首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Amyloid fibrillogenesis is an important pathological feature of a group of degenerative human diseases. The 129-residue enzyme hen egg-white lysozyme has been shown to form fibrils in vitro at pH 2.0 and 55°C. In this research, using various spectroscopic techniques, light scattering, and transmission electron microscopy, we first examined the influence of short-chain phospholipids on the amyloid fibrillogenesis and the structural changes derived from hen lysozyme in vitro. Both model short-chain phospholipids were observed to mitigate the fibrillogenesis of hen lysozyme. Also, urea-induced unfolding results suggested that the susceptibility of hen lysozyme to conformational changes elicited by the denaturant was observed to decrease upon addition of short-chain phospholipids. Moreover, our molecular dynamics simulations results demonstrated that the observed inhibitory action of short-chain phosoholipids against hen lysozyme fibrillogenesis might be attributable to the interference of β-strand extension by the binding of phospholipids to lysozyme's β-sheet-rich region. We believe that the outcome from this study may contribute to a better understanding the molecular factors affecting amyloid fibrillogenesis and the molecular mechanism(s) of the interactions between phospholipids/lipids and amyloid-forming proteins.  相似文献   

2.
Alpha-synuclein is one of the causative proteins of familial Parkinson disease, which is characterized by neuronal inclusions named Lewy bodies. Lewy bodies include not only alpha-synuclein but also aggregates of other proteins. This fact raises a question as to whether the formation of alpha-synuclein amyloid fibrils in Lewy bodies may occur via interaction with fibrils derived from different proteins. To probe this hypothesis, we investigated in vitro fibril formation of human alpha-synuclein in the presence of preformed fibril seeds of various different proteins. We used three proteins, Escherichia coli chaperonin GroES, hen lysozyme, and bovine insulin, all of which have been shown to form amyloid fibrils. Very surprisingly, the formation of alpha-synuclein amyloid fibril was accelerated markedly in the presence of preformed seeds of GroES, lysozyme, and insulin fibrils. The structural characteristics of the natively unfolded state of alpha-synuclein may allow binding to various protein particles, which in turn triggers the formation (extension) of alpha-synuclein amyloid fibrils. This finding is very important for understanding the molecular mechanism of Parkinson disease and also provides interesting implications into the mechanism of transmissible conformational diseases.  相似文献   

3.
Luminescent conjugated polyelectrolytes (LCPs) have emerged as novel stains to detect and distinguish between various amyloidogenic species, including prefibrillar aggregates and mature fibril deposits, both in vitro and in histological tissue samples, offering advantages over traditional amyloid stains. We here use linear dichroism (LD) spectroscopy under shear alignment to characterize interactions between the LCP poly(3-thiophene acetic acid) (PTAA) and amyloid fibrils. The positive signature in the LD spectrum of amyloid-bound PTAA suggests that it binds in the grooves between adjacent protein side-chains in the amyloid fibril core, parallel to the fibril axis, similar to thioflavin-T and congo red. Moreover, using LD we record the absorption spectrum of amyloid-bound PTAA in isolation from free dye showing a red-shift by ca 30 nm compared to in solution. This has important implications for the use of PTAA as an amyloid probe in situ and in vitro and we demonstrate how to obtain optimal amyloid-specific fluorescence read-outs using PTAA. We use the shift in maximum absorption to estimate the fraction of bound PTAA at a given concentration. PTAA binding reaches saturation when added in 36 times excess and at this concentration the PTAA density is 4–5 monomer units per insulin monomer in the fibril. Finally, we demonstrate that changes in LD intensity can be related to alterations in persistence length of amyloid fibrils resulting from changes in solution conditions, showing that this technique is useful to assess macroscopic properties of these biopolymers.  相似文献   

4.
The fluorescence of Nile red (9-diethylamino-5H-benzophenoxazine-5-one) is quenched in aqueous solutions but shows augmented fluorescence in hydrophobic environments. Nile red fluorescence was blue shifted and strongly augmented in the presence of various amyloid fibrils assayed under acidic as well as neutral pH conditions. Fibrils grown from lysozyme and insulin (at pH 1.6 and 65 °C), transthyretin (TTR) fibrils grown from the acid unfolded monomer (pH 2.0, 21 °C) or from the dissociated tetramer starting from native protein under less acidic conditions (pH 4.4, 37 °C) were detected. Nile red was also successfully employed in detecting Aβ1-42 and human prion protein (PrP90-231) amyloid fibrils grown at neutral pH. Nile red was amyloid fibril specific and did not fluoresce appreciably in the presence of the monomeric precursor proteins. Stoke's shifts of the wavelength maximum of Nile red bound to various fibrils were different (ranging from 615 nm to 638 nm) indicating sensitivity to the tertiary structure in its respective binding sites of different amyloid proteins. A polarity assay using ethanol-water mixtures and pure octanol ranging from dielectric constants between 10 and 70 showed a linear correlation of Nile red Stoke's shift and allowed assignment of amyloid fibril binding site polarity. Fluorescence resonance energy transfer between Thioflavin T (ThT) and Nile red was proven to be efficient and co-staining was employed to discriminate between conformational isoforms of Aβ1-42 amyloid fibrils grown under agitated and quiescent conditions. This paper demonstrates the complementary use of this fluorometric method for conformational typing of amyloid structures.  相似文献   

5.
Benzthiazole dye thioflavin T (ThT) is widely used to study the formation and structure of amyloid fibrils. Nevertheless, till now there is no common opinion concerning molecular mechanisms of ThT binding to amyloid fibrils and the reasons of dramatic increase in its fluorescence quantum yield on incorporation into amyloid fibrils. Our data prove that ThT molecules incorporate in the amyloid fibrils in the monomeric form and there is no ground to suppose the formation of ThT dimers, eximers, or micells. It was shown that the increase in the quantum yield of ThT incorporated in amyloid fibrils was caused by restriction of benzthiazole and aminobenzene rings torsion fluctuations relative to each other. The use of equilibrium microdialysis allowed determining the absorption spectrum, the number of binding modes of ThT with insulin amyloid fibrils and for each mode determining the binding constants and the number of binding sites for each mode.  相似文献   

6.
Hartsel SC  Weiland TR 《Biochemistry》2003,42(20):6228-6233
The membrane-active antifungal agent amphotericin B (AmB) is one of the few agents shown to slow the course of prion diseases in animals. Congo Red and other small molecules have been reported to directly inhibit amyloidogenesis in both prion and Alzheimer peptide model systems via specific binding. We propose that it is possible that AmB may act similarly to physically prevent conversion of the largely alpha-helical prion protein (PrP) to the pathological beta-sheet aggregate protease-resistant isoform (PrP(res)) in prion disease and by analogy prevent fibrillization in amyloid diseases. To assess whether AmB is capable of binding specifically to amyloid fibrils as does Congo Red, we have used the insulin fibril and Abeta 25-35 amyloid model fibril system. We find that AmB does bind strongly to both insulin (K(d) = 1.1 microM) and Abeta 25-35 amyloid (K(d) = 6.4 microM) fibrils but not to native insulin. Binding is characterized by a red-shifted AmB spectrum indicative of a more hydrophobic environment. Thus AmB seems to have a complementary face for amyloid fibrils but not the native protein. In addition, AmB interacts specifically with Congo Red, a known fibril-binding agent. In kinetic fibril formation studies, AmB was able to significantly kinetically delay the formation of Abeta 25-35 fibrils at pH 7.4 but not insulin fibrils at pH 2.  相似文献   

7.
Amyloid fibrils are a well‐recognized hallmark of neurodegeneration. A common approach to detect amyloid fibrils is staining with organic molecules and monitoring optical properties using fluorescence spectroscopy. However, the structural diversity of amyloids necessitates new sensitive methods and probes that can be reliably used to characterize them. Here, Coumarin 307 is applied for lysozyme fibrils detection by observation of laser action in the process of two‐photon excited stimulated emission. It is shown that the lasing threshold and spectrum significantly depend on the adopted structure (α‐helix or β‐sheet) of the lysozyme protein, whereas fluorescence spectrum is insensitive to the protein structure. The applications of coherent stimulated emission light that can be emitted deep inside a scattering medium can be particularly promising for imaging and therapeutic purposes in the neurodegeneration field. Two‐photon excitation with the near‐infrared light, which allows the deepest penetration of tissues, is an important advantage of the method.  相似文献   

8.
Nilsson MR  Dobson CM 《Biochemistry》2003,42(2):375-382
Lactoferrin has previously been identified in amyloid deposits in the cornea, seminal vesicles, and brain. We report in this paper a highly amyloidogenic region of lactoferrin (sequence of NAGDVAFV). This region was initially identified by sequence comparison with medin, a 5.5 kDa amyloidogenic fragment derived from lactadherin. Subsequent characterization revealed that this peptide forms amyloid fibrils at pH 7.4 when incubated at 37 degrees C. Furthermore, although full-length lactoferrin does not by itself form amyloid fibrils, the protein does bind to the peptide fibrils as revealed by an increase in thioflavin T fluorescence and the presence of enlarged fibrils by transmission electron microscopy and polarized light microscopy. The binding of lactoferrin is a selective interaction with the NAGDVAFV fibrils. Lactoferrin does not bind to insulin or lysozyme fibrils, and the NAGDVAFV fibrils do not bind to soluble insulin or lysozyme. The lactoferrin appears to coat the peptide fibril surface to form mixed peptide/protein fibrils, but again there is no evidence for the formation of lactoferrin-only fibrils. This interaction, therefore, seems to involve selective binding rather than conventional seeding of fibril formation. We suggest that such a process could be generally important in the formation of amyloid fibrils in vivo since the identification of both full-length protein and protein fragments is common in ex vivo amyloid deposits.  相似文献   

9.
We report a rationale for the formation of amyloid fibrils from globular proteins, and we infer about its possible generality by showing the formation of giant multistranded twisted and helical ribbons from both lysozyme and β-lactoglobulin. We follow the kinetics of the fibrillation under the same conditions of temperature (90 °C) and incubation time (0-30 h) for both proteins, and we assess the structural changes during fibrillation by single-molecule atomic force microscopy (AFM), circular dichroism (CD), and SDS-PAGE. With incubation time, the width of a multistranded fibril increases up to an unprecedented size, with a lateral assembly of as many as 17 protofilaments (173 nm width). In both cases, a progressive unfolding and hydrolysis of the proteins into very short peptide sequences occurs. The molecular weights of peptide fragments, the secondary structure evolution, and the morphology of the final fibrils present striking similarities between lysozyme and β-lactoglobulin. Because of additional analogies to synthetic peptide fibrils, these findings support a universal common fibrillation mechanism in which hydrolyzed fragments play the central role.  相似文献   

10.
Amyloid fibrils have been recognized as having potential in a variety of bionanotechnological applications. However, realization of these applications is constrained by a lack of control over morphology and alignment, both crucial for potential end uses. This article focuses on the use of growth and storage conditions to control the length of amyloid fibrils formed from bovine insulin, with length distributions constructed from transmission electron microscopy (TEM) images. Growth temperature, pH, protein concentration, and storage conditions were examined and were seen to offer a range of conditions that favor different length distribution. The use of amyloid fibrils as nanowires is one area where control of fibril dimensions is desirable, for experimental setup and endpoint applications. The conductive properties of fibrils formed from bovine insulin are presented, with these insulin fibrils being shown to have high resistivity in their unmodified state, with current values in the nanoamp range. These low current values can be increased via modification, or the fibrils used in their native state in applications where low current values are desirable. These findings, coupled with the ability to predict and select for various insulin amyloid fibril dimensions, enhances their utility as nanomaterials.  相似文献   

11.
Some of the lysozyme mutants in humans cause systemic amyloidosis. Hen egg white lysozyme (HEWL) has been well studied as a model protein of amyloid fibrils formation. We previously identified an amyloid core region consisting of nine amino acids (designated as the K peptide), which is present at 54-62 in HEWL. The K peptide, with tryptophan at its C- terminus, has the ability of self-aggregation. In the present work we focused on its structural properties in relation to the formation of fibrils. The K peptide alone formed definite fibrils having β-sheet structures by incubation of 7 days under acidic conditions at 37°C. A substantial number of fibrils were generated under this pH condition and incubation period. Deletion and substitution of tryptophan in the K peptide resulted in no formation of fibrils. Tryptophan 62 in lysozyme was suggested to be especially crucial to forming amyloid fibrils. We also show that amyloid fibrils formation of the K peptide requires not only tryptophan 62 but also a certain length containing hydrophobic amino acids. A core region is involved in the significant formation of amyloid fibrils of lysozyme.  相似文献   

12.
Heldt CL  Zhang S  Belfort G 《Proteins》2011,79(1):92-98
Amyloids are insoluble, fibrous proteins formed through the aggregation of misfolded proteins. They accumulate in the tissue of individuals with degenerative diseases, such as Parkinson's and Alzheimer's. The purpose of this study was to determine whether fibril growth from an initial model fibril seed is unidirectional or bidirectional. The prevailing theory on amyloid formation is that a symmetric fibril elongates equally from both ends. This study provides evidence to the contrary; the process occurs predominately unidirectionally, demonstrating that amyloid fibrils may be asymmetric and propagate mostly in one direction. Alexa Fluor 568 labeled insulin fibrils were seeded into a native insulin solution and allowed to elongate at 65°C while the kinetics of fibril growth was monitored. The resulting elongated fibrils were labeled with thioflavin-T, and the fluorescent images of the fibrils show that a majority of the elongated fibrils propagated along only one end of the seed, with the remaining labeled fibrils having bidirectional elongation or no elongation. Using a crystallographic model, we offer a structural explanation for asymmetric growth of the insulin fibrils. Thus, instead of the current view that fibrils grow symmetrically from both ends of the fibril, this is the first evidence that insulin amyloid fibrils formed in solution are asymmetric and appear to grow from only one end.  相似文献   

13.
Today, the investigation of the structure of ordered protein aggregates-amyloid fibrils, the influence of the native structure of the protein and the external conditions on the process of fibrillation-is the subject of intense investigations. The aim of the present work is to study the kinetics of formation of insulin amyloid fibrils at low pH values (conditions that are used at many stages of the isolation and purification of the protein) using the fluorescent probe thioflavin T. It is shown that the increase of the fluorescence intensity of ThT during the formation of amyloid fibrils is described by a sigmoidal curve, in which three areas can be distinguished: the lag phase, growth, and a plateau, which characterize the various stages of fibril formation. Despite the variation in the length of the lag phase at the same experimental conditions (pH and temperature), it is seen to drop during solution stirring and seeding. Data obtained by electron microscopy showed that the formed fibrils are long, linear filaments ~20 nm in diameter. With increasing incubation time, the fibril diameter does not change, while the length increases to 2–3 μm, which is accompanied by a significant increase in the number of fibril aggregates. All the experimental data show that, irrespective of the kinetics of formation of amyloid fibrils, their properties after the completion of the fibrillation process are identical. The results of this work, together with the previous studies of insulin amyloid fibrils, may be important for clarification the mechanism of their formation, as well as for the treatment of amyloidosis associated with the aggregation of insulin.  相似文献   

14.
It is known that hen egg white lysozyme (HEWL) forms amyloid fibrils. Since HEWL is one of the proteins that have been studied most extensively and is closely related to human lysozyme, the variants of which form the amyloid fibrils that are related to hereditary systemic amyloidosis, this protein is an ideal model to study the mechanism of amyloid fibril formation. In order to gain an insight into the mechanism of amyloid fibril formation, systematic and detailed studies to detect and characterize various structural states of HEWL were conducted. Since HEWL forms amyloid fibrils in highly concentrated ethanol solutions, solutions of various concentrations of HEWL in various concentrations of ethanol were prepared, and the structures of HEWL in these solutions were investigated by small-angle X-ray and neutron scattering. It was shown that the structural states of HEWL were distinguished as the monomer state, the state of the dimer formation, the state of the protofilament formation, the protofilament state, and the state towards the formation of amyloid fibrils. A phase diagram of these structural states was obtained as a function of protein, water and ethanol concentrations. It was found that under the monomer state the structural changes of HEWL were not gross changes in shape but local conformational changes, and the dimers, formed by the association at the end of the long axis of HEWL, had an elongated shape. Circular dichroism measurements showed that the large changes in the secondary structures of HEWL occurred during dimer formation. The protofilaments were formed by stacking of the dimers with their long axis (nearly) perpendicular to and rotated around the protofilament axis to form a helical structure. These protofilaments were characterized by their radius of gyration of the cross-section of 2.4nm and the mass per unit length of 16,000(+/-2300)Da/nm. It was shown that the changes of the structural states towards the amyloid fibril formation occurred via lateral association of the protofilaments. A pathway of the amyloid fibril formation of HEWL was proposed from these results.  相似文献   

15.
Many experimental studies have shown that the prion AGAAAAGA palindrome hydrophobic region (113-120) has amyloid fibril forming properties and plays an important role in prion diseases. However, due to the unstable, noncrystalline and insoluble nature of the amyloid fibril, to date structural information on AGAAAAGA region (113-120) has been very limited. This region falls just within the N-terminal unstructured region PrP (1-123) of prion proteins. Traditional X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy experimental methods cannot be used to get its structural information. Under this background, this paper introduces a novel approach of the canonical dual theory to address the 3D atomic-resolution structure of prion AGAAAAGA amyloid fibrils. The novel and powerful canonical dual computational approach introduced in this paper is for the molecular modeling of prion AGAAAAGA amyloid fibrils, and that the optimal atomic-resolution structures of prion AGAAAAGA amyloid fibils presented in this paper are useful for the drive to find treatments for prion diseases in the field of medicinal chemistry. Overall, this paper presents an important method and provides useful information for treatments of prion diseases.  相似文献   

16.
We have revisited the well-studied heat and acidic amyloid fibril formation pathway (pH 1.6, 65 degrees C) of hen egg-white lysozyme (HEWL) to map the barriers of the misfolding and amyloidogenesis pathways. A comprehensive kinetic mechanism is presented where all steps involving protein hydrolysis, fragmentation, assembly and conversion into amyloid fibrils are accounted for. Amyloid fibril formation of lysozyme has multiple kinetic barriers. First, HEWL unfolds within minutes, followed by irreversible steps of partial acid hydrolysis affording a large amount of nicked HEWL, the 49-101 amyloidogenic fragment and a variety of other species over 5-40 h. Fragmentation forming the 49-101 fragment is a requirement for efficient amyloid fibril formation, indicating that it forms the rate-determining nucleus. Nicked full-length HEWL is recruited efficiently into amyloid fibrils in the fibril growth phase or using mature fibrils as seeds, which abolished the lag phase completely. Mature amyloid fibrils of HEWL are composed mainly of nicked HEWL in the early equilibrium phase but go through a "fibril shaving" process, affording fibrils composed of the 49-101 fragment and 53-101 fragment during more extensive maturation (incubation for longer than ten days). Seeding of the amyloid fibril formation process using sonicated mature amyloid fibrils accelerates the fibril formation process efficiently; however, addition of intact full-length lysozyme at the end of the lag phase slows the rate of amyloidogenesis. The intact full-length protein, in contrast to nicked lysozyme, slows fibril formation due to its slow conversion into the amyloid fold, probably due to inclusion of the non-amyloidogenic 1-48/102-129 portion of HEWL in the fibrils, which can function as a "molecular bumper" stalling further growth.  相似文献   

17.
Amyloid fibrils are aberrant protein aggregates associated with various amyloidoses and neurodegenerative diseases. It is recently indicated that structural diversity of amyloid fibrils often results in different pathological phenotypes, including cytotoxicity and infectivity. The diverse structures are predicted to propagate by seed-dependent growth, which is one of the characteristic properties of amyloid fibrils. However, much remains unknown regarding how exactly the amyloid structures are inherited to subsequent generations by seeding reaction. Here, we investigated the behaviors of self- and cross-seeding of amyloid fibrils of human and bovine insulin in terms of thioflavin T fluorescence, morphology, secondary structure, and iodine staining. Insulin amyloid fibrils exhibited different structures, depending on species, each of which replicated in self-seeding. In contrast, gradual structural changes were observed in cross-seeding, and a new type of amyloid structure with distinct morphology and cytotoxicity was formed when human insulin was seeded with bovine insulin seeds. Remarkably, iodine staining tracked changes in amyloid structure sensitively, and singular value decomposition analysis of the ultraviolet-visible absorption spectra of the fibril-bound iodine has revealed the presence of one or more intermediate metastable states during the structural changes. From these findings, we propose a propagation scheme with multistep structural changes in cross-seeding between two heterologous proteins, which is accounted for as a consequence of the rugged energy landscape of amyloid formation.  相似文献   

18.
Among the newly discovered amyloid properties, its cytotoxicity plays a key role. Lysozyme is a ubiquitous protein involved in systemic amyloidoses in vivo and forming amyloid under destabilising conditions in vitro. We characterized both oligomers and fibrils of hen lysozyme by atomic force microscopy and demonstrated their dose (5-50 microM) and time-dependent (6-48 h) effect on neuroblastoma SH-SY5Y cell viability. We revealed that fibrils induce a decrease of cell viability after 6 h due to membrane damage shown by inhibition of WST-1 reduction, early lactate dehydrogenase release, and propidium iodide intake; by contrast, oligomers activate caspases after 6 h but cause the cell viability to decline only after 48 h, as shown by fluorescent-labelled annexin V binding to externalized phosphatidylserine, propidium iodide DNA staining, lactate dehydrogenase release, and by typical apoptotic shrinking of cells. We conclude that oligomers induce apoptosis-like cell death, while the fibrils lead to necrosis-like death. As polymorphism is a common property of an amyloid, we demonstrated that it is not a single uniform species but rather a continuum of cross-beta-sheet-containing amyloids that are cytotoxic. An abundance of lysozyme highlights a universal feature of this phenomenon, indicating that amyloid toxicity should be assessed in all clinical applications involving proteinaceous materials.  相似文献   

19.
Mutant human lysozymes (Ile56Thr & Asp67His) have been reported to form amyloid deposits in the viscera. From the standpoint of understanding the mechanism of amyloid formation, we searched for conditions of amyloid formation in vitro using hen egg lysozyme, which has been extensively studied from a physicochemical standpoint. It was found that the circular dichroism spectra in the far-ultraviolet region of the hen egg lysozyme changed to those characteristic of a beta-structure from the native alpha-helix rich spectrum in 90% ethanol solution. When the concentration of protein was increased to 10 mg/mL, the protein solution formed a gel in the presence of 90% ethanol, and precipitated on further addition of 10 mM NaCl. The precipitates were examined by electron microscopy, their ability to bind Congo red, and X-ray diffraction to determine whether amyloid fibrils were formed in the precipitates. Electron micrographs displayed unbranched protofilament with a diameter of approximately 70 A. The peak point of the difference spectrum for the Congo red binding assay was 541 nm, which is characteristic of amyloid fibrils. The X-ray diffraction pattern showed a sharp and intense diffraction ring at 4.7 A, a reflection that arises from the interstrand spacing in beta-sheets. These results indicate that the precipitates of hen egg lysozyme are amyloid protofilament, and that the amyloid protofilament formation of hen egg lysozyme closely follows upon the destruction of the helical and tertiary structures.  相似文献   

20.
Using the molecular dynamics simulation, the role of lipids in the lysozyme transition into the aggregation-competent conformation has been clarified. Analysis of the changes of lysozyme secondary structure upon its interactions with the model bilayer membranes composed of phosphatidylcholine and its mixtures with phosphatidylglycerol (10, 40, and 80 mol%) within the time interval of 100 ns showed that lipid-bound protein is characterized by the increased content of β-structures. Along with this, the formation of protein–lipid complexes was accompanied by the increase in the gyration radius and the decrease in RMSD of polypeptide chain. The results obtained were interpreted in terms of the partial unfolding of lysozyme molecule on the lipid matrix, with the magnitude of this effect being increased with increasing the fraction of anionic lipids. Based on the results of molecular dynamics simulation, a hypothetical model of the nucleation of lysozyme amyloid fibrils in a membrane environment was suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号