首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Among the asexual reproductive modes, androgenesis is probably one of the most astonishing and least studied mechanisms. In this 'paternal monopolization', the maternal nuclear genome fails to participate in zygote development and offspring are paternal nuclear clones. Obligate androgenesis is known in only a few organisms, including multiple species of clam in the genus Corbicula. Corbicula is a good system to review the evolutionary consequences of this 'all-male asexuality' because the cytological mechanisms of androgenetic reproduction have been described. In Corbicula, sperm are unreduced and, after fertilization, the maternal nuclear chromosomes are extruded as two polar bodies. Hermaphroditic lineages of Corbicula have a worldwide distribution and seem to reproduce through androgenesis, whereas their sexual relatives have restricted ranges. The invasive success of these androgenetic Corbicula lineages may be linked to their asexual mode of reproduction. We review the phenomenon of androgenesis, focusing on evolutionary perspectives, using the genus Corbicula as an exemplar system.  相似文献   

2.
We investigated the biogeography of Asian Corbicula using mitochondrial gene sequence variation for Corbicula members sampled from 24 localities of eight Asian regions. A total of 210 individuals were genetically characterized by examining sequence variations of a 614 bp fragment of the mitochondrial cytochrome oxidase I (COI) gene. Phylogenetic analyses of the COI dataset revealed that Corbicula members are subdivided into two well-supported clades: estuarine and freshwater. A robust dichotomy between the Japanese/Korean (Corbicula japonica) and Chinese (Corbicula fluminalis) estuarine forms was evident, suggesting that these two regional populations represent a deep phylogeographic split. Our mitochondrial gene tree showed that among the freshwater members, two Corbicula mitochondrial lineages are the most common, having attained extensive geographic distribution in the Asian freshwater environment. While the present study provides significant biogeographic information on Asian Corbicula, a comprehensive phylogenetic study by cross-referencing the mitochondrial-based Corbicula phylogeny with nuclear gene data is required to fully understand the evolutionary origin(s) of triploidy/clonality in this genus.  相似文献   

3.
We investigated genetic variation in asexual polyploid members of the water flea Daphnia pulex complex from a set of 12 Bolivian high-altitude lakes. We used nuclear microsatellite markers to study genetic relationships among all encountered multilocus genotypes, and combined this with a phylogenetic approach using DNA sequence data of three mitochondrial genes. Analyses of mitochondrial gene sequence divergence showed the presence of three very distinct clades that likely represent cryptic undescribed species. Our phylogenetic results suggest that the Daphnia pulicaria group, a complex of predominantly North American species that has diversified rapidly since the Pleistocene, has its origin in South America, as specific tests of topology indicated that all three South American lineages are ancestral to the North American members of this species group. A comparison between variation of nuclear and mitochondrial markers revealed that closely related polyploid nuclear genotypes sometimes belonged to very divergent mitochondrial lineages, while distantly related nuclear genotypes often belonged to the same mitochondrial lineage. This discrepancy suggests that these South American water fleas originated through reciprocal hybridization between different endemic, sexually reproducing parental lineages. It is also likely that polyploidy of the investigated lineages resulted from this hybridization. Nevertheless, no putative diploid parental lineages were found in the studied region.  相似文献   

4.
Six variable sequence markers are developed and analyzed to find out species boundaries in Hawaiian corals of the genus Pocillopora: the putative mitochondrial control region; a recently discovered, hypervariable mitochondrial open reading frame; the internal transcribed spacer 2 (ITS2), located in the nuclear ribosomal DNA; three nuclear introns of calmodulin, elongation factor-1alpha and the ATP synthase beta subunit. Using the first two markers, we identify five distinct mitochondrial lineages and these lineages are compatible with morphology. The situation is more complex with nuclear markers since more than two haplotypes are observed in some individuals. To detect clusters of individuals, haplotype networks are constructed with additional connections drawn between co-occurring haplotypes to delineate potential fields for recombination: few clusters of nuclear haplotypes are found to correspond to clusters of individuals, but those that are detected (mostly in the ITS2 dataset) are also compatible with morphology.  相似文献   

5.
Park JK  Lee JS  Kim W 《Molecules and cells》2002,14(2):318-322
Despite that the exotic invasion and rapid range expansion of Asian freshwater Corbicula into new environments have been of intensive research topic in freshwater ecology, the genetic structures of freshwater Corbicula in its native range remain poorly understood. In this study, the genetic structures of two Korean freshwater Corbicula clonal lineages were characterized by cross-referencing the nuclear genomic structures with mtDNA sequence analysis. In spite of substantial genetic differences (Nei's D = 0.363-0.372) and a pronounced level of fixed allelic distinctions (in six of 20 allozyme loci) between Corbicula lineages, no lineage-specific mtDNA differentiation was observed. The evident disjunction between mtDNA sequences and nuclear genomes is a compelling evidence for the existence of interspecific nuclear hybrid genome structures, comprising different combinations of paternal and maternal contributions. This unusual novel finding is the first case demonstrating that morphologically and allozymatically distinct, yet mitochondrially identical clonal lineages exist in the genus Corbicula. However, we could not find the ancestral species for these two clonal lineages in the present study, and the answer for this question must wait until the genetic structure of Asian Corbicula taxa is fully characterized.  相似文献   

6.
Our understanding of the phylogenetic relationships among tick lineages has been limited by the lack of resolution provided by the most commonly used phylogenetic markers. Mitochondrial genomes are increasingly used to address controversial phylogenetic relationships. To date, the complete mitochondrial genomes of eleven tick species have been sequenced; however, only three of these species are metastriate ticks, the most speciose lineage of ticks. In this study, we present the nucleotide sequences of the complete mitochondrial genomes of five more species of metastriate ticks: Amblyomma elaphense, Amblyomma fimbriatum, Amblyomma sphenodonti, Bothriocroton concolor and Bothriocroton undatum. We use complete mitochondrial genome sequences to address the phylogenetic placement of two morphologically 'primitive' species -Am. elaphense and Am. sphenodonti - with respect to the genus Amblyomma. Our analysis of these five mitochondrial genomes with the other eleven tick mitochondrial genomes, as well as analysis of nuclear rRNA genes, provides strong evidence that the genus Amblyomma is polyphyletic with the inclusion of Am. sphenodonti and Am. elaphense. A new genus or two new genera may be required to describe Am. sphenodonti and Am. elaphense. It is also possible that these two species are sisters to two established genera, Bothriocroton in the case of Am. sphenodonti, and Haemaphysalis in the case of Am. elaphense. However, other arrangements of these taxa cannot be excluded with the current data. Thus, while Am. sphenodonti and Am. elaphense do not belong in the genus Amblyomma, the phylogenetic placement of these two species cannot be resolved without more data from metastriate ticks, either greater sampling of mitochondrial genomes, or a large data set of nuclear genes.  相似文献   

7.

Aim

To date, few studies have examined the phylogenetics of Corbicula clams in their native range and the environmental parameters influencing their distribution, although this could provide great insights into the biological adaptation and invasion dynamics of Corbicula clams. We sought to identify the genetic lineages of native Corbicula clams and elucidate the environmental factors shaping the distributions of identified lineages.

Location

China, mainly the Yangtze River Basin.

Methods

The alignment comprised 558 COI sequences including samples from China and 222 COI sequences from published studies. This dataset was used to generate phylogenetic trees and compare population diversity. We used dbRDA method to assess the relationship between these COI data and environmental factors measured to identify the important factors affecting Corbicula's distribution.

Results

The COI phylogenetic tree delineated the monophyly of 3 major COI clades and 77 distinct COI haplotypes in the Yangtze River Basin. The invasive lineage C/S (FW17) was not identified in our sampling in China, while invasive lineages A/R (FW5 = Hap6), B (FW1 = Hap17) and Rlc (FW4 = Hap43) were identified, abundant and widely distributed in the middle and lower reaches of Yangtze River. Focusing on populations from Yangtze River Basin, both the COI haplotype and nucleotide diversity in the lakes along the Yangtze River increased with longitude, except for the river mouth population. The AMOVA tests showed significant differentiation between the middle and lower reaches of the Yangtze River and among populations. The dbRDA results suggested that the parameter chloride explained most of the spatial COI haplotype distribution variation in the Yangtze River Basin, with the three invasive lineages tolerating broad fluctuations of salinity (chloride levels ranging from 4 to 60 mg/L).

Conclusions

The Corbicula COI haplotypes found within the Yangtze River Basin had distinct distribution preferences, with the invasive androgenetic lineages being the most abundant and widely distributed. Genetic diversity was higher in this native region than in invaded areas in Europe and America, while it decreased with increasing distance from the river mouth. Salinity appeared to be the main environmental factor shaping the COI haplotype distribution of Corbicula lineages within their native range.  相似文献   

8.
Androgenesis is a rare form of asexual male reproduction found in disparate taxa across the Tree of Life. Phylogenetic analyses of mitochondrial genes suggest that androgenesis has arisen repeatedly in the Asian clam genus Corbicula. Two of these androgenetic species have been introduced to North America. Multiple lines of genetic evidence suggest that although nuclear recombination between these two species is rare, mitochondrial genome capture is a frequent consequence of androgenetic parasitism of heterospecific eggs. Egg parasitism may also rarely result in partial nuclear genome capture between closely related species of Corbicula, which provides a mechanism for the otherwise clonal species to avoid the deleterious effects of asexuality. Egg parasitism among congeners may explain why androgenesis has been maintained in Corbicula after fixation and has not yet led to population extinction. This mechanism also provides an explanation for the apparent multiple origins of androgenesis in Corbicula as seen on the mitochondrial DNA phylogeny. We suggest that a single androgenetic lineage may have repeatedly captured mitochondrial genomes (as well as portions of nuclear genomes) from various sexual species, resulting in several distinct androgenetic species with distantly related mtDNA genomes and divergent morphologies.  相似文献   

9.
The Kuhl’s pipistrelle (Pipistrellus kuhlii) is a Western Palaearctic species of bat that exhibits several deeply divergent mitochondrial lineages across its range. These lineages could represent cryptic species or merely ancient polymorphism, but no nuclear markers have been studied so far to properly assess the taxonomic status of these lineages. We examined here two lineages occurring in Western Europe, and used both mitochondrial and nuclear markers to measure degrees of genetic isolation between bats carrying them. The sampling focused on an area of strict lineage sympatry in Switzerland but also included bats from further south, in North Africa. All individuals were barcoded for the COI gene to identify their mitochondrial lineages and five highly polymorphic microsatellite loci were used to cluster them according to their nuclear genotypes. Despite this low number of nuclear markers, all North African nuclear genotypes were grouped in a highly distinct subpopulation when compared with European samples sharing the same mitochondrial barcodes. The reverse situation prevailed in Switzerland where bats carrying distinct barcodes had similar nuclear genotypes. There was a weak east/west nuclear structure of populations, but this was independent of mitochondrial lineages as bats carrying either variant were completely admixed. Thus, the divergent mitochondrial barcodes present in Western Europe do not represent cryptic species, but are part of a single biological species. We argue that these distinct barcodes evolved in allopatry and came recently into secondary contact in an area of admixture north of the Alps. Historical records from this area and molecular dating support such a recent bipolar spatial expansion. These results also highlight the need for using appropriate markers before claiming the existence of cryptic species based on highly divergent barcodes.  相似文献   

10.
At a time when biodiversity is threatened, we are still discovering new species, and particularly in the marine realm. Delimiting species boundaries is the first step to get a precise idea of diversity. For sympatric species which are morphologically undistinguishable, using a combination of independent molecular markers is a necessary step to define separate species. Amphipholis squamata , a cosmopolitan brittle star, includes several very divergent mitochondrial lineages. These lineages appear totally intermixed in the field and studies on morphology and colour polymorphism failed to find any diagnostic character. Therefore, these mitochondrial lineages may be totally interbreeding presently. To test this hypothesis, we characterized the genetic structure of the complex in the French Mediterranean coast using sequences of mitochondrial DNA (16S) and for the first time, several nuclear DNA markers (introns and microsatellites). The data revealed six phylogenetic lineages corresponding to at least four biological species. These sibling species seem to live in syntopy. However, they seem to display contrasted levels of genetic diversity, suggesting they have distinct demographic histories and/or life-history traits. Genetic differentiation and isolation-by-distance within the French Mediterranean coasts are revealed in three lineages, as expected for a species without a free larval phase. Finally, although recombinant nuclear genotypes are common within mitochondrial lineages, the data set displays a total lack of heterozygotes, suggesting a very high selfing rate, a feature likely to have favoured the formation of the species complex.  相似文献   

11.
Andreakis N  Kooistra WH  Procaccini G 《Gene》2007,406(1-2):144-151
Eight polymorphic nuclear microsatellite loci were identified from the invasive Indo-Pacific Mediterranean strain of Asparagopsis taxiformis. Microsatellite markers were tested against a panel of specimens collected along the Italian (Elba, Naples) and Californian (Catalina Island) coasts, all belonging to the same mitochondrial lineage. In addition, we used Hawaiian specimens, belonging to a closely related mitochondrial lineage. The markers amplified in all of the specimens but failed consistently in thalli of two more distantly related mitochondrial lineages of A. taxiformis as well as in specimens belonging to the sister species Asparagopsis armata. Since haploid female individuals among the Mediterranean specimens contained cystocarps, genotyping was performed on supposedly haploid female specimens and supposedly diploid cystocarps separately. As expected, external allelic contribution was detected in the cystocarps. However, even after removal of these reproductive structures, gametophyte thalli exhibited patterns consisting of up to three alleles in all of the tested populations indicating polyploidy. An elevated number of distinct genotypes (up to 85%) were found per population, suggesting high intra-population variation. Results showed high genetic similarity between the two Mediterranean populations screened and lower similarity between these two and the Californian one within the same mitochondrial lineage. Lowest similarity was found between these three and the Hawaiian population belonging to the other related mitochondrial lineage 1.  相似文献   

12.
In order to elucidate the colonization history of Fennoscandian adders (Vipera berus), the phylogeographical patterns of two nuclear sets of DNA markers (random amplified polymorphic DNA and microsatellite) are compared with that previously obtained from mitochondrial DNA. An eastern and a western lineage within Fennoscandian adders is readily distinguishable using both sets of nuclear markers, corroborating the hypothesis that the lineages stem from separate glacial refugia. Moreover, the same contact zones as were derived from mitochondrial data are clearly identifiable. Both sets of nuclear markers detect a high level of admixture across one zone in northern Finland, with introgression reaching far west into Sweden.  相似文献   

13.
The avian haemosporidian parasite Haemoproteus majoris has been reported to infect a wide range of passerine birds throughout the Holarctic ecozone. Five cytochrome b (cyt b) lineages have been described as belonging to the morphological species H. majoris, and these form a tight phylogenetic cluster together with 13 undescribed lineages that differ from each other by < 1.2% in sequence divergence. Records in a database (MalAvi) that contains global findings of haemosporidian lineages generated by universal primers suggest that these lineages vary substantially in host distribution. We confirm this pattern in a data set collected at Lake Kvismaren, Sweden, where three of the generalist lineages have local transmission. However, whether these lineages represent intraspecific mitochondrial diversity or clusters of cryptic species has previously not been examined. In this study, we developed novel molecular markers to amplify the partial segments of four nuclear genes to determine the level of genetic diversity and gene phylogenies among the five morphologically described cyt b lineages of H. majoris. All five cyt b lineages were strongly associated with unique nuclear alleles at all four nuclear loci, indicating that each mitochondrial lineage represents a distinct biological species. Within lineages, there was no apparent association between nuclear alleles and host species, indicating that they form genetically unstructured populations across multiple host species.  相似文献   

14.
Caryophyllidean cestodes (Platyhelminthes) represent an unusual group of tapeworms lacking serially repeated body parts that potentially diverged from the common ancestor of the Eucestoda prior to the evolution of segmentation. Here we evaluate the utility of two nuclear and two mitochondrial molecular markers (ssrDNA and lsrDNA, nad3 and cox1) for use in circumscribing generic boundaries and estimating interrelationships in the group. We show that these commonly employed markers do not contain sufficient signal to infer well-supported phylogenetic estimates due to substitution saturation. Moreover, we detected multiple trnK+nad3+trnS+trnW+cox1 haplotypes within individuals, indicating a history of gene exchange between the mitochondrial and nuclear genomes. The presence of such nuclear paralogs (i.e. numts), to our knowledge described here in cestodes for the first time, together with the results of phylogenetic, saturation and split-decomposition analyses all suggest that finding informative markers for estimating caryophyllidean evolution is unusually problematic in comparison to other major lineages of tapeworms.  相似文献   

15.
Few studies to date have examined genetic variability of widespread tropical amphibian species over their distributional range using different kinds of molecular markers. Here, we use genetic data in an attempt to delimit evolutionary entities within two groups of Neotropical frogs, the Scinax ruber species group and the Rhinella margaritifera species group. We combined mitochondrial and nuclear markers for a phylogenetic (a total of approximately 2500 bp) and phylogeographic study (approximately 1300 bp) to test the reliability of the currently accepted taxonomic assignments and to explore the geographic structure of their genetic variation, mainly based upon samples from the French Guianan region. Phylogenetic analyses demonstrated the polyphyly of Scinax ruber and Rhinella margaritifera. S. ruber consists of six lineages that may all merit species status. Conflicting signals of mitochondrial and nuclear markers indicated, among some Scinax lineages and species, the possibility of ongoing hybridization processes. R. margaritifera consisted of 11 lineages which might represent distinct species as well. Phylogeographic analyses added further information in support of the specific status of these lineages. Lineages of low divergence were found in sympatry and were reciprocally monophyletic for mitochondrial as well as nuclear genes, indicating the existence of young lineages that should be awarded species status. Our results highlight the utility of combining phylogenetic and phylogeographic methods, as well as the use of both mitochondrial and nuclear markers within one study. This approach helped to better understand the evolutionary history of taxonomically complex groups of species. The assessment of the geographic distribution of genetic diversity in tropical amphibian communities can lead to conclusions that differ strongly from prior analyses based on the occurrence of currently recognized species alone. Such studies, therefore, hold the potential to contribute to a more objective assessment of amphibian conservation priorities in tropical areas.  相似文献   

16.
Mitochondrial markers are still often used alone to identify evolutionary units, despite widespread evidence for processes such as incomplete lineage sorting or introgressive hybridization that may blur past population history. The combination of mitochondrial DNA data with other sources of information (morphology, nuclear genes) is a powerful tool to reveal when and why mitochondrial markers are potentially misleading. In this study, we evaluate the performance of mtDNA markers to unravel the evolutionary history of Spanish lizards from the Podarcis hispanicus species complex. We first uncover several cases of discordance between morphological and mitochondrial data in delimitation of taxa. To assess the origin of these discordances, we analysed the same populations using several independent nuclear loci. Both morphological and nuclear markers identified the same three evolutionary units in the region, while mitochondrial data revealed four deeply divergent lineages. We suggest here that the most likely scenario to explain this discordance is ancient mitochondrial introgression originating from a fourth evolutionary unit presently absent from the study area. Notably, this resulted in a complete replacement of the original lineage in a large part of the distribution of one of the taxa investigated. We discuss the potential evolutionary scenarios leading to this complete mitochondrial replacement and suggest why the previous studies have failed to recover the correct history of this species complex.  相似文献   

17.
The Korean freshwater Corbicula was surveyed genetically by sequencing 614-bp homologous fragment of mitochondrial cytochrome oxidase I subunit. Among a total of 127 individuals collected from 12 Korean freshwater localities we found only two COI haplotypes and these differed by a total of 9 base substitutions. Although the sequence divergence between the two haplotypes is moderate (p = 1.47%), placing the two mitotypic sequences in the context of Asian mtDNA phylogeny reveals that Korean freshwater Corbicula is comprised of two independent freshwater mitochondrial lineages. These results are in serious disagreement with the long-standing conclusions of earlier conchology-based taxonomic work on Korean Corbicula in which a number of species names (a minimum of 10 nominal species) have been used. This indicates that morphological characteristics alone are poor criteria for species-level identification in this group. In addition, our COI dataset shows that there is an extremely low level of genetic variation in Korean freshwater populations, suggesting that these populations have passed through a severe population bottleneck that greatly reduced their genetic variability. Our data also provide new information on the biogeographic distribution of Korean freshwater Corbicula. When haplotypic frequencies were compared, it was evident that the two Korean freshwater mitochondrial lineages have achieved very different distribution ranges: the predominant lineage (FWKR1) is widely distributed in Korean freshwater systems, whereas the minor lineage (FWKR2) is restricted to a relatively narrow range.  相似文献   

18.
Both mitochondrial DNA sequence and two nuclear microsatellite markers were used to confirm the identity of the first record of Carassius auratus gibelio in the western (Swedish) Baltic Sea region. A total of 49 fishes were analysed, where 22 were from three Swedish sites connected to the Baltic Sea. The D-loop mitochondrial DNA sequences showed that 16 of 22 Swedish fishes were related to C. a. gibelio. The phylogenetic analysis of these sequences showed that these fish are probably not native, but represent different lineages of C. a. gibelio from China, Japan and Russia. All except three of these 16 fishes had microsatellite alleles suggesting hybridization with Carassius carassius. These findings suggest that a cryptic invasion of C. a. gibelio might be in progress.  相似文献   

19.
We investigated the evolutionary history of the spotted flycatcher Muscicapa striata, a long distance migratory passerine having a widespread range, using mitochondrial markers and nuclear introns. Our mitochondrial results reveal the existence of one insular lineage restricted to the western Mediterranean islands (Balearics, Corsica, Sardinia) and possibly to the Tyrrhenian coast of Italy that diverged from the mainland lineages around 1 Mya. Mitochondrial genetic distance between insular and mainland lineages is around 3.5%. Limited levels of shared nuclear alleles among insular and mainland populations further support the genetic distinctiveness of insular spotted flycatchers with respect to their mainland counterparts. Moreover, lack of mitochondrial haplotypes sharing between Balearic birds (M. s. balearica) and Corso‐Sardinian birds (M. s. tyrrhenica) suggest the absence of recent matrilineal gene flow between these two insular subspecies. Accordingly, we suggest that insular spotted flycatchers could be treated as one polytypic species (Muscicapa tyrrhenica) that differs from M. striata in morphology, migration, mitochondrial and nuclear DNA and comprises two subspecies (the nominate and M. t. balearica) that diverged recently phenotypically and in mitochondrial DNA and but still share the same nuclear alleles. This study provides an interesting case‐study illustrating the crucial role of western Mediterranean islands in the evolution of a passerine showing high dispersal capabilities. Our genetic results highlight the role of glacial refugia of these islands that allowed initial allopatric divergence of insular populations. We hypothesize that differences in migratory and breeding phenology may prevent any current gene flow between insular and mainland populations of the spotted flycatcher that temporarily share the same insular habitats during the spring migration.  相似文献   

20.
The phylogenetic relationship between Buthus occitanus populations across the Strait of Gibraltar was investigated using nuclear 18S/ITS-1 DNA sequences and mitochondrial 16S and COI DNA sequences. All analyses showed that the European samples are highly separated from North African samples, and also suggest the existence of three main groups within this species complex, i.e., an European, an Atlas (=Moroccan samples) and a Tell-Atlas group (=Tunisian samples). The European clade was subdivided into three distinct subclades. The application of a previous calibration of the molecular clock of another buthid species suggested that most of the detected mitochondrial DNA lineages including the European lineages are about three times older than the re-opening of the Gibraltar Strait, and consequently, that other and older vicariant events are responsible for the observed phylogeographic structure of this species complex. Concerning the Moroccan samples, a discordance between nuclear and mitochondrial gene markers was observed. The 18S/ITS-1 gene tree could not resolve the phylogenetic relationships among the Moroccan B. occitanus subspecies and the closely related species B. atlantis, whereas mitochondrial genes suggested the co-existence of several old phylogenetic lineages in Morocco. We hypothesized that this difference may be explained by male-biased gene flow and gene conversion at the tandemly repeated 18S/ITS-1 gene regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号