首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary In the goldfish, Carassius auratus, morphological and functional aspects of the pituitary gland were studied at the ultrastructural level and six cell types could be distinguished in the pars distalis. Acidophilic cells of the rostral pars distalis were identified as prolactin cells, the chromophobic cells of the rostral pars distalis as ACTH cells, the non-globular basophilic cells of the rostral and the proximal pars distalis as TSH cells, the globular basophils of the proximal pars distalis as gonadotropic cells and the acidophils of the proximal pars distalis as somatotrophs.Besides some of the well established criteria of morphological and functional identification of different cell types, two new approaches have been used in the present study. One was to express the electron density of secretory granules objectively by means of a photometric method. It was found that both types of acidophilic cells which produce the proteohormones prolactin and somatotropin respectively, had granules with the highest electron densities. The basophilic cells producing the glycoproteins gonadotropin and TSH respectively, possessed granules of intermediate electron density whereas the chromophobic cells storing the peptide hormone ACTH had granules of lowest densities. The second new approach was the administration of the synthetic mammalian releasing hormones LH-RP and TRF, which helped in identifying gonadotropic and thyrotropic cells respectively. In the goldfish there is evidence for the presence of only one type of gonadotropic cell.Supported by a grant of the Science Research Council of Great Britain to Professor Sir Francis Knowles, F.R.S. The electron microscope used was provided by the Medical Research Council of Great Britain. The integrating photometer IPM2 was kindly on loan from Messrs. Carl Zeiss, Oberkochen, Germany. For technical advice we are greatly indebted to Mr. P. K. Kaul, B. E., M.I. Struct. E., C. Eng.  相似文献   

2.
Summary The dopaminergic innervation of the goldfish pituitary gland was studied by immunocytochemistry at the electron-microscope level using highly specific antibodies against dopamine coupled to bovine serum albumin with glutaraldehyde. A satisfactory preservation of the tissue was achieved after immersion in 5% glutaraldehyde in phosphate buffer containing sodium metabisulfite to prevent oxidation of the endogenous dopamine. The immunocyto-chemical procedure was performed on Vibratome sections using the preembedding method. Immunoreactivity was restricted to part of the neurosecretory type-B fibers (diameter of the secretory vesicles lower than 100 nm) in which it was found to occupy the whole cytoplasm. Labeled fibers were observed within the neurohypophysis in the different parts of the gland and in the adenohypophyseal tissue where immunoreactive profiles were detected in close apposition to the different cell types. These data are in agreement with previous results obtained by means of radioautography and further support a role for dopamine in the neuroendocrine regulation of pituitary functions in teleosts.  相似文献   

3.
Origin of the pituitary innervation in the goldfish   总被引:3,自引:0,他引:3  
Despite the large number of studies devoted to the pituitary of teleosts, the origin of the direct pituitary innervation is still largely unknown. Although such a model is ideal for applying retrograde transport techniques, these methods involve the difficult in vivo injection of tracers into the pituitary and have never been applied. Recently, a lipophilic fluorescent dye (1-1-dioctadecyl-3,3,3,3-tetramethylindocarbocyanin; DiI) has been introduced and shown to have the capacity of being transported by the membranes of paraformaldehydefixed tissues. Microcrystals of DiI were implanted via a ventral approach into the pituitary of goldfish previously fixed by intracardiac perfusion of paraformaldehyde. The goldfish heads were kept immersed in paraformaldehyde for various periods of time (2–6 weeks). The brains were then dissected and cut transversally using a Vibratome. The results demonstrate that hypophysiotrophic areas are essentially restricted to the preoptic region, the mediobasal hypothalamus and the nucleus dorsolateralis thalami. In addition, cell bodies probably containing gonadotrophin releasing-hormone were also retrogradely stained along a pathway that can be traced up to the olfactory bulbs. The results also confirm that cell bodies, located around the ventral aspect of the preoptic recess and probably corresponding to dopaminergic neurons, project to the pituitary. Large neurons have also been observed in the rostral dorsal midbrain tegmentum just caudal to the posterior commissure. Most neurons of the so-called paraventricular organ remain unstained. Finally, a fiber tract originating from an undetermined territory of the posterior brain has been observed. The results are discussed in relation to the possible chemical nature of the hypophysiotropic neurons.  相似文献   

4.
Summary The monoaminergic innervation of the goldfish pituitary gland was studied by means of light- and electronmicroscopic radioautography after in vitro administration of 3H-dopamine. The tracer was specifically incorporated and retained by part of the type-B fibers innervating the different lobes of the pituitary. In the rostral pars distalis labeled fibers were most frequently observed in contact with the basement membrane separating the neurohypophysis and the adenohypophysis. In the proximal pars distalis and the pars intermedia, labeled profiles were detected in the neural tissue and in direct contact with the different types of secretory cells.According to the previous data concerning the uptake and retention of tritiated catecholamines in the central nervous system, it is assumed that the labeled fibers are mainly catecholaminergic (principally dopaminergic). This study provides morphological evidence for a neuroendocrine function of catecholamines in the goldfish.  相似文献   

5.
Summary The immunocytochemical distribution of gonadotropin (GTH) in the goldfish pituitary gland was studied applying the peroxidase-antiperoxidase (PAP) method and the protein A-gold technique at lightand electron-microscopic levels, respectively, with an antiserum raised against silver carp GTH. In the light-microscopic immunocytochemistry, PAS-positive cells in the proximal pars distalis showed strong reaction with the antiserum. Gold particles were concentrated both on globules (large) and on granules (small) of the gonadotrophs (PAS-positive cells) in the electron-microscopic immunocytochemistry. Other cells in the pituitary gland, including thyrotrophs, displayed no immunoreactivity with the antiserum at the dilutions tested. These results indicate, not only immunocytochemical distribution of GTH both in globules and in granules in the gonadotrophs, but also the high purity of the antigen (silver carp GTH) and specificity of the antiserum.  相似文献   

6.
Salmon and mammalian gonadotropin-releasing hormones (sGnRH, mGnRH) were tested for their ability to stimulate in vitro gonadotropin (GtH) release from superfused goldfish pituitary fragments. A two minute exposure to either peptide was sufficient to stimulate a dose-dependent increase in GtH release which reached maximum levels in 15 minutes and returned to baseline within one hour. Both peptides were approximately equipotent in stimulating GtH release, as was a superactive analog of mGnRH. These results demonstrate that sGnRH is capable of directly stimulating GtH release from teleost pituitary tissue, and that structural differences between the three peptides tested do not result in significant differences in in vitro bioactivity.  相似文献   

7.
The effects of the dopamine type-2 receptor (D-2) antagonist domperidone on pituitary and brain amine concentrations and serum gonadotropin levels in the goldfish were investigated. Domperidone caused a long-lasting, dose-dependent depletion of dopamine in the goldfish pituitary. Pituitary concentrations of 5-hydroxytryptamine (5HT) were unaffected by domperidone treatment. Concentrations of noradenaline, dopamine, and 5HT in the hypothalamus and telencephalon were also unaffected by domperidone treatment. In contrast to the goldfish, dopamine levels in both mouse pituitary and hypothalamus were unaffected by domperidone treatment. The depletion of dopamine was observed in both sexually regressed and recrudescent, male and female fish, but elevation of serum gonadotropin levels in response to domperidone treatment occurred only in sexually recrudescent fish. Treatment of sexually recrudescent fish with the D-2 antagonists pimozide, (-)-sulpiride and eticlopride and the dopamine type-1 (D-1) antagonists SKF 83566 and SCH 23390 failed to elicit a depletion of pituitary dopamine or elevation of serum gonadotropin. Treatment of sexually recrudescent fish with domperidone, alpha-methyl-p-tyrosine or carbidopa elicited comparable depletions of pituitary dopamine and elevations of serum gonadotropin. The results suggest that in addition to D-2 receptor antagonist activity, domperidone has some other neuropharmacological action on dopaminergic neurones in the goldfish pituitary.  相似文献   

8.
Receptors for GnRH were labeled by use of an iodinated (125I) photoreactive GnRH derivative [D-Lys6-azidobenzoyl]-GnRH. This derivative was found to bind to two classes of GnRH binding sites: high-affinity/low-capacity sites and low-affinity/high-capacity sites. The binding affinity of [D-Lys6-azidobenzoyl]-GnRH was found to be greater than that of D-Lys6-GnRH, but lower than a superactive fish GnRH agonist [D-Arg6, Trp7, Leu8, Pro9-NEt]-GnRH (sGnRH-A). Analysis of the photoaffinity-labeled goldfish pituitary GnRH receptors by SDS-PAGE and autoradiography indicated the presence of three labeled proteins displaceable by unlabeled sGnRH-A. The first and the most prominently labeled band was a 71,000-Mr protein, the second a 51,000-Mr protein, and the third a minor band of 130,000 Mr. Displacement characteristics of the 71,000- and 130,000-Mr bands were consistent with those of the low-affinity binding sites; displacement of the iodinated ligand from these proteins was achieved only in the presence of 10(-6) M sGnRH-A. The 51,000-Mr band had characteristics similar to those of the high-affinity site; displacement of the labeled ligand was achieved in the presence of 10(-9) M sGnRH-A. These findings provide for the first time some biochemical characterizations of pituitary GnRH receptors in a nonmammalian vertebrate.  相似文献   

9.
Summary The cytological responses of the pituitary gland during adaptation to deionized water (DW) were investigated in the goldfish and the eel. In both teleost species, a stimulation of the prolactin (PRL) cells could not be detected, although the levels of blood electrolytes (Na+,Ca2+,Cl) are reduced in the eel. PRL cells appear less active in DW-adapted eels. A striking stimulation of the PAS-positive cells of the pars intermedia occurs in both species after 3 weeks and, in the eel, is still present after 11 weeks. Cell and nuclear hypertrophy, mitoses and a well-developed endoplasmic reticulum are observed. MSH cells are partially degranulated when pigmentation is affected; a reduced activity of MSH cells is evident after 11 weeks. The amount of neurohypophysial tissue is reduced. In the goldfish and the eel, during adaptation to DW, an unknown factor secreted by the PAS-positive cells of the pars intermedia appears to play a more important role than the secretion of PRL. These two species are able to survive in fresh water without the pituitary. The control of the PAS-positive cells by external sodium or calcium is discussed.  相似文献   

10.
Pituitary adenylate cyclase-activating polypeptide (PACAP) plays a role in mediating growth hormone and gonadotropin release in the teleost pituitary. In the present study, we examined the immunohistochemical relationship between PACAP nerve fibers and prolactin (PRL)- and somatolactin (SL)-producing cells in the goldfish pituitary. Nerve fibers with PACAP-like immunoreactivity (PACAP-LI) were identified in the neurohypophysis in close proximity to cells containing PRL-LI or SL-LI. Several cells with PRL-LI or SL-LI showed PACAP receptor (PAC(1)R)-LI. The cell immunoblot assay method was used to examine the effect of PACAP on PRL and SL release from dispersed goldfish pituitary cells. Treatment with PACAP increased the immunoblot area for PRL- and SL-LI from individual pituitary cells in a dose-dependent manner. The effect of PACAP on the expression of mRNAs for PRL and SL in cultured pituitary cells was also tested. Semiquantitative analysis revealed that the expression of SL mRNA, but not PRL mRNA, was increased significantly by the treatment with PACAP. The effect of PACAP on intracellular calcium mobilization in isolated pituitary cells was also investigated using confocal laser-scanning microscopy. The amplitude of Ca(2+) mobilization in individual cells showing PRL- or SL-LI was increased significantly following exposure of cells to PACAP. These results indicate that PACAP can potentially function as a hypophysiotropic factor mediating PRL and SL release in the goldfish pituitary.  相似文献   

11.
12.
13.
Summary The distribution of neuropeptide Y (NPY) immunoreactivity has been studied by means of immunocytochemistry and radioimmunoassay in the brain of the goldfish. It was found that NPY had a widespread distribution in the entire brain in particular in the telencephalon, diencephalon, optic tectum and rhombencephalon. In the pituitary gland, positive type-B fibers were observed in the various lobes frequently in direct contact with secretory cells, in particular the gonadotrophs, somatotrophs and MSH (melanocyte-stimulating hormone) secreting cells. When measured by radioimmunoassay, the highest NPY concentrations were found in the pituitary and telencephalon, confirming the results of immunocytochemistry. The displacement curves obtained with serial dilutions of brain extracts were parallel to that of synthetic porcine NPY. Following high performance liquid chromatography, the NPY-like material extracted from goldfish brain co-eluted as a single peak with synthetic porcine NPY. These data demonstrate the presence of an NPY-like substance widely distributed in the goldfish brain. The observation of NPY-immunoreactive fibers in the pituitary gland suggests that, among its other functions, NPY may play a role in the neuroendocrine regulation of pituitary function.  相似文献   

14.
The present study investigated the effects of triiodothyronine (T3) on pituitary gonadotropin (GTH) subunits, thyroid stimulating hormone (TSH) β subunit, and growth hormone (GH) mRNA levels, as well as gonadal steroid secretion during different stages of reproduction in goldfish. Goldfish pituitary cells cultured with T3 exhibited lower tshβ mRNA levels in all reproductive stages and lower luteinising hormone β (lhβ) mRNA levels in early recrudescence, whereas gh and fshβ mRNA levels were not altered. T3 injections significantly reduced circulating oestrogen (OE2) concentrations in early and mid recrudescent male goldfish, but were without effect on the circulating level of OE2 in female fish. T3 injections also reduced circulating levels of testosterone in both male and female goldfish during the mid stage of gonadal recrudescence. In vitro culture of goldfish ovarian follicles at the late stage of gonadal recrudescence, in the presence of T3, resulted in reduced OE2 secretion; no consistent effect of T3 on testosterone secretion was observed in cultured goldfish ovarian follicles and testis. These findings support the hypothesis that T3 impairs reproduction by inhibiting production of gonadal steroids and pituitary luteinising hormone production in goldfish. Mol. Reprod. Dev. 79: 592–602, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

15.
Bombesin (BBS)/gastrin-releasing peptide (GRP) binding sites were characterized and their distribution examined in the goldfish brain and pituitary by radioligand binding and autoradiography. Binding of 125I-[Tyr4]-BBS-14 to tissue sections was found to be saturable, reversible, time-dependent and displaceable by BBS/GRP-like peptides. Analysis of saturable equilibrium binding revealed a one-site model fit with a Kd of 0.665 ± 0.267 nM. This binding site displayed high affinity for members of the BBS subfamily of peptides, including GRP10 (Ki; 0.292 ± 0.038 nM) and GRP27 (Ki; 2.034 ± 1.597 nM), but showed no affinity for the BBS8–14 fragment. While an approximate 100-fold lower binding affinity was displayed by the binding site for neuromedin B (Ki; 61.5 ± 28.2 nM), litorin was highly effective in displacing radiolabeled BBS binding (Ki; 1.469 ± 0.427 nM). The localization of saturable and high affinity BBS/GRP binding sites in specific areas of the goldfish brain and pituitary generally revealed a similar anatomical distribution to BBS/GRP-like immunoreactive material reported previously by our laboratory. Quantitative densitometric analysis of radiolabeled BBS binding to brain nuclei and the pituitary revealed a moderate concentration of BBS/GRP binding sites in the hypothalamic feeding area, including the nucleus diffusus lobi inferioris, nucleus recessus lateralis, nucleus lateral tuberis, and nucleus anterior tuberis. Other brain nuclei known to influence the brain feeding center which contained a high density of BBS/GRP binding sites included nuclei of the dorsal and ventro-medial telencephalon, the preoptic hypothalamus, and the optic tectum. High densities of BBS/GRP binding sites were also localized in the dorsal cerebellum, and nucleus habenularis. In the pituitary, BBS/GRP binding sites were present in high concentration in the neurointermediate lobe, with a relatively lower density localized in the pars distalis. The present study further supports a role for BBS/GRP-like peptides in the regulation of feeding behavior and anterior pituitary hormone secretion in teleosts.  相似文献   

16.
The cytology and ultrastructure of the pars distalis, mainly that of prolactin (PRL) cells, were investigated in goldfish adapted to fresh water (FW) or deionized water (DW) for 20 and 40 days, or gradually adapted to 1/3 artificial sea water (ASW) or 1/3 Ca-free sea water. When compared to PRL cells of goldfish kept in FW, those of goldfish adapted to DW did not show signs of increased activity. The lack of exocytotic activity and the low development of various organelles suggested that cell activity was slightly reduced. In 1/3 ASW, PRL cells were smaller and less active. In 1/3 Ca-free ASW, PRL cells appeared slightly stimulated compared with those of fish in 1/3 ASW. The Golgi area was more developed and a few lamellae of endoplasmic reticulum were observed in some cell islets. However, there was no significant difference between PRL cells of goldfish kept in 1/3 Ca-free ASW and in FW. In 1/3 ASW, which is isosmotic to the blood, thyrotrophs (TSH cells) corticotrophs (ACTH cells) and somatotrophs (STH cells) were not clearly affected. In DW, these cells and their nuclei were significantly enlarged. Their stimulation was also evident in 1/3 Ca-free ASW; values for cellular and nuclear areas were maximal in this environment and significantly higher than those of fish in FW and 1/3 ASW. These data suggest that in addition to the PAS-positive cells of the pars intermedia, highly stimulated in Ca-free environments, other cell types of the pars distalis may be involved in osmoregulation, and that the role of PRL cells is not primordial in the goldfish.  相似文献   

17.
The goldfish brain contains at least two forms of gonadotropin-releasing hormone (GnRH): sGnRH and cGnRH-II. In goldfish sGnRH and cGnRH-II are present both in the brain and pituitary, and exert direct effects via specific GnRH receptors stimulating growth hormone (GH) and gonadotropin hormone (GtH) synthesis and secretion. In this study, we investigated the effects of sGnRH and cGnRH-II on GtH subunit (alpha, FSH-beta and LH-beta) and GH mRNA levels in the goldfish pituitary in vivo and in vitro. Injection of goldfish with sGnRH or cGnRH-II (4 microg/fish) stimulated GtH-alpha, FSH-beta and LH-beta mRNA levels after 24 h. For in vitro studies, goldfish pituitary fragments were treated continuously for 12 h with 10(-7) M sGnRH or cGnRH-II. Both sGnRH and cGnRH-II stimulated GtH-alpha, FSH-beta, LH-beta and GH mRNA levels, however, cGnRH-II appeared to have a more pronounced effect. Similar experiments were carried out using cultured dispersed goldfish pituitary cells. In this study, treatments for 12 h with 10(-7) M sGnRH or cGnRH-II also stimulated GtH and GH gene expression. The present results provide a basis for the investigation of the signal transduction pathways that mediate GnRH-induced changes in GtH subunit and GH mRNA levels in the goldfish pituitary.  相似文献   

18.
In the goldfish, norepinephrine (NE) inhibits growth hormone (GH) secretion through activation of pituitary alpha(2)-adrenergic receptors. Interestingly, a GH rebound is observed after NE withdrawal, which can be markedly enhanced by prior exposure to gonadotropin-releasing hormone (GnRH). Here we examined the mechanisms responsible for GnRH potentiation of this "postinhibition" GH rebound. In goldfish pituitary cells, alpha(2)-adrenergic stimulation suppressed both basal and GnRH-induced GH mRNA expression, suggesting that a rise in GH synthesis induced by GnRH did not contribute to its potentiating effect. Using a column perifusion approach, GnRH given during NE treatment consistently enhanced the GH rebound following NE withdrawal. This potentiating effect was mimicked by activation of PKC and adenylate cyclase (AC) but not by induction of Ca(2+) entry through voltage-sensitive Ca(2+) channels (VSCC). Furthermore, GnRH-potentiated GH rebound could be alleviated by inactivation of PKC, removal of extracellular Ca(2+), blockade of VSCC, and inhibition of Ca(2+)/calmodulin (CaM)-dependent protein kinase II (CaMKII). Inactivation of AC and PKA, however, was not effective in this regard. These results, as a whole, suggest that GnRH potentiation of GH rebound following NE inhibition is mediated by PKC coupled to Ca(2+) entry through VSCC and subsequent activation of CaMKII. Apparently, the Ca(2+)-dependent cascades are involved in GH secretion during the rebound phase but are not essential for the initiation of GnRH potentiation. Since GnRH has been previously shown to have no effects on cAMP synthesis in goldfish pituitary cells, the involvement of cAMP-dependent mechanisms in GnRH potentiation is rather unlikely.  相似文献   

19.
Gonadotropin-releasing hormone (GnRH) is produced by the hypothalamus and stimulates the synthesis and secretion of gonadotropin hormones. In addition, GnRH also stimulates the production and secretion of growth hormone (GH) in some fish species and in humans with certain clinical disorders. In the goldfish pituitary, GH secretion and gene expression are regulated by two endogenous forms of GnRH known as salmon GnRH and chicken GnRH-II. It is well established that PKC mediates GnRH-stimulated GH secretion in the goldfish pituitary. In contrast, the signal transduction of GnRH-induced GH gene expression has not been elucidated in any model system. In this study, we demonstrate, for the first time, the presence of novel and atypical PKC isoforms in the pituitary of a fish. Moreover, our results indicate that conventional PKC alpha is present selectively in GH-producing cells. Treatment of primary cultures of dispersed goldfish pituitary cells with PKC activators (phorbol ester or diacylglycerol analog) did not affect basal or GnRH-induced GH mRNA levels, and two different inhibitors of PKC (calphostin C and GF109203X) did not reduce the effects of GnRH on GH gene expression. Together, these results suggest that, in contrast to secretion, conventional and novel PKCs are not involved in GnRH-stimulated increases in GH mRNA levels in the goldfish pituitary. Instead, PD98059 inhibited GnRH-induced GH gene expression, suggesting that the ERK signaling pathway is involved. The results presented here provide novel insights into the functional specificity of GnRH-induced signaling and the regulation of GH gene expression.  相似文献   

20.
Goldfish pituitary gonadotropin-releasing hormone (GnRH) receptors were characterized by using a superagonist analog of teleost GnRH (tGnRH-A; [D-Arg6, Trp7, Leu8, Pro9-NHEt]-GnRH). Equilibrium binding of 125I-tGnRH-A to a goldfish pituitary membrane preparation was achieved after a 30-min incubation at 4 degrees C; binding was significantly reduced after increasing incubation temperature to 22 degrees C. Binding of the radioligand was a function of tissue concentration, with a linear correlation over the range of 0.5-2 pituitary per tube. Incubation of the pituitary membrane preparation with increasing concentrations of 125I-tGnRH-A indicated saturable binding at radioligand concentrations of 470 pM and above. The binding of 125I-tGnRH-A was found to be reversible after addition of the cold analog, and the dissociation curve could be resolved into two linear components; slower rates of dissociation of 125I-tGnRH-A were observed after the addition of excess unlabeled tGnRH than after the addition of tGnRH-A, indicating that the analog is more effective in displacing the label than the native peptide. Addition of the cold analog displaced bound 125I-GnRH-A, and Scatchard analysis suggested the presence of at least two classes of binding sites: a high-affinity/low-capacity site and a low-affinity/high-capacity site. Bound 125I-GnRH-A was displaced by tGnRH from both sites in parallel to that observed with tGnRH-A, indicating that both peptides bind to the same classes of binding sites; however, tGnRH-A had a greater affinity for the receptors than the native tGnRH. These results demonstrated the presence and provided characterization of GnRH receptors in goldfish pituitary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号