首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Although the function of many glycoproteins in the nervous system of fruit flies is well understood, information about the glycosylation profile and glycan attachment sites for such proteins is scarce. In order to fill this gap and to facilitate the analysis of N-linked glycosylation in the nervous system, we have performed an extensive survey of membrane-associated glycoproteins and their N-glycosylation sites isolated from the adult Drosophila brain. Following subcellular fractionation and trypsin digestion, we used different lectin affinity chromatography steps to isolate N-glycosylated glycopeptides. We identified a total of 205 glycoproteins carrying N-linked glycans and revealed their 307 N-glycan attachment sites. The size of the resulting dataset furthermore allowed the statistical characterization of amino acid distribution around the N-linked glycosylation sites. Glycan profiles were analyzed separately for glycopeptides that were strongly and weakly bound to Concanavalin A (Con A), or that failed to bind Concanavalin A, but did bind to wheat germ agglutinin (WGA). High- or paucimannosidic glycans dominated each of the profiles, although the wheat germ agglutinin-bound glycan population was enriched in more extensively processed structures. A sialylated glycan structure was unambiguously detected in the wheat germ agglutinin-bound fraction. Despite the large amount of starting material, insufficient amount of glycopeptides was retained by the Wisteria floribunda (WFA) and Sambucus nigra columns to allow glycan or glycoprotein identification, providing further evidence that the vast majority of glycoproteins in the adult Drosophila brain carry primarily high-mannose, paucimannose, and hybrid glycans. The obtained results should facilitate future genetic and molecular approaches addressing the role of N-glycosylation in the central nervous system (CNS) of Drosophila.  相似文献   

2.
Identification of the hydrophobic glycoproteins of Caenorhabditis elegans   总被引:2,自引:0,他引:2  
Hydrophobic proteins such as integral membrane proteins are difficult to separate, and therefore to study, at a proteomics level. However, the Asn-linked (N-linked) carbohydrates (N-glycans) contained in membrane glycoproteins are important in differentiation, embryogenesis, inflammation, cancer and metastasis, and other vital cellular processes. Thus, the identification of these proteins and their sites of glycosylation in a well-characterized model organism is the first step toward understanding the mechanisms by which N-glycans and their associated proteins function in vivo. In this report, a proteomics method recently developed by our group was applied to identify 117 hydrophobic N-glycosylated proteins of Caenorhabditis elegans extracts by analysis of 195 glycopeptides containing 199 Asn-linked oligosaccharides. Most of the proteins identified are involved in cell adhesion, metabolism, or the transport of small molecules. In addition, there are 18 proteins for which no function is known or predictable by sequence homologies and two proteins which were previously predicted to exist only on the basis of genomic sequences in the C. elegans database. Because N-glycosylation is initiated in the lumen of the endoplasmic reticulum (ER), our data can be used to reassess the previously predicted subcellular localizations of these proteins. As well, the identification of N-glycosylation sites helps establish the membrane topology of the associated glycoproteins. Caenorhabditis elegans strains are presently available with mutations in 17 of the genes we have identified. The powerful genetic tools available for C. elegans can be used to make other strains with mutations in genes encoding N-glycosylated proteins and thereby determine N-glycan function.  相似文献   

3.
Glycosylation is a very important post-translational modification involved in various cellular processes, such as cell adhesion, signal transduction and immune response. Urine is a rich source of glycoproteins and attractive biological fluid for biomarker discovery, owing to its availability, ease of collection, and correlation with pathophysiology of diseases. Although the urinary proteomics have been explored previously, the urinary glycoproteome characterization remains challenging requiring the development and optimization of analytical and bioinformatics methods for protein glycoprofiling. This study describes the high confident identification of 472 unique N-glycosylation sites covering 256 urinary glycoproteins. Besides, 202 unique N-glycosylation sites were identified in low molecular weight endogenous glycopeptides, which belong to 90 glycoproteins. Global site-specific characterization of the N-linked glycan heterogeneity was achieved by intact glycopeptide analysis, revealing 303 unique glycopeptides most of them displaying complex/hybrid glycans composed by sialic acid and fucose. These datasets consist in a valuable resource of glycoproteins and N-glycosylation sites found in healthy human urine that can be further explored in different disorders, in which the N-linked glycosylation may be aberrant.  相似文献   

4.
We describe here a strategy for the large-scale identification of N-glycosylated proteins from a complex biological sample. The approach, termed isotope-coded glycosylation-site-specific tagging (IGOT), is based on the lectin column-mediated affinity capture of a set of glycopeptides generated by tryptic digestion of protein mixtures, followed by peptide-N-glycosidase-mediated incorporation of a stable isotope tag, 18O, specifically into the N-glycosylation site. The 18O-tagged peptides are then identified by multi-dimensional liquid chromatography-mass spectrometry (LC-MS)-based technology. The application of this method to the characterization of N-linked high-mannose and/or hybrid-type glycoproteins from an extract of Caenorhabditis elegans proteins allowed the identification of 250 glycoproteins, including 83 putative transmembrane proteins, with the simultaneous determination of 400 unique N-glycosylation sites. Because the method is applicable to the systematic identification of a wide range of glycoproteins, it should facilitate basic glycobiology research and may be useful for diagnostic applications, such as genome-wide screening for disease-related glycoproteins.  相似文献   

5.
Protein glycosylation (e.g., N-linked glycosylation) is known to play an essential role in both cellular functions and secretory pathways; however, our knowledge of in vivo N-glycosylated sites is very limited for the majority of fungal organisms including Aspergillus niger. Herein, we present the first extensive mapping of N-glycosylated sites in A. niger by applying an optimized solid phase glycopeptide enrichment protocol using hydrazide-modified magnetic beads. The enrichment protocol was initially optimized using both mouse blood plasma and A. niger secretome samples, and it was demonstrated that the protein-level enrichment protocol offered superior performance over the peptide-level protocol. The optimized protocol was then applied to profile N-glycosylated sites from both the secretome and whole cell lysates of A. niger. A total of 847 N-glycosylated sites from 330 N-glycoproteins (156 proteins from the secretome and 279 proteins from whole cells) were confidently identified by LC-MS/MS. The identified N-glycoproteins in the whole cell lysate were primarily localized in the plasma membrane, endoplasmic reticulum, Golgi apparatus, lysosome, and storage vacuoles, supporting the important role of N-glycosylation in the secretory pathways. In addition, these glycoproteins are involved in many biological processes including gene regulation, signal transduction, protein folding and assembly, protein modification, and carbohydrate metabolism. The extensive coverage of N-glycosylated sites and the observation of partial glycan occupancy on specific sites in a number of enzymes provide important initial information for functional studies of N-linked glycosylation and their biotechnological applications in A. niger.  相似文献   

6.
Protein glycosylation is a common post-translational modification and has been increasingly recognized as one of the most prominent biochemical alterations associated with malignant transformation and tumorigenesis. N-linked glycosylation is prevalent in proteins on the extracellular membrane, and many clinical biomarkers and therapeutic targets are glycoproteins. Here, we describe a protocol for solid-phase extraction of N-linked glycopeptides and subsequent identification of N-linked glycosylation sites (N-glycosites) by tandem mass spectrometry. The method oxidizes the carbohydrates in glycopeptides into aldehydes, which can be immobilized on a solid support. The N-linked glycopeptides are then optionally labeled with a stable isotope using deuterium-labeled succinic anhydride and the peptide moieties are released by peptide-N-glycosidase. In a single analysis, the method identifies hundreds of N-linked glycoproteins, the site(s) of N-linked glycosylation and the relative quantity of the identified glycopeptides.  相似文献   

7.
Protein post-translational modifications (PTMs), such as glycosylation and phosphorylation, are crucial for various signaling and regulatory events, and are therefore an important objective of proteomics research. We describe here a protocol for isotope-coded glycosylation site-specific tagging (IGOT), a method for the large-scale identification of N-linked glycoproteins from complex biological samples. The steps of this approach are: (1) lectin column-mediated affinity capture of glycopeptides generated by protease digestion of protein mixtures; (2) purification of the enriched glycopeptides by hydrophilic interaction chromatography (HIC); (3) peptide-N-glycanase-mediated incorporation of a stable isotope tag, 18O18O, specifically at the N-glycosylation site; and (4) identification of 18O-tagged peptides by liquid chromatography-coupled mass spectrometry (LC/MS)-based proteomics technology. The application of this protocol to the characterization of N-linked glycoproteins from crude extracts of the nematode Caenorhabditis elegans or mouse liver provides a list of hundreds to a thousand glycoproteins and their sites of glycosylation within a week.  相似文献   

8.
Matrix-assisted laser desorption ionisation-time of flight (MALDI-TOF) spectrometry is a recently developed soft ionisation mass spectrometry technique which appears as a highly efficient tool for the N-glycosylation analysis of glycoproteins. The potentiality of this analytical technique is illustrated through the analysis of the N-glycosylation of the isolectin L of bean phytohemagglutinin (PHA-L). The analysis was carried out on the native PHA-L as well as on the N-glycans released from this lectin. Furthermore, the two glycopeptides containing the potential N-glycosylation sites prepared by proteolytic cleavage of PHA-L and purified by HPLC were analysed by MALDI-TOF. This study has confirmed that PHA-L is N-glycosylated by two populations of oligosaccharides, high-mannose-type N-glycans and paucimannosidic-type N-glycans, located on Asn-12 and Asn-60, respectively, and has pointed out the microheterogeneity of the glycans N-linked on both Asn residues.  相似文献   

9.
Protein glycosylation is a common post-translational modification that is involved in many biological processes, including cell adhesion, protein-protein and receptor-ligand interactions. The glycoproteome constitutes a source for identification of disease biomarkers since altered protein glycosylation profiles are associated with certain human ailments. Glycoprotein analysis by mass spectrometry of biological samples, such as blood serum, is hampered by sample complexity and the low concentration of the potentially informative glycopeptides and -proteins. We assessed the utility of lectin-based and HILIC-based affinity enrichment techniques, alone or in combination, for preparation of glycoproteins and glycopeptides for subsequent analysis by MALDI and ESI mass spectrometry. The methods were successfully applied to human serum samples and a total of 86 N-glycosylation sites in 45 proteins were identified using a mixture of three immobilized lectins for consecutive glycoprotein enrichment and glycopeptide enrichment. The combination of lectin affinity enrichment of glycoproteins and subsequent HILIC enrichment of tryptic glycopeptides identified 81 N-glycosylation sites in 44 proteins. A total of 63 glycosylation sites in 38 proteins were identified by both methods, demonstrating distinct differences and complementarity. Serial application of custom-made microcolumns of mixed, immobilized lectins proved efficient for recovery and analysis of glycopeptides from serum samples of breast cancer patients and healthy individuals to assess glycosylation site frequencies.  相似文献   

10.
N-linked glycosylation has a profound effect on the proper folding, oligomerization and stability of glycoproteins. These glycans impart many properties to proteins that may be important for their proper functioning, besides having a tendency to exert a chaperone-like effect on them. Certain glycosylation sites in a protein however, are more important than other sites for their function and stability. It has been observed that some N-glycosylation sites are conserved over families of glycoproteins over evolution, one such being the tyrosinase related protein family. The role of these conserved N-glycosylation sites in their trafficking, sorting, stability and activity has been examined here. By scrutinizing the different glycosylation sites on this family of glycoproteins it was inferred that different sites in the same family of polypeptides can perform distinct functions and conserved sites across the paralogues may perform diverse functions.  相似文献   

11.
Protein glycosylation is one of the most common post-translational modifications in eukaryotes and affects various aspects of protein structure and function. To facilitate studies of protein glycosylation, we paired glycosylation site-specific stable isotope tagging of lectin affinity-captured N-linked glycopeptides with mass spectrometry and determined 1,465 N-glycosylated sites on 829 proteins expressed in Caenorhabditis elegans. The analysis shows the diversity of protein glycosylation in eukaryotes in terms of glycosylation sites and oligosaccharide structures attached to polypeptide chains and suggests the substrate specificity of oligosaccharyltransferase, a single multienzyme complex in C. elegans that incorporates an oligosaccharide moiety en bloc to newly synthesized polypeptides. In addition, topological analysis of 257 N-glycosylated proteins containing a putative single transmembrane segment that were identified based on the relative positions of glycosylation sites and transmembrane segments suggests that an atypical non-cotranslational mechanism translocates large N-terminal segments from the cytosol to the endoplasmic reticulum lumen in the absence of signal sequence function.  相似文献   

12.
In N-glycosylated glycoproteins, carbohydrate is attached to Asn in the sequence Asn-X-Ser/Thr, where X denotes any amino acid. However, the presence of this consensus peptide does not always lead to glycosylation. We have compiled an extensive collection of glycosylated and non-glycosylated Asn-X-Thr/Ser sites and present a statistical study based on this data set. Our results indicate that non-glycosylated sites tend to be found more frequently towards the C termini of glycoproteins, and that proline residues in positions X and Y in the consensus Asn-X-Thr/Ser-Y strongly reduce the likelihood of N-linked glycosylation. Beyond this, there are no obvious local sequence features that seem to correlate with the absence or presence of N-linked glycosylation. These findings are discussed in terms of the prediction and engineering of glycosylation sites in secretory proteins.  相似文献   

13.
蛋白质糖基化(glycosylation)是最常见和最重要的翻译后修饰之一.大规模N-连接糖基化位点鉴定是糖蛋白质组学研究的重要组成部分,而N-连接糖肽富集是高通量N-连接糖基化位点鉴定的关键步骤.凝集素富集法和酰肼化学法是目前被广泛应用的N-连接糖肽富集技术,有报道认为两种方法具有很强的互补性,联合使用能提高糖基化位点的鉴定数目.本文以Hep G2细胞系为模型,系统比较了这两种方法的富集效率和糖蛋白鉴定数目.结果表明,虽然酰肼法的糖肽富集效率为76.6%,远高于凝集素法的54.6%,但是凝集素法却能鉴定到825个糖蛋白和1 959个N-连接糖基化位点,显著多于酰肼法富集到的522个糖蛋白和1 014个糖基化位点.并且,两种方法并未显示出显著的互补性,仅28个糖蛋白和80个糖基化位点未在凝集素法中鉴定到.  相似文献   

14.
Congenital disorders of glycosylation (CDGs) are a family of N-linked glycosylation defects associated with severe clinical manifestations. In CDG type-I, deficiency of lipid-linked oligosaccharide assembly leads to the underoccupancy of N-glycosylation sites on glycoproteins. Although the level of residual glycosylation activity is known to correlate with the clinical phenotype linked to individual CDG mutations, it is not known whether the degree of N-glycosylation site occupancy by itself correlates with the severity of the disease. To quantify the extent of underglycosylation in healthy control and in CDG samples, we developed a quantitative method of N-glycosylation site occupancy based on multiple reaction monitoring LC-MS/MS. Using isotopically labeled standard peptides, we directly quantified the level of N-glycosylation site occupancy on selected serum proteins. In healthy control samples, we determined 98-100% occupancy for all N-glycosylation sites of transferrin and alpha(1)-antitrypsin. In CDG type-I samples, we observed a reduction in N-glycosylation site occupancy that correlated with the severity of the disease. In addition, we noticed a selective underglycosylation of N-glycosylation sites, indicating preferential glycosylation of acceptor sequons of a given glycoprotein. In transferrin, a preferred occupancy for the first N-glycosylation site was observed, and a decreasing preference for the first, third, and second N-glycosylation sites was observed in alpha(1)-antitrypsin. This multiple reaction monitoring LC-MS/MS method can be extended to multiple glycoproteins, thereby enabling a glycoproteomics survey of N-glycosylation site occupancies in biological samples.  相似文献   

15.
Hao P  Ren Y  Xie Y 《PloS one》2010,5(11):e15096
Different glycoforms of some proteins have been identified as differential spots for certain diseases in 2-DE, indicating disease-related glycosylation changes. It is routine to determine the site-specific glycosylation of nonsialylated N-glycoproteins from a single gel spot, but some obstacles still exist in analyzing sialylated glycoproteins due to the lability and higher detection limit of acid glycans in MALDI-TOF/TOF analysis. Thus, we present an improved protocol here. Tryptic glycopeptides were separated and subjected to MALDI-TOF/TOF analysis, resulting in the identification of site-specific glycosylation of high-intensity glycopeptides. Sequential deglycosylation and desialylation were used to improve the identification of glycosylation sites and desialylated glycans. The site-specific glycosylation of large glycopeptides and low-intensity glycopeptides was deduced based on the masses of glycopeptides, deglycosylated peptides and desialylated glycans. By applying it to 2-DE separated human serum, the difference of N-glycosylation was successfully determined for α1-antitrypsin between different gel spots.  相似文献   

16.
Neuronal Kv3 voltage-gated K(+) channels have two absolutely conserved N-glycosylation sites. Here, it is shown that Kv3.1, 3.3, and 3.4 channels are N-glycosylated in rat brain. Digestion of total brain membranes with peptide N glycosidase F (PNGase F) produced faster migrating immunobands than those of undigested membranes. Additionally, partial PNGase F digests showed that both sites are occupied by oligosaccharides. Neuraminidase treatment produced a smaller immunoband shift relative to PNGase F treatment. These results indicate that both sites are highly available and occupied by N-linked oligosaccharides for Kv3.1, 3.3, and 3.4 in rat brain, and furthermore that at least one oligosaccharide is of complex type. Additionally, these results point to an extracytoplasmic S1-S2 linker in Kv3 proteins expressed in native membranes. We suggest that N-glycosylation processing of Kv3 channels is critical for the expression of K(+) currents at the surface of neurons, and perhaps contributes to the pathophysiology of congenital disorders of glycosylation.  相似文献   

17.
Mentesana PE  Konopka JB 《Biochemistry》2001,40(32):9685-9694
The alpha-factor mating pheromone receptor (encoded by STE2) activates a G protein signaling pathway that stimulates the conjugation of Saccharomyces cerevisiae yeast cells. The alpha-factor receptor is known to undergo several forms of post-translational modification, including phosphorylation, mono-ubiquitination, and N-linked glycosylation. Since phosphorylation and mono-ubiquitination have been shown previously to play key roles in regulating the signaling activity and membrane trafficking of the alpha-factor receptors, the role of N-linked glycosylation was investigated in this study. The Asn residues in the five consensus sites for N-linked glycosylation present in the extracellular regions of the receptor protein were mutated to prevent carbohydrate attachment at these sites. Mutation of two sites near the receptor N-terminus (N25Q and N32Q) diminished the degree of receptor glycosylation, and the corresponding double mutant was not detectably N-glycosylated. The nonglycosylated receptors displayed normal function and subcellular localization, indicating that glycosylation is not important for wild-type receptor activity. However, mutation of the glycosylation sites resulted in improved plasma membrane localization for the Ste2-3 mutant receptors that are normally retained intracellularly at elevated temperatures. These results suggest that N-glycosylation may be involved in the sorting process for misfolded Ste2 proteins, and may similarly affect certain mutant receptors whose altered trafficking is implicated in human diseases.  相似文献   

18.
The enormous complexity, wide dynamic range of relative protein abundances of interest (over 10 orders of magnitude), and tremendous heterogeneity (due to post-translational modifications, such as glycosylation) of the human blood plasma proteome severely challenge the capabilities of existing analytical methodologies. Here, we describe an approach for broad analysis of human plasma N-glycoproteins using a combination of immunoaffinity subtraction and glycoprotein capture to reduce both the protein concentration range and the overall sample complexity. Six high-abundance plasma proteins were simultaneously removed using a pre-packed, immobilized antibody column. N-linked glycoproteins were then captured from the depleted plasma using hydrazide resin and enzymatically digested, and the bound N-linked glycopeptides were released using peptide-N-glycosidase F (PNGase F). Following strong cation exchange (SCX) fractionation, the deglycosylated peptides were analyzed by reversed-phase capillary liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). Using stringent criteria, a total of 2053 different N-glycopeptides were confidently identified, covering 303 nonredundant N-glycoproteins. This enrichment strategy significantly improved detection and enabled identification of a number of low-abundance proteins, exemplified by interleukin-1 receptor antagonist protein (approximately 200 pg/mL), cathepsin L (approximately 1 ng/mL), and transforming growth factor beta 1 (approximately 2 ng/mL). A total of 639 N-glycosylation sites were identified, and the overall high accuracy of these glycosylation site assignments as assessed by accurate mass measurement using high-resolution liquid chromatography coupled to Fourier transform ion cyclotron resonance mass spectrometry (LC-FTICR) is initially demonstrated.  相似文献   

19.
Glycoproteins make up a major and important part of the salivary proteome and play a vital role in maintaining the health of the oral cavity. Because changes in the physiological state of a person are reflected as changes in the glycoproteome composition, mapping the salivary glycoproteome will provide insights into various processes in the body. Salivary glycoproteins were identified by the hydrazide coupling and release method. In this approach, glycoproteins were coupled onto a hydrazide resin, the proteins were then digested and formerly N-glycosylated peptides were selectively released with the enzyme PNGase F and analyzed by LC-MS/MS. Employing this method, coupled with in-solution isoelectric focusing separation as an additional means for pre-fractionation, we identified 84 formerly N-glycosylated peptides from 45 unique N-glycoproteins. Of these, 16 glycoproteins have not been reported previously in saliva. In addition, we identified 44 new sites of N-linked glycosylation on the proteins.  相似文献   

20.
Ovomucin is a bioactive egg white glycoprotein responsible for the gel properties of fresh egg white and is believed to be involved in egg white thinning, a natural process that occurs during storage. Ovomucin is composed of two subunits: a carbohydrate-rich β-ovomucin with molecular weight of 400-610?KDa and a carbohydrate-poor α-ovomucin with molecular mass of 254?KDa. In addition to limited information on O-linked glycans of ovomucin, there is no study on either the N-glycan structures or the N-glycosylation sites. The purpose of the present study was to characterize the N-glycosylation of ovomucin from fresh eggs using nano LC ESI-MS, MS/MS and MALDI MS. Our results showed the presence of N-linked glycans on both glycoproteins. We found 18 potential N-glycosylation sites in α-ovomucin. 15 sites were glycosylated, one site was found in both glycosylated and non-glycosylated forms and two potential glycosylation sites were found unoccupied. The N-glycans of α-ovomucin found on the glycosylation sites are complex-type structures with bisecting N-acetylglucosamine. MALDI MS of the N-glycans released from α-ovomucin by PNGase F revealed that the most abundant glycan structure is a bisected type of composition GlcNAc(6)Man(3). Two N-glycosylated sites were found in β-ovomucin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号