, Rm became very low (103–104 ohm-cm2) and the membranes became perfectly anion-selective, developing chloride diffusion potentials up to 150 mv.  相似文献   

3.
Sphingomonas herbicidovorans MH was able to completely degrade both enantiomers of the chiral herbicide dichlorprop [(RS)-2-(2,4-dichlorophenoxy)propanoic acid], with preferential degradation of the (S) enantiomer over the (R) enantiomer. These results are in agreement with the recently reported enantioselective degradation of mecoprop [(RS)-2-(4-chloro-2-methylphenoxy)propanoic acid] by this bacterium (C. Zipper, K. Nickel, W. Angst, and H.-P. E. Kohler, Appl. Environ. Microbiol. 62:4318–4322, 1996). Uptake of (R)-dichlorprop, (S)-dichlorprop, and 2,4-D (2,4-dichlorophenoxyacetic acid) was inducible. Initial uptake rates of cells grown on the respective substrate showed substrate saturation kinetics with apparent affinity constants (Kt) of 108, 93, and 117 μM and maximal velocities (Vmax) of 19, 10, and 21 nmol min−1 mg of protein−1 for (R)-dichlorprop, (S)-dichlorprop, and 2,4-D, respectively. Transport of (R)-dichlorprop, (S)-dichlorprop, and 2,4-D was completely inhibited by various uncouplers and by nigericin but was only marginally inhibited by valinomycin and by the ATPase inhibitor N,N′-dicyclohexylcarbodiimine. Experiments on the substrate specificity of the putative transport systems revealed that (R)-dichlorprop uptake was inhibited by (R)-mecoprop but not by (S)-mecoprop, (S)-dichlorprop, or 2,4-D. On the other hand, the (S)-dichlorprop transport was inhibited by (S)-mecoprop but not by (R)-mecoprop, (R)-dichlorprop, or 2,4-D. These results provide evidence that the first step in the degradation of dichlorprop, mecoprop, and 2,4-D by S. herbicidovorans is active transport and that three inducible, proton gradient-driven uptake systems exist: one for (R)-dichlorprop and (R)-mecoprop, another for (S)-dichlorprop and (S)-mecoprop, and a third for 2,4-D.  相似文献   

4.
Optically black, thin lipid membranes prepared from sheep erythrocyte lipids have a high dc resistance (Rm ≅ 108 ohm-cm2) when the bathing solutions contain NaCl or KCl. The ionic transference numbers (Ti) indicate that these membranes are cation-selective (T Na ≅ 0.85; T Cl ≅ 0.15). These electrical properties are independent of the cholesterol content of the lipid solutions from which the membranes are formed. Nystatin, and probably amphotericin B, are cyclic polyene antibiotics containing ≈36 ring atoms and a free amino and carboxyl group. When the lipid solutions used to form membranes contained equimolar amounts of cholesterol and phospholipid, these antibiotics reduced Rm to ≈102 ohm-cm2; concomitantly, T Cl became ≅0.92. The slope of the line relating log Rm and log antibiotic concentration was ≅4.5. Neither nystatin (2 x 10-5 M) nor amphotericin B (2 x 10-7 M) had any effect on membrane stability. The antibiotics had no effect on Rm or membrane permselectivity when the lipids used to form membranes were cholesterol-depleted. Filipin (10-5 M), an uncharged polyene with 28 ring atoms, produced striking membrane instability, but did not affect Rm or membrane ionic selectivity. These data suggest that amphotericin B or nystatin may interact with membrane-bound sterols to produce multimolecular complexes which greatly enhance the permeability of such membranes for anions (Cl-, acetate), and, to a lesser degree, cations (Na+, K+, Li+).  相似文献   

5.
A chiral spin crossover iron(II) complex, fac-Λ-[FeII(HLR)3](ClO4)2·EtOH was synthesized and its crystal structures in both the high-spin (HS) and low-spin (LS) states were determined, where HLR denotes 2-methylimidazol-4-yl-methylideneamino-R-(+)-1-methylphenyl. The complex assumes octahedral coordination geometry of N6 donor atoms by three bidentate ligands HLR. The complex exists as the facial-Λ-isomer of fac-Λ-[FeII(HLR)3]2+ of the possible geometrical fac- and mer-isomers and the Δ- and Λ-enantiomorphs. The X-ray structural analyses revealed that the R-form of the ligand (HLR) induces the fac-Λ-isomer of fac-Λ-[FeII(HLR)3]2+ and the S-form of the ligand (HLS) induces the fac-Δ-isomer of fac-Δ-[Fe(HLS)3]2+. The complex fac-Λ-[FeII(HLR)3](ClO4)2·EtOH shows a complete steep spin crossover between the HS and the LS states at T1/2 = 195 K.  相似文献   

6.
7.
(6R)-2,2,6-Trimethyl-1,4-cyclohexanedione (levodione) reductase was isolated from a cell extract of the soil isolate Corynebacterium aquaticum M-13. This enzyme catalyzed regio- and stereoselective reduction of levodione to (4R,6R)-4-hydroxy-2,2,6-trimethylcyclohexanone (actinol). The relative molecular mass of the enzyme was estimated to be 142,000 Da by high-performance gel permeation chromatography and 36,000 Da by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme required NAD+ or NADH as a cofactor, and it catalyzed reversible oxidoreduction between actinol and levodione. The enzyme was highly activated by monovalent cations, such as K+, Na+, and NH4+. The NH2-terminal and partial amino acid sequences of the enzyme showed that it belongs to the short-chain alcohol dehydrogenase/reductase family. This is the first report of levodione reductase.  相似文献   

8.
Manganese(II) complexes [Mn(L)X2] were prepared and characterized, where L is a neutral di-Schiff base ligand incorporating pyridylimine donor arms, including (1R,2R)-N,N′-bis(2-pyridylmethylidene)-1,2-diphenylethylenediimine (L1), (1R,2R)-N,N′-bis(6-methyl-2-pyridylmethylidene)-1,2-cyclohexyldiimine (L2), or (1R,2R)-, (1S,2S)- or racemic N,N′-bis(2-pyridylmethylidene)-1,2-cyclohexyldiimine (L3), and X =  or Cl. Product complexes were structurally characterized, specifically including [Mn(R,R-L1)(NCCH3)3](ClO4)2, [Mn(R,R-L2)(OH2)2](ClO4)2 and racemic [Mn(L3)Cl2]. The first of these complexes features a heptacoordinate ligand field in a distorted pentagonal bipyramid, and the latter two are hexacoordinate, but retain equatorially monovacant pentagonal bipyramidal structures. Complexes [Mn(L3)X2] (X = Cl, ) were reacted with the primary phosphine FcCH2PH2 (Fc = -C5H4FeC5H5), H2O and ethyldiazoacetate (EDA). The first two substrates prompted reactivity at a single ligand imine bond, resulting in hydrophosphination and hydrolysis, respectively. Complexes of the derivative ligands were also structurally characterized. Evidence for EDA activation was obtained by electrospray ionization mass spectrometry, but catalytic carbene transfer was not obtained.  相似文献   

9.
A series of 3(R)-aminopyrrolidine derivatives were designed and synthesized for JAK1-selective inhibitors through the modification of tofacitinib’s core structure, (3R,4R)-3-amino-4-methylpiperidine. From the new core structures, we selected (R)-N-methyl-N-(pyrrolidin-3-yl)-7H-pyrrolo[2,3-d]pyrimidin-4-amine as a scaffold for further SAR studies. From biochemical enzyme assays and liver microsomal stability tests, (R)-3-(3-(methyl(7H-pyrrolo[2,3-d]pyrimidin-4-yl)amino)pyrrolidin-1-yl)-3-oxopropanenitrile (6) was chosen for further in vivo test through oral administration. Compound 6 showed improved selectivity for JAK1 compared to that of tofacitinib (IC50 11, 2.4?×?102, 2.8?×?103, and 1.1?×?102?nM for JAK1, JAK2, JAK3, and TYK2, respectively). In CIA and AIA model tests, compound 6 exhibited similar efficacy to tofacitinib citrate.  相似文献   

10.
Three stereoisomeric inhibitors of Pin1: (2R,5S)-, (2S,5R)- and (2S,5S)-Ac–pSer–Ψ[(Z)CH = C]–pipecolyl(Pip)–2-(2-naphthyl)ethylamine 1, that mimic L-pSer–D-Pro, D-pSer–L-Pro, and D-pSer–D-Pro amides respectively, were synthesized by a 13-step route. The newly formed stereogenic centers in the pipecolyl ring were introduced by Luche reduction, followed by stereospecific [2,3]-Still-Wittig rearrangement. The (Z)- to (E)-alkene ratio in the rearrangements were consistently 5.5 to 1. The stereochemistry at the original Ser α-carbon controlled the stereochemistry of the Luche reduction, but it did not affect the stereochemical outcome of the rearrangement, which consistently gave the (Z)-alkene. The epimerized by-product, (2S,5S)-10, resulting from the work-up after Na/NH3 debenzylation of (2S,5R)-9, was carried on to the (2S,5S)-1 isomer. Compound (2S,5S)-10 was resynthesized from the Luche reduction by-product, (2R,3R)-3, and the stereochemistry was confirmed by comparison of the optical rotations. The IC50 values for (2R,5S)-1, (2S,5R)-1 and (2S,5S)-1 Pin1 inhibition were: 52, 85, and 140 μM, respectively.  相似文献   

11.
α-Ketoglutarate-dependent (R)-dichlorprop dioxygenase (RdpA) and α-ketoglutarate-dependent (S)-dichlorprop dioxygenase (SdpA), which are involved in the degradation of phenoxyalkanoic acid herbicides in Sphingomonas herbicidovorans MH, were expressed and purified as His6-tagged fusion proteins from Escherichia coli BL21(DE3)(pLysS). RdpA and SdpA belong to subgroup II of the α-ketoglutarate-dependent dioxygenases and share the specific motif HXDX24TX131HX10R. Amino acids His-111, Asp-113, and His-270 and amino acids His-102, Asp-104, and His 257 comprise the 2-His-1-carboxylate facial triads and were predicted to be involved in iron binding in RdpA and SdpA, respectively. RdpA exclusively transformed the (R) enantiomers of mecoprop [2-(4-chloro-2-methylphenoxy)propanoic acid] and dichlorprop [2-(2,4-dichlorophenoxy)propanoic acid], whereas SdpA was specific for the (S) enantiomers. The apparent Km values were 99 μM for (R)-mecoprop, 164 μM for (R)-dichlorprop, and 3 μM for α-ketoglutarate for RdpA and 132 μM for (S)-mecoprop, 495 μM for (S)-dichlorprop, and 20 μM for α-ketoglutarate for SdpA. Both enzymes had high apparent Km values for oxygen; these values were 159 μM for SdpA and >230 μM for RdpA, whose activity was linearly dependent on oxygen at the concentration range measured. Both enzymes had narrow cosubstrate specificity; only 2-oxoadipate was able to replace α-ketoglutarate, and the rates were substantially diminished. Ferrous iron was necessary for activity of the enzymes, and other divalent cations could not replace it. Although the results of growth experiments suggest that strain MH harbors a specific 2,4-dichlorophenoxyacetic acid-converting enzyme, tfdA-, tfdAα-, or cadAB-like genes were not discovered in a screening analysis in which heterologous hybridization and PCR were used.  相似文献   

12.
Bis(azido)bis(phosphine)-Pd(II) and -Pt(II) complexes, [M(N3)2L2] {L = PMe3, PEt3, PMe2Ph, dppe = 1,2-bis(diphenylphosphino)ethane}, underwent 1,3-dipolar cycloaddition with organic chiral isothiocyanates (R-NCS: R = (S)-(+)-1-phenylethyl, (R)-(−)-1-phenylethyl, (±)-1-phenylethyl, (S)-(+)-1-indanyl) to give the corresponding tetrazole-thiolato Pd(II) and Pt(II) complexes, trans-[M{S[CN4(R)]}2L2] or [M{S[CN4(R)]}2(dppe)]. Spectroscopic (IR and NMR) and X-ray structural analyses of the products showed that the absolute configuration of the starting organic isothiocyanates is retained throughout the reaction. Further treatments of the isolated tetrazole-thiolato complexes with electrophiles such as HCl or benzoyl chloride produced heterocyclic compounds containing a tetrazole thione or a tetrazolyl sulfide group. In addition, organic tetrazole thiones, [S = {CN4H(R)}] containing a chiral moiety, were prepared from NaN3 and R-NCS in the presence of water.  相似文献   

13.
The uptake of (+)-S- and (−)-R-abscisic acid (ABA) by suspension culture cells of hopbush (Dodonaea viscosa L. Jacqu.) was followed over a range of temperatures, pH values, and time intervals. The natural (+)-S-ABA was taken up about five times faster than the unnatural (−)-R-ABA. Each 10°C rise in temperature from 1 to 31°C increased the rate of uptake (Q10) of (+)-S-ABA about 2.2-fold, whereas that of the (−)-R increased with a Q10 of 1.4. (+)-ABA was taken into the cells by a saturable carrier, but (−)-ABA and both enantiomers of 2-trans-ABA were not; they appeared to enter by passive diffusion. The uptake of (+)-ABA was linear over the first 8 hours but concentrations within the cells decreased after 2 hours to remain constant after 4 hours as rapid metabolism was induced. Electron microscopy of thin sections of the cells, combined with a stereological analysis of their shape, showed that the vacuoles comprised 80% of the cell volume and the cytoplasm plus nucleus comprised 20%. There were no photosynthetically active plastids in the cells. Concentrations of the endogenous ABA in the cytoplasm (pH 7.32) and vacuoles (pH 5.88) were calculated by applying the Henderson-Hasselbalch equation (ABA pKa 4.7) so that, provided no active metabolic redistribution occurred, the concentration in the cytoplasm was 7.9 micromolar and that in the vacuole was 0.3 micromolar. In vivo pH was measured by 31P nuclear magnetic resonance spectroscopy.  相似文献   

14.
The human Na+/multivitamin transporter (hSMVT) has been suggested to transport α-lipoic acid (LA), a potent antioxidant and anti-inflammatory agent used in therapeutic applications, e.g. in the treatment of diabetic neuropathy and Alzheimer disease. However, the molecular basis of the cellular delivery of LA and in particular the stereospecificity of the transport process are not well understood. Here, we expressed recombinant hSMVT in Pichia pastoris and used affinity chromatography to purify the detergent-solubilized protein followed by reconstitution of hSMVT in lipid bilayers. Using a combined approach encompassing radiolabeled LA transport and equilibrium binding studies in conjunction with the stabilized R-(+)- and S-(−)-enantiomers and the R,S-(+/−) racemic mixture of LA or lipoamide, we identified the biologically active form of LA, R-LA, to be the physiological substrate of hSMVT. Interaction of R-LA with hSMVT is strictly dependent on Na+. Under equilibrium conditions, hSMVT can simultaneously bind ∼2 molecules of R-LA in a biphasic binding isotherm with dissociation constants (Kd) of 0.9 and 7.4 μm. Transport of R-LA in the oocyte and reconstituted system is exclusively dependent on Na+ and exhibits an affinity of ∼3 μm. Measuring transport with known amounts of protein in proteoliposomes containing hSMVT in outside-out orientation yielded a catalytic turnover number (kcat) of about 1 s−1, a value that is well in agreement with other Na+-coupled transporters. Our data suggest that hSMVT-mediated transport is highly specific for R-LA at our tested concentration range, a finding with wide ramifications for the use of LA in therapeutic applications.  相似文献   

15.
The quadruplex structures of the human telomere sequences AG3(T2AG3)3 I and (T2AG3)4 II were investigated in the presence of Na+ and K+ ions, through the cross-linking of adenines and guanines by the cis- and trans-[Pt(NH3)2(H2O)2](NO3)2 complexes 1 and 2. The bases involved in chelation of the cis- and trans-Pt(NH3)2 moieties were identified by chemical and 3′-exonuclease digestions of the products isolated after denaturing gel electrophoresis. These are the four adenines of each sequence and four out of the 12 guanines. Two largely different structures have been reported for I: A from NMR data in Na+ solution and B from X-ray data of a K+-containing crystal. Structure A alone agrees with our conclusions about the formation of the A1–G10, A13–G22, A1–A13 platinum chelates at the top of the quadruplex and A7–A19, G4–A19 and A7–G20 at the bottom, whether the Na+ or K+ ion is present. At variance with a recent proposal that structures A and B could be the major species in Na+ and K+ solutions, respectively, our results suggest that structure A exists predominantly in the presence of both ions. They also suggest that covalent platinum cross-linking of a human telomere sequence could be used to inhibit telomerase.  相似文献   

16.

Purpose

Calcification is an important prognostic factor in aortic valve stenosis. However, there is no ultrasound (US) method available to accurately quantify calcification in this setting to date. We aimed to validate a new US method for measuring the amount of calcium in an in vitro model, and compare it to computed tomography (CT), the current imaging gold standard.

Materials and Methods

An agar phantom (2% agar) was made, containing 9 different amounts of calcium-hydroxyapatite Ca5(PO4)3OH (2 to 50mg). The phantoms were imaged with micro-CT and US (10 MHz probe). The calcium area (areacalcium) and its maximum pixel value (PVmax) were obtained. These values were summed to calculate CT and US calcium scores (∑(areacalcium × PVmax)) and volumes (∑areacalcium). Both US- and CT-calcium scores were compared with the calcium amounts, and with each other.

Results

Both calcium scores correlated significantly with the calcium amount (R2 = 0.9788, p<0.0001 and R2 = 0.8154, p<0.0001 for CT and US respectively). Furthermore, there was a significant correlation between US and CT for calcium volumes (R2 = 0.7392, p<0.0001) and scores (R2 = 0.7391, p<0.0001).

Conclusion

We developed a new US method that accurately quantifies the amount of calcium in an in vitro model. Moreover it is strongly correlated with CT.  相似文献   

17.
A key issue in the nucleotide excision repair (NER) of bulky carcinogen–DNA adducts is the ability of the NER machinery to recognize and repair certain adducts while failing to repair others. Unrepaired adducts can survive to cause mutations that initiate the carcinogenic process. Benzo[c]phenanthrene (B[c]Ph), a representative fjord region polycyclic aromatic hydrocarbon, can be metabolically activated to the enantiomeric benzo[c]phenanthrene diol epoxides (B[c]PhDEs), (+)-(1S,2R,3R,4S)-3,4- dihydroxy-1,2-epoxy-1,2,3,4-tetrahydrobenzo[c]phe nanthrene and the corresponding (–)-(1R,2S,3S,4R) isomer. These react predominantly with adenine residues in DNA to produce the stereoisomeric 1R (+)- and 1S (–)-trans-anti-B[c]Ph-N6-dA adducts. Duplexes containing the 1R (+) or 1S (–) B[c]Ph-dA adduct in codon 61 of the human N-ras mutational hotspot sequence CA*A, with B[c]Ph modification at A*, are not repaired by the human NER system. However, the analogous stereoisomeric DNA adducts of the bay region benzo[a]pyrene diol epoxide (B[a]PDE), 10S (+)- and 10R (–)-trans-anti-B[a]P-N6-dA, are repaired in the same base sequence. In order to elucidate structural and thermodynamic origins of this phenomenon, we have carried out a 2 ns molecular dynamics simulation for the 1R (+)- and 1S (–)-trans-anti-B[c]Ph-N6-dA adducts in an 11mer duplex containing the human N-ras codon 61 sequence, and compared these results with our previous study of the B[a]P-dA adducts in the same sequence. The molecular mechanics Poisson– Boltzmann surface area (MM-PBSA) method was applied to calculate the free energies of the pair of stereoisomeric B[c]Ph-dA adducts, and a detailed structural analysis was carried out. The different repair susceptibilities of the B[a]P-dA adducts and the B[c]Ph-dA adducts can be attributed to different degrees of distortion, stemming from combined effects of differences in the quality of Watson–Crick hydrogen bonding, unwinding, stretching and helix backbone perturbations. These differences are due to the different intrinsic topologies of the rigid, planar bay region adducts versus the twisted, sterically hindered fjord region adducts.  相似文献   

18.
Although the temperature response of soil respiration (Rs) has been studied extensively, several issues remain unresolved, including hysteresis in the Rs–temperature relationship and differences in the long- vs. short-term Rs sensitivity to temperature. Progress on these issues will contribute to reduced uncertainties in carbon cycle modeling. We monitored soil CO2 efflux with an automated chamber system in a Pinus tabulaeformis plantation near Beijing throughout 2011. Soil temperature at 10-cm depth (Ts) exerted a strong control over Rs, with the annual temperature sensitivity (Q 10) and basal rate at 10°C (Rs 10) being 2.76 and 1.40 µmol m−2 s−1, respectively. Both Rs and short-term (i.e., daily) estimates of Rs 10 showed pronounced seasonal hysteresis with respect to Ts, with the efflux in the second half of the year being larger than that early in the season for a given temperature. The hysteresis may be associated with the confounding effects of microbial population dynamics and/or litter input. As a result, all of the applied regression models failed to yield unbiased estimates of Rs over the entire annual cycle. Lags between Rs and Ts were observed at the diel scale in the early and late growing season, but not in summer. The seasonality in these lags may be due to the use of a single Ts measurement depth, which failed to represent seasonal changes in the depth of CO2 production. Daily estimates of Q 10 averaged 2.04, smaller than the value obtained from the seasonal relationship. In addition, daily Q 10 decreased with increasing Ts, which may contribute feedback to the climate system under global warming scenarios. The use of a fixed, universal Q 10 is considered adequate when modeling annual carbon budgets across large spatial extents. In contrast, a seasonally-varying, environmentally-controlled Q 10 should be used when short-term accuracy is required.  相似文献   

19.

Background

The high costs of pyridine nucleotide cofactors have limited the applications of NAD(P)-dependent oxidoreductases on an industrial scale. Although NAD(P)H regeneration systems have been widely studied, NAD(P)+ regeneration, which is required in reactions where the oxidized form of the cofactor is used, has been less well explored, particularly in whole-cell biocatalytic processes.

Methodology/Principal Findings

Simultaneous overexpression of an NAD+ dependent enzyme and an NAD+ regenerating enzyme (H2O producing NADH oxidase from Lactobacillus brevis) in a whole-cell biocatalyst was studied for application in the NAD+-dependent oxidation system. The whole-cell biocatalyst with (2R,3R)-2,3-butanediol dehydrogenase as the catalyzing enzyme was used to produce (3R)-acetoin, (3S)-acetoin and (2S,3S)-2,3-butanediol.

Conclusions/Significance

A recombinant strain, in which an NAD+ regeneration enzyme was coexpressed, displayed significantly higher biocatalytic efficiency in terms of the production of chiral acetoin and (2S,3S)-2,3-butanediol. The application of this coexpression system to the production of other chiral chemicals could be extended by using different NAD(P)-dependent dehydrogenases that require NAD(P)+ for catalysis.  相似文献   

20.
Potassium citrate (10 mM, pH 6) inhibits the growth of cultured (Glycine max L.) cells when urea is the sole nitrogen source. Ureadependent citrate toxicity is overcome by three separate additions to the growth medium: (a) NH4Cl (20 mM); (b) high levels of MgCl2 (10 mM) or CaCl2 (5-10 mM); (c) low levels of NiSO4 (10−2 mM). Additions of 10−2 mM NiSO4 not only overcome citrate growth inhibition but the resultant growth is usually better than urea-supported growth in basal medium (neither added citrate nor added nickel). In the absence of added citrate, exceedingly low levels of NiSO4 (10−4 mM) strongly stimulate urea-supported growth in suspension cultures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号