首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Y Park  J Hanish  A J Lustig 《Genetics》1998,150(3):977-986
Previous studies from our laboratory have demonstrated that tethering of Sir3p at the subtelomeric/telomeric junction restores silencing in strains containing Rap1-17p, a mutant protein unable to recruit Sir3p. This tethered silencing assay serves as a model system for the early events that follow recruitment of silencing factors, a process we term initiation. A series of LexA fusion proteins in-frame with various Sir3p fragments were constructed and tested for their ability to support tethered silencing. Interestingly, a region comprising only the C-terminal 144 amino acids, termed the C-terminal domain (CTD), is both necessary and sufficient for restoration of silencing. Curiously, the LexA-Sir3(N205) mutant protein overcomes the requirement for the CTD, possibly by unmasking a cryptic initiation site. A second domain spanning amino acids 481-835, termed the nonessential for initiation domain (NID), is dispensable for the Sir3p function in initiation, but is required for the recruitment of the Sir4p C terminus. In addition, in the absence of the N-terminal 481 amino acids, the NID negatively influences CTD activity. This suggests the presence of a third region, consisting of the N-terminal half (1-481) of Sir3p, termed the positive regulatory domain (PRD), which is required to initiate silencing in the presence of the NID. These data suggest that the CTD "active" site is under both positive and negative control mediated by multiple Sir3p domains.  相似文献   

3.
Saccharomyces cerevisiae Sir4p plays important roles in silent chromatin at telomeric and silent mating type loci. The C terminus of Sir4p (Sir4CT) is critical for its functions in vivo because over-expression or deletion of Sir4CT fragments disrupts normal telomeric structure and abolishes the telomere position effect. The 2.5A resolution X-ray crystal structure of an Sir4CT fragment (Sir4p 1217-1358) reveals a 72 residue homodimeric, parallel coiled coil, burying an extensive 3600A(2) of surface area. The crystal structure is consistent with results of protein cross-linking and analytical ultracentrifugation results demonstrating that Sir4CT exists as a dimer in solution. Disruption of the coiled coil in vivo by point mutagenesis results in total derepression of telomeric and HML silent mating marker genes, suggesting that coiled coil dimerization is essential for Sir4p-mediated silencing. In addition to the coiled coil dimerization interface (Sir4CC interface), a crystallographic interface between pairs of coiled coils is significantly hydrophobic and buries 1228A(2) of surface area (interface II). Remarkably, interface II mutants are deficient in telomeric silencing but not in mating type silencing in vivo. However, point mutants of interface II do not affect the oligomerization state of Sir4CT in solution. These results are consistent with the hypothesis that interface II mimics a protein interface between Sir4p and one of its protein partners that is essential for telomeric silencing but not mating type silencing.  相似文献   

4.
5.
Nickel enhances telomeric silencing in Saccharomyces cerevisiae   总被引:5,自引:0,他引:5  
Broday L  Cai J  Costa M 《Mutation research》1999,440(2):121-130
Certain nickel compounds including crystalline nickel sulfide (NiS) and subsulfide (Ni3S2) are potent human and animal carcinogens. In Chinese hamster embryo cells, an X-linked senescence gene was inactivated following nickel-induced DNA methylation. Nickel also induced the inactivation of the gpt reporter gene by chromatin condensation and a DNA methylation process in a transgenic gpt+ Chinese hamster cell line (G12), which is located near a heterochromatic region. To determine if nickel can cause gene silencing independently of DNA methylation, based only on the induction of changes in chromatin structure, we measured its effect on gene silencing in Saccharomyces cerevisiae. Growth of yeast in the presence of nickel chloride repressed a telomeric marker gene (URA3) and resulted in a stable epigenetic switch. This phenomenon was dependent on the number of cell doubling prior to selection and also on the distance of the marker gene from the end of the chromosome. The level of TPE (telomeric position effect) increased linearly with elevations of nickel concentration. Addition of magnesium inhibited this effect, but magnesium did not silence the reporter gene by itself. The level of silencing was also assessed following treatment with other transition metals: cobalt, copper and cadmium. In the sublethal range, cobalt induced similar effects as nickel, while copper and cadmium did not change the basal level of gene expression. Silencing by copper and cadmium were evident only at concentrations of those metals where the viability was very low.  相似文献   

6.
7.
转录沉默是基因表达调控的重要方式,它对于保持细胞的不同分化状态和维持染色质的稳定性至关重要。沉默信息调节因子2(silent information regulator 2,Sir2)参与酵母交配型基因沉默(silent mating type)、端粒区基因沉默以及核糖体DNA(rDNA)沉默。端粒区的基因沉默可能是酵母衰老过程中的机制之一,处于沉默状态的染色质中的许多基因无转录活性,可能由此影响酵母生长。  相似文献   

8.
9.
10.
11.
Rap1p binds to sites embedded within the Saccharomyces cerevisiae telomeric TG1-3 tract. Previous studies have led to the hypothesis that Rap1p may recruit Sir3p and Sir3p-associating factors to the telomere. To test this, we tethered Sir3p adjacent to the telomere via LexA binding sites in the rap1-17 mutant that truncates the Rap1p C-terminal 165 amino acids thought to contain sites for Sir3p association. Tethering of LexA-Sir3p adjacent to the telomere is sufficient to restore telomeric silencing, indicating that Sir3p can nucleate silencing at the telomere. Tethering of LexA-Sir3p or the LexA-Sir3p(N2O5) gain-of-function protein to a telomeric LexA site hyperrepresses an adjacent ADE2 gene in wild-type cells. Hence, Sir3p recruitment to the telomere is limiting in telomeric silencing. In addition, LexA-Sir3p(N2O5) hyperrepresses telomeric silencing when tethered to a subtelomeric site 3.6 kb from the telomeric tract. This hyperrepression is dependent on the C terminus of Rap1p, suggesting that subtelomeric LexA-Sir3p(N205) can interact with Rap1p-associated factors at the telomere. We also demonstrate that LexA-Sir3p or LexA-Sir3p(N205) tethered in cis with a short tract of telomeric TG1-3 sequences is sufficient to confer silencing at an internal chromosomal position. Internal silencing is enhanced in rap1-17 strains. We propose that sequestration of silencing factors at the telomere limits the efficiency of internal silencing.  相似文献   

12.
13.
The Sir2 protein mediates gene silencing and repression of recombination at the rDNA repeats in budding yeast. Here we show that Sir2 executes these functions as a component of a nucleolar complex designated RENT (regulator of nucleolar silencing and telophase exit). Net1, a core subunit of this complex, preferentially cross-links to the rDNA repeats, but not to silent DNA regions near telomeres or to active genes, and tethers the RENT complex to rDNA. Net1 is furthermore required for rDNA silencing and nucleolar integrity. During interphase, Net1 and Sir2 colocalize to a subdomain within the nucleous, but at the end of mitosis a fraction of Sir2 leaves the nucleolus and disperses as foci throughout the nucleus, suggesting that the structure of rDNA silent chromatin changes during the cell cycle. Our findings suggest that a protein complex shown to regulate exit from mitosis is also involved in gene silencing.  相似文献   

14.
Multi-KH domain proteins are highly evolutionarily conserved proteins that associate to polyribosomes and participate in RNA metabolism. Recent evidence indicates that multi-KH domain proteins also contribute to the structural organization of heterochromatin both in mammals and Drosophila. Here, we show that the multi-KH domain protein of Saccharomyces cerevisiae, Scp160p, contributes to silencing at telomeres and at the mating-type locus, but not to ribosomal silencing. The contribution of Scp160p to silencing is independent of its binding to the ribosome as deletion of the last two KH domains, which mediate ribosomal binding, has no effect on silencing. Disruption of SCP160 increases cell ploidy but this effect is also independent of the contribution of Scp160p to telomeric silencing as strong relief of silencing is observed in Deltascp160 cells with normal ploidy and, vice versa, Deltascp160 cells with highly increased ploidy show no significant silencing defects. The TPE phenotype of Deltascp160 cells associates to a decreased Sir3p deposition at telomeres and, in good agreement, silencing is rescued by SIR3 overexpression and in a Deltarif1Deltarif2 mutant. Scp160p shows a distinct perinuclear localization that is independent of its ability to bind ribosomes. Moreover, telomere clustering at the nuclear envelope is perturbed in Deltascp160 cells and disruption of the histone deacetylase RPD3, which is known to improve telomere clustering, rescues telomeric silencing in Deltascp160 cells. These results are discussed in the context of a model in which Scp160p contributes to silencing by helping telomere clustering.  相似文献   

15.
16.
In budding yeast, the Rho-type GTPase Cdc42p is essential for cell division and regulates pseudohyphal development and invasive growth. Here, we isolated novel Cdc42p mutant proteins with single-amino-acid substitutions that are sufficient to uncouple functions of Cdc42p essential for cell division from regulatory functions required for pseudohyphal development and invasive growth. In haploid cells, Cdc42p is able to regulate invasive growth dependent on and independent of FLO11 gene expression. In diploid cells, Cdc42p regulates pseudohyphal development by controlling pseudohyphal cell (PH cell) morphogenesis and invasive growth. Several of the Cdc42p mutants isolated here block PH cell morphogenesis in response to nitrogen starvation without affecting morphology or polarity of yeast form cells in nutrient-rich conditions, indicating that these proteins are impaired for certain signaling functions. Interaction studies between development-specific Cdc42p mutants and known effector proteins indicate that in addition to the p21-activated (PAK)-like protein kinase Ste20p, the Cdc42p/Rac-interactive-binding domain containing Gic1p and Gic2p proteins and the PAK-like protein kinase Skm1p might be further effectors of Cdc42p that regulate pseudohyphal and invasive growth.  相似文献   

17.
The small Ras-like GTPase Ran/Gsp1p is a highly conserved nuclear protein required for the nucleocytoplasmic trafficking of macromolecules. Recent findings suggest that the Ran/Gsp1p pathway may have additional roles in several aspects of nuclear structure and function, including spindle assembly, nuclear envelope formation, nuclear pore complex assembly and RNA processing. Here, we provide evidence that Gsp1p can regulate telomeric function in Saccharomyces cerevisiae. We show that overexpression of PRP20, encoding the Gsp1p GDP/GTP nuclear exchange factor, specifically weakens telomeric silencing without detectably affecting nucleocytoplasmic transport. In addition to this silencing defect, we show that Rap1p and Sir3p delocalize from their normal telomeric foci. Interestingly, Gsp1p was found to interact genetically and physically with the telomeric component Sir4p. Taken together, these results suggest that the GSP1 pathway could regulate proper telomeric function in yeast through Sir4p.  相似文献   

18.
19.
Neiman AM  Katz L  Brennwald PJ 《Genetics》2000,155(4):1643-1655
Saccharomyces cerevisiae cells contain two homologues of the mammalian t-SNARE protein SNAP-25, encoded by the SEC9 and SPO20 genes. Although both gene products participate in post-Golgi vesicle fusion events, they cannot substitute for one another; Sec9p is active primarily in vegetative cells while Spo20p functions only during sporulation. We have investigated the basis for the developmental stage-specific differences in the function of these two proteins. Localization of the other plasma membrane SNARE subunits, Ssop and Sncp, in sporulating cells suggests that these proteins act in conjunction with Spo20p in the formation of the prospore membrane. In vitro binding studies demonstrate that, like Sec9p, Spo20p binds specifically to the t-SNARE Sso1p and, once bound to Sso1p, can complex with the v-SNARE Snc2p. Therefore, Sec9p and Spo20p interact with the same binding partners, but developmental conditions appear to favor the assembly of complexes with Spo20p in sporulating cells. Analysis of chimeric Sec9p/Spo20p molecules indicates that regions in both the SNAP-25 domain and the unique N terminus of Spo20p are required for activity during sporulation. Additionally, the N terminus of Spo20p is inhibitory in vegetative cells. Deletion studies indicate that activation and inhibition are separable functions of the Spo20p N terminus. Our results reveal an additional layer of regulation of the SNARE complex, which is necessary only in sporulating cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号