首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The location and definition of Pleistocene refugia for tropical forest assemblages remains controversial. Phylogeographic methods have been used successfully in temperate ecosystems to locate past forest refugia using genetic data that coincide with pollen core evidence, and in some cases provide the sole basis for their location. Here we present molecular phylogeographic data from nuclear and chloroplast loci for the forest tree Irvingia gabonensis, across the majority of its natural range, in Nigeria, Cameroon and Gabon. It is the first detailed phylogeographic study to posit the location of tropical forest refugia across this region of Africa. Using the same method of restriction fragment length polymorphism screening, 17 alleles were identified across five anonymous nuclear loci and two haplotypes at a single chloroplast locus. Analysis based on nuclear variation identified two genetically diverse, differentiated allelic clusters within the species range, one in southern Nigeria/western Cameroon and the other in southwestern Cameroon. Molecular data are consistent with a historical genetic contraction and bottleneck into these regions in the Pleistocene and/or Holocene, which has been followed by subsequent expansion. Both genetic refugia are located within areas previously suggested as forest refugia from biogeographic studies, supported by available pollen core data, and occur either side of the Sanaga River, a notable biogeographic divide for mammals (particularly primates). Other putative refugia in Gabon do not appear to have acted as genetic refugia for I. gabonensis, and Gabon was most likely recolonised from the SW Cameroon refugial source. In this study, nuclear loci were able to highlight significant phylogeographic structure across the range of a tropical African tree, whereas chloroplast analysis gave a much more limited picture. With the increased availability of sequence data for non-model species, the de novo development and further application of nuclear loci is strongly recommended for phylogeographic studies of plants.  相似文献   

2.
Empirical phylogeographic studies have progressively sampled greater numbers of loci over time, in part motivated by theoretical papers showing that estimates of key demographic parameters improve as the number of loci increases. Recently, next‐generation sequencing has been applied to questions about organismal history, with the promise of revolutionizing the field. However, no systematic assessment of how phylogeographic data sets have changed over time with respect to overall size and information content has been performed. Here, we quantify the changing nature of these genetic data sets over the past 20 years, focusing on papers published in Molecular Ecology. We found that the number of independent loci, the total number of alleles sampled and the total number of single nucleotide polymorphisms (SNPs) per data set has improved over time, with particularly dramatic increases within the past 5 years. Interestingly, uniparentally inherited organellar markers (e.g. animal mitochondrial and plant chloroplast DNA) continue to represent an important component of phylogeographic data. Single‐species studies (cf. comparative studies) that focus on vertebrates (particularly fish and to some extent, birds) represent the gold standard of phylogeographic data collection. Based on the current trajectory seen in our survey data, forecast modelling indicates that the median number of SNPs per data set for studies published by the end of the year 2016 may approach ~20 000. This survey provides baseline information for understanding the evolution of phylogeographic data sets and underscores the fact that development of analytical methods for handling very large genetic data sets will be critical for facilitating growth of the field.  相似文献   

3.
Population divergence could be strongly affected by species’ ecology and might not be a direct response to climate‐driven environmental change. We tested this in the middle spotted woodpecker (Dendrocoptes medius), a non‐migratory, low‐dispersal habitat specialist associated with old deciduous forests of the Western Palearctic. We present the first phylogeographic study of this species integrating genetic data (three mitochondrial loci, one autosomal and one Z‐linked intron) with species distribution modelling. Based on this species’ ecology, we predicted that the middle spotted woodpecker could have colonized its current range from multiple Last Glacial Maximum (LGM) refugia and that strongly structured populations could be expected. Indeed, we discovered a strong genetic divergence between Asian and European populations, with a split estimated at around one million of years ago. This was surprising given only slight intraspecific variation in plumage and morphology. Although there was no significant phylogeographic structure within the Asian and European groups, we cannot exclude the possibility of multiple refugia within either group during the LGM. This has to be further investigated with more extensive geographic sampling and larger number of variable independently evolving markers. Future studies should also investigate potential differences in vocalizations and ecology between the two groups. Lineages showing similar level of genetic differentiation including woodpeckers are often treated as species‐level taxa. Comparison of our results with the phylogeographic history of other woodpeckers, suggests that sympatric species with similar life‐histories might have idiosyncratic phylogeographic patterns probably resulting from different ecological requirements or historic stochasticity.  相似文献   

4.
Phylogeographic studies of Holarctic birds are challenging because they involve vast geographic scale, complex glacial history, extensive phenotypic variation, and heterogeneous taxonomic treatment across countries, all of which require large sample sizes. Knowledge about the quality of phylogeographic information provided by different loci is crucial for study design. We use sequences of one mtDNA gene, one sex-linked intron, and one autosomal intron to elucidate large scale phylogeographic patterns in the Holarctic lark genus Eremophila. The mtDNA ND2 gene identified six geographically, ecologically, and phenotypically concordant clades in the Palearctic that diverged in the Early - Middle Pleistocene and suggested paraphyly of the horned lark (E. alpestris) with respect to the Temminck''s lark (E. bilopha). In the Nearctic, ND2 identified five subclades which diverged in the Late Pleistocene. They overlapped geographically and were not concordant phenotypically or ecologically. Nuclear alleles provided little information on geographic structuring of genetic variation in horned larks beyond supporting the monophyly of Eremophila and paraphyly of the horned lark. Multilocus species trees based on two nuclear or all three loci provided poor support for haplogroups identified by mtDNA. The node ages calculated using mtDNA were consistent with the available paleontological data, whereas individual nuclear loci and multilocus species trees appeared to underestimate node ages. We argue that mtDNA is capable of discovering independent evolutionary units within avian taxa and can provide a reasonable phylogeographic hypothesis when geographic scale, geologic history, and phenotypic variation in the study system are too complex for proposing reasonable a priori hypotheses required for multilocus methods. Finally, we suggest splitting the currently recognized horned lark into five Palearctic and one Nearctic species.  相似文献   

5.
We studied sequence variation in the mitochondrial gene cytochrome c oxidase subunit I (COI) for 135 individuals from eight Mediterranean populations of the colonial ascidian Pycnoclavella communis across most of its presently known range of distribution in the Mediterranean. Three haplotypes from Atlantic locations were also included in the study. Phylogenetic, phylogeographic and population genetic analyses were used to unravel the genetic variability within and between populations. The study revealed 32 haplotypes for COI, 29 of them grouped within two Mediterranean lineages of P. communis (mean nucleotide divergence between lineages was 8.55%). Phylogenetic and network analyses suggest the possible existence of cryptic species corresponding to these two lineages. Population genetic analyses were restricted to the five populations belonging to the main genetic lineage, and for these localities we compared the information gleaned from COI sequence data and from eight microsatellite loci. A high genetic divergence between populations was substantiated using both kinds of markers (COI, global Fst=0.343; microsatellite loci, global Fst=0.362). There were high numbers of private haplotypes (COI) and alleles (microsatellites) in the populations studied. Restricted gene flow and inbreeding occur in the present range of distribution of the species. Microsatellite loci showed a strong incidence of failed amplifications, which we attribute to the marked intraspecies variability that hampered the application of these highly specific markers. Our results show important genetic variability at all levels studied, from within populations to between basins, possibly coupled to speciation processes. This variability is attributable to restricted gene flow among populations due to short-distance dispersal of the larvae.  相似文献   

6.
In the past two decades our understanding of plant biogeography has been improved substantially by the introduction of various molecular marker systems. Especially within the angiosperms, maternally inherited chloroplast DNA based data sets have elucidated not only genetic relatedness but also geographic structuring of genetic variation. These findings were based on the observation that DNA molecules might mutate during migration, which consequently found its manifestation in the term phylogeography introduced in the late 80s by John Avise. However, other markers such as codominantly inherited allozymes were used before the advent of DNA techniques and were used in theoretical population genetic studies. In actual phylogeographic studies, highly variable markers, such as AFLPs (amplified fragment length polymorphisms), were needed to unravel recent species histories (e.g. pleistocenic differentiation). The levels of molecular variation at such markers are closer to that of allelic variation measured with allozymes. Hence, an increasing number of studies have relied on highly polypmorphic markers, such as DNA microsatellite loci. Herein, we try to present an overview on the various biogeographic and phylogeographic studies using various molecular (including isozyme) markers and methodological approaches to analyse them, concentrating on studies done with representatives of the Brassicaceae family.  相似文献   

7.
Makowsky R  Chesser J  Rissler LJ 《Genetica》2009,135(2):169-183
We examine phylogeographic structure across a wide-ranging microhylid frog (Gastrophryne carolinensis) using both mitochondrial (mtDNA) and nuclear (AFLP) data. Species with similar ecological characteristics such as large range size, low vagility, or existence across known biogeographic barriers, often are comprised of multiple, cryptic lineages. Surprisingly, our analyses of both portions of the genome show very little phylogeographic or population genetic structure. The family Microhylidae is one of the largest families of anurans with over 60 genera and around 400 species distributed across much of the world (Americas, Asia, Africa, and Madagascar), but very few phylogeographic studies have assessed intraspecific genetic diversity across the mitochondrial and nuclear genomes. Our results suggest that G. carolinensis, one of only three species of microhylid native to the US, has experienced a severe population bottleneck with subsequent range expansion. Comparable molecular data from closely related microhylids, in addition to demographic and ecological analyses, will provide valuable insight into patterns of genetic diversity and the processes driving phylogeographic diversity in these wide-ranging frogs.  相似文献   

8.
We used mitochondrial DNA and microsatellite loci to examine the phylogeographic patterns of the most broadly distributed lizard in eastern North America, the five-lined skink (Eumeces fasciatus). We infer that longitudinal phylogeographic patterns in E. fasciatus are consistent with fragmentation due to refugial and post-glacial dynamics, but that deep divergences within the species imply historical fragmentation that predates the Pleistocene. The effect of multiple refugia is implied from our nested clade analyses, including a northern refugium in Wisconsin. Analysis of population structure using nuclear microsatellite data within the species suggests the importance of glacial dynamics in shaping more recent genetic structuring within one widely distributed lineage that ranges from the Mississippi River to the Atlantic Ocean in longitude and from southern Ontario to the Gulf of Mexico in latitude. Results shed light on the historical processes that have influenced current population structure of a temperate lizard, support the striking similarity of longitudinal phylogeographic structure across many herpetofaunal species in eastern North America, and illustrate the utility of employing multiple markers in phylogeographic studies.  相似文献   

9.
? Premise of the study: Fifteen microsatellite loci were developed in an endangered species, Amentotaxus formosana, and were tested in an additional three species, A. argotaenia, A. yunnanensis, and A. poilanei, to evaluate the population structure for conservation efforts and reconstruct the phylogeographic patterns of this ancient lineage. ? Methods and Results: Polymorphic primer sets were developed from A. formosana; the number of alleles ranged from two to 10, with an observed heterozygosity ranging from 0 to 0.60. All of the loci were found to be interspecifically amplifiable. ? Conclusions: These polymorphic and transferable loci will be potentially useful for future studies that will focus on identifying distinct genetic units within species and establishing the phylogeographic patterns and the process of speciation among closely related species.  相似文献   

10.
The phylogeography of coastal plant species is heavily influenced by past sealevel fluctuations, dispersal barriers, and life-history traits, such as long-distance dispersal ability of the propagules. Unlike the widely studied mangroves, phylogeographic patterns have remained mostly obscure for other coastal plant species. In this study, we sampled 42 populations of Scaevola taccada (Gaertn.) Roxb., a coastal shrub of the family Goodeniaceae, from 17 countries across its distribution range. We used five chloroplast DNA (cpDNA) and 14 nuclear microsatellite (simple sequence repeat [SSR]) markers to assess the influence of abiotic factors and population genetic processes on the phylogeographic pattern of the species. Geographical distribution of cpDNA haplotypes suggests that the species originated in Australia, followed by historical dispersal and expansion of its geographic range. Multiple abiotic factors, including the sealevel changes during the Pleistocene, the presence of landmasses like the Malay Peninsula, and contemporary oceanic circulation patterns, restricted gene flow between geographically distinct populations, thereby creating low haplotype diversity and a strong population structure. Population genetic processes acted on these isolated populations, leading to high nuclear genetic diversity and population differentiation, as revealed from analyzing the polymorphic SSR loci. Although genetic divergence was mostly concordant between cpDNA and SSR data, asymmetrical gene flow and ancestral polymorphism could explain the discordance in the detailed genetic structure. Overall, our findings indicate that abiotic factors and population genetic processes interactively influenced the evolutionary history and current phylogeographic pattern of S. taccada across its distribution range.  相似文献   

11.
Genetic mapping of quantitative traits requires genotypic data for large numbers of markers in many individuals. For such studies, the use of large single nucleotide polymorphism (SNP) genotyping arrays still offers the most cost‐effective solution. Herein we report on the design and performance of a SNP genotyping array for Populus trichocarpa (black cottonwood). This genotyping array was designed with SNPs pre‐ascertained in 34 wild accessions covering most of the species latitudinal range. We adopted a candidate gene approach to the array design that resulted in the selection of 34 131 SNPs, the majority of which are located in, or within 2 kb of, 3543 candidate genes. A subset of the SNPs on the array (539) was selected based on patterns of variation among the SNP discovery accessions. We show that more than 95% of the loci produce high quality genotypes and that the genotyping error rate for these is likely below 2%. We demonstrate that even among small numbers of samples (n = 10) from local populations over 84% of loci are polymorphic. We also tested the applicability of the array to other species in the genus and found that the number of polymorphic loci decreases rapidly with genetic distance, with the largest numbers detected in other species in section Tacamahaca. Finally, we provide evidence for the utility of the array to address evolutionary questions such as intraspecific studies of genetic differentiation, species assignment and the detection of natural hybrids.  相似文献   

12.
Aim Although hundreds of tree species have broad geographic ranges in the Neotropics, little is known about how such widespread species attained disjunct distributions around mountain, ocean and xeric barriers. Here, we examine the phylogeographic structure of a widespread and economically important tree, Cordia alliodora, to: (1) test the roles of vicariance and dispersal in establishing major range disjunctions, (2) determine which geographic regions and/or habitats contain the highest levels of genetic diversity, and (3) infer the geographic origin of the species. Location Twenty‐five countries in Central and South America, and the West Indies. Methods Chloroplast simple sequence repeats (cpSSR; eight loci) were assayed in 67 populations (240 individuals) sampled from the full geographic range of C. alliodora. Chloroplast (trnH–psbA) and nuclear (internal transcribed spacer, ITS) DNA sequences were sampled from a geographically representative subset. Genetic structure was determined with samova , structure and haplotype networks. Analysis of molecular variance (AMOVA) and rarefaction analyses were used to compare regional haplotype diversity and differentiation. Results Although the ITS region was polymorphic it revealed limited phylogeographic structure, and trnH–psbA was monomorphic. However, structure analysis of cpSSR variation recovered three broad demes spanning Central America (Deme 1), the Greater Antilles and the Chocó (Deme 2), and the Lesser Antilles and cis‐Andean South America (Deme 3). samova showed two predominant demes (Deme 1 + 2 and Deme 3). The greatest haplotype diversity was detected east of the Andes, while significantly more genetic variation was partitioned among trans‐Andean populations. Populations experiencing high precipitation seasonality (dry ecotype) had greater levels of genetic variation. Main conclusions Cordia alliodora displayed weak cis‐ and trans‐Andean phylogeographic structure based on DNA sequence data, indicative of historical dispersal around this barrier and genetic exchange across its broad range. The cpSSR data revealed phylogeographic structure corresponding to three biogeographic zones. Patterns of genetic diversity are indicative of an origin in the seasonally dry habitats of South America. Therefore, C. alliodora fits the disperser hypothesis for widespread Neotropical species. Dispersal is evident in the West Indies and the northern Andean cordilleras. The dry ecotype harbours genetic variation that is likely to represent the source for the establishment of populations under future warmer and drier climatic scenarios.  相似文献   

13.
Statistical phylogeographic studies contribute to our understanding of the factors that influence population divergence and speciation, and that ultimately generate biogeographical patterns. The use of coalescent modelling for analyses of genetic data provides a framework for statistically testing alternative hypotheses about the timing and pattern of divergence. However, the extent to which such approaches contribute to our understanding of biogeography depends on how well the alternative hypotheses chosen capture relevant aspects of species histories. New modelling techniques, which explicitly incorporate spatio-geographic data external to the gene trees themselves, provide a means for generating realistic phylogeographic hypotheses, even for taxa without a detailed fossil record. Here we illustrate how two such techniques – species distribution modelling and its historical extension, palaeodistribution modelling – in conjunction with coalescent simulations can be used to generate and test alternative hypotheses. In doing so, we highlight a few key studies that have creatively integrated both historical geographic and genetic data and argue for the wider incorporation of such explicit integrations in biogeographical studies.  相似文献   

14.
Genetic variation of Kamchatka rainbow trout Parasalmo (O.) mykiss was examined using 10 microsatellite DNA loci, and phylogeographic comparison with other representatives of the species across the distribution range was performed. It was demonstrated that Kamchatka populations differed from other geographic groups of rainbow trout in a number of microsatellite loci. These populations also displayed distinct clustering and were characterized by lower genetic diversity. Analysis of a set of 26 different microsatellite loci (personal and literature data) demonstrated that most of the populations within the Kamchatka region were separated from one another, characterized by marked geographic differentiation, and affiliation to certain river basins. In Kamchatka rainbow trout, with high degree of probability, three geographic clusters (northwestern, southwestern, and eastern) were identified. In general, analysis of microsatellite DNA supported the data on low genetic diversity of the Kamchatka group Parasalmo (O.) mykiss, based on the variation estimates for a number of genes of nuclear and mitochondrial DNA, and allozyme loci.  相似文献   

15.
Genetic variation of Kamchatka rainbow trout Parasalmo (O.) mykiss was examined using 10 microsatellite DNA loci, and phylogeographic comparison with other representatives of the species across the distribution range was performed. It was demonstrated that Kamchatka populations differed from other geographic groups of rainbow trout in a number of microsatellite loci. These populations also displayed distinct clustering and were characterized by lower genetic diversity. Analysis of a set of 26 different microsatellite loci (personal and literature data) demonstrated that most of the populations within the Kamchatka region were separated from one another, characterized by marked geographic differentiation, and affiliation to certain river basins. In Kamchatka rainbow trout, with high degree of probability, three geographic clusters (northwestern, southwestern, and eastern) were identified. In general, analysis of microsatellite DNA supported the data on low genetic diversity of the Kamchatka group Parasalmo (O.) mykiss, based on the variation estimates for a number of genes of nuclear and mitochondrial DNA, and allozyme loci.  相似文献   

16.
In this review we discuss the use of non-coding DNA at the intraspecific level in plants. Both nuclear and organelle non-coding regions are widely used in interspecific phylogenetic approaches. However, they are also valuable in analyses on the intraspecific level. Besides taxonomy, that is, defining subspecies or varieties, large fields for the application of non-coding DNA are population genetic and phylogeographic studies. Population genetics tries to explain the genetic patterns within species mostly by the amount of extant gene flow among populations, while phylogeography explicitly tries to reconstruct historic events. Depending on the study different molecular markers can be used, varying between very fast evolving microsatellites or some more slowly changing regions like intergenic spacers and introns. Here, we focus mainly on the use of non-coding regions in phylogeographic analyses. Mostly used in this context are regions of the genomes of the chloroplasts and mitochondria. In phylogeography, the correct estimation of allele or haplotype relationships is particularly important. As tree-based methods are mostly insufficient to depict relationships within species, network approaches are better suitable to infer gene or locus genealogies. Problematic for phylogeographic studies are alleles shared among multiple species, which could result from either hybridization or incomplete lineage sorting. Especially the latter can severely influence the interpretation of the phylogeographic patterns. Therefore, it seems necessary for us to also include close relatives of the species under study in phylogeographic analyses. Not only the sample design but also the analysis methods are currently changing, as some new methods such as statistical phylogeography were emerging recently and widely used methods like nested clade analysis might not be reliable in every case. During the last few years, a multitude of studies were published, which mainly analyzed phylogeographic patterns in European and North American plants. Phylogeographic studies in other regions of the earth are still comparably rare, although questions like the influence of the ice age on the vegetation in the tropics or southern hemisphere are still open and phylogeography provides an excellent remedy to answer them.  相似文献   

17.
Arabidopsis halleri is a pseudometallophyte involved in numerous molecular studies of the adaptation to anthropogenic metal stress. In order to test the representativeness of genetic accessions commonly used in these studies, we investigated the A. halleri population genetic structure in Europe. Microsatellite and nucleotide polymorphisms from the nuclear and chloroplast genomes, respectively, were used to genotype 65 populations scattered over Europe. The large-scale population structure was characterized by a significant phylogeographic signal between two major genetic units. The localization of the phylogeographic break was assumed to result from vicariance between large populations isolated in southern and central Europe, on either side of ice sheets covering the Alps during the Quaternary ice ages. Genetic isolation was shown to be maintained in western Europe by the high summits of the Alps, whereas admixture was detected in the Carpathians. Considering the phylogeographic literature, our results suggest a distinct phylogeographic pattern for European species occurring in both mountain and lowland habitats. Considering the evolution of metal adaptation in A. halleri, it appears that recent adaptations to anthropogenic metal stress that have occurred within either phylogeographic unit should be regarded as independent events that potentially have involved the evolution of a variety of genetic mechanisms.  相似文献   

18.
While microsatellites have been used to examine genetic structure in local populations of Neotropical trees, genetic studies based on such high-resolution markers have not been carried out for Mesoamerica as a whole. Here we assess the genetic structure of the Mesoamerican mahogany Swietenia macrophylla King (big-leaf mahogany), a Neotropical tree species recently listed as endangered in CITES which is commercially extinct through much of its native range. We used seven variable microsatellite loci to assess genetic diversity and population structure in eight naturally established mahogany populations from six Mesoamerican countries. Measures of genetic differentiation (FST and RST) indicated significant differences between most populations. Unrooted dendrograms based on genetic distances between populations provide evidence of strong phylogeographic structure in Mesoamerican mahogany. The two populations on the Pacific coasts of Costa Rica and Panama were genetically distant from all the others, and from one another. The remaining populations formed two clusters, one comprised of the northern populations of Mexico, Belize and Guatemala and the other containing the southern Atlantic populations of Nicaragua and Costa Rica. Significant correlation was found between geographical distance and all pairwise measures of genetic divergence, suggesting the importance of regional biogeography and isolation by distance in Mesoamerican mahogany. The results of this study demonstrate greater phylogeographic structure than has been found across Amazon basin S. macrophylla. Our findings suggest a relatively complex Mesoamerican biogeographic history and lead to the prediction that other Central American trees will show similar patterns of regional differentiation.  相似文献   

19.
? Premise of the study: Microsatellite markers were isolated and characterized in Berberis thunbergii, an invasive and ornamental shrub in the eastern United States, to assess genetic diversity among populations and potentially identify horticultural cultivars. ? Methods and Results: A total of 12 loci were identified for the species. Eight of the loci were polymorphic and were screened in 24 individuals from two native (Tochigi and Ibaraki prefectures, Japan) and one invasive (Connecticut, USA) population and 21 horticultural cultivars. The number of alleles per locus ranged from three to seven, and observed heterozygosity ranged from 0.048 to 0.636. ? Conclusions: These new markers will provide tools for examining genetic relatedness of B. thunbergii plants in the native and invasive range, including phylogeographic studies and assessment of rapid evolution in the invasive range. These markers may also provide tools for examining hybridization with other related species in the invasive range.  相似文献   

20.
Polymorphisms of nuclear DNA markers were used to study the genetic variation and differentiation among populations of Penaeus merguiensis in Thailand. The data consisted of three nuclear loci analysed for 163 individuals from five populations collected from the Gulf of Thailand (Trad, Surat Thani and Songkhla) and the Andaman Sea (Satun and Trang). The multilocus FST estimated at three nuclear loci revealed great and highly significant differentiation between the Gulf of Thailand and Andaman Sea (FST=0.203, P<0.001), mostly due to the polymorphism of locus PvAmy. In addition, significant population differentiation was also found within the Gulf of Thailand. These results were compared to that of a previous mitochondrial DNA survey spanning the same geographical range where two divergent mitochondrial clades were reported. The present study brings support to the fact that the existence of these two clades is not due to a mixture of cryptic species but reflects their phylogeographic origin. The strong genetic structure of P. merguiensis on each side of the Thailand peninsula for both mitochondrial and nuclear genes could thus be linked to the phylogeographic divide between Indian Ocean and Pacific forms on the west and east sides respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号