首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Understanding of the conformational changes in G protein-coupled receptors associated with activation and inactivation is of great interest. We previously used photoaffinity labeling to elucidate spatial approximations between photolabile residues situated throughout the pharmacophore of secretin agonist probes and this receptor. The aim of the current work was to develop analogous photolabile secretin antagonist probes and to explore their spatial approximations. The most potent secretin antagonist reported is a pseudopeptide ([psi(4, 5)]secretin) in which the peptide bond between residues 4 and 5 was replaced by a psi(CH(2)-NH) peptide bond isostere. We have developed a series of [psi(4, 5)]secretin analogs incorporating photolabile benzoyl phenylalanine residues in positions 6, 22, and 26. Each bound to the secretin receptor saturably and specifically, with affinity similar to their parental peptide. At concentrations with no measurable agonist activity, each probe covalently labeled the secretin receptor. Peptide mapping using proteolytic cleavage, immunoprecipitation, and radiochemical sequencing identified that each of these three probes labeled the amino terminus of the secretin receptor. Whereas the position 22 probe labeled the same residue as its analogous agonist probe and the position 6 probe labeled a residue within two residues of that labeled by its analogous agonist probe, the position 26 probe labeled a site 16 residues away from that labeled by its analogous agonist probe. Thus, whereas structurally related agonist and antagonist probes dock in the same general region of this receptor, conformational differences in active and inactive states result in substantial differences in spatial approximation at the carboxyl-terminal end of secretin analogs.  相似文献   

2.
The glycoprotein nature of the binding subunit of the dopamine D2 receptor in rat striatum has been examined by photoaffinity labeling receptor preparations with N-(p-azido-m-[125I]iodophenethyl)spiperone followed by treatment of crude membrane receptor or receptor fractions isolated from sodium dodecyl sulfate (SDS) polyacrylamide gels with endo- and exoglycosidases. The major photoaffinity labeled protein migrates as a heterogeneous species on 10% SDS polyacrylamide gels and ranges from 130,000 to 75,000 relative molecular mass (Mr). This heterogeneity can be explained by glycosylation of the receptor by complex-type N-linked oligosaccharides. Three fractions of labeled receptor were isolated from SDS polyacrylamide gels over a range of 130,000 to 75,000 Mr; after digestion with peptide-N4-[N-acetyl-beta-glucosaminyl] asparagine amidase, all fractions yielded a single peptide approximately 40,000 Mr. Treatment of photoaffinity labeled membranes with alpha-mannosidase was without effect. The dopamine D2 receptor appears to contain substantial amounts of sialic acid as treatment of photoaffinity labeled membranes with neuraminidase increased the receptor mobility on SDS polyacrylamide gels to a species of 50,000-54,000 Mr. Treatment of the receptor with neuraminidase followed by endo-alpha-N-acetylgalactosaminidase did not change the electrophoretic migration pattern from that seen after neuraminidase treatment alone, suggesting that the binding peptide contains no serine- or threonine-linked oligosaccharides. A smaller binding peptide of approximately 31,000 Mr is also apparent in crude photoaffinity labeled membranes. This material also contains N-linked oligosaccharide. Complete removal of N-linked oligosaccharide from the dopamine D2 receptor did not change the rank order potency of agonist and antagonist compounds to compete for [3H]spiperone binding to crude membrane fractions. The dopamine D2 receptor represents a highly glycosylated neural receptor.  相似文献   

3.
We examined the effect of phorbol myristate acetate on the ability of human neutrophils to process formyl peptide receptors. The receptor was affinity-labeled and its extracellular localization assessed over time, by cleavage of extracellular labeled receptor with papain. Neutrophils were capable of internalizing (and/or recycling) affinity labeled formyl peptide receptor in the absence of extracellular calcium. This phenomenon was dependent upon stimulation with phorbol myristate acetate, suggesting a role for protein kinase C in this process.  相似文献   

4.
The human platelet alpha 2-adrenergic receptor is an integral membrane protein which binds epinephrine. The gene for this receptor has been cloned, and the primary structure is thus known [Kobilka et al. (1987) Science 238, 650-656]. A model of its secondary structure predicts that the receptor has seven transmembrane spanning domains. By covalent labeling and peptide mapping, we have identified a region of the receptor that is directly involved with ligand binding. Partially purified preparations of the receptor were covalently radiolabeled with either of two specific photoaffinity ligands: [3H]SKF 102229 (an antagonist) or p-azido[3H]clonidine (an agonist). The radiolabeled receptors were then digested with specific endopeptidases, and peptides containing the covalently bound radioligands were identified. Lysylendopeptidase treatment of [3H]SKF 102229 labeled receptor yielded one peptide of Mr 2400 as the product of a complete digest. Endopeptidase Arg-C gave a labeled peptide of Mr 4000, which was further digested to the Mr 2400 peptide by additional treatment with lysylendopeptidase. Using p-azido[3H]clonidine-labeled receptor, a similar Mr 2400 peptide was obtained by lysylendopeptidase cleavage. This Mr 2400 peptide corresponds to the fourth transmembrane spanning domain of the receptor. These data suggest that this region forms part of the ligand binding domain of the human platelet alpha 2-adrenergic receptor.  相似文献   

5.
Photoaffinity labeling of receptors by bound agonists can provide important spatial constraints for molecular modeling of activated receptor complexes. Secretin is a 27-residue peptide hormone with a diffuse pharmacophoric domain that binds to the secretin receptor, a prototypic member of the Class B family of G protein-coupled receptors. In this work, we have developed, characterized, and applied two new photolabile probes for this receptor, with sites for covalent attachment in peptide positions 12 and 14, surrounding the previously most informative site of affinity labeling of this receptor. The [Tyr10,(BzBz)Lys12]rat secretin-27 probe covalently labeled receptor residue Val6, whereas the [Tyr10,(BzBz)Lys14]rat secretin-27 probe labeled receptor residue Pro38. When combined with previous photoaffinity labeling data, there are now seven independent sets of constraints distributed throughout the peptide and receptor amino-terminal domain that can be used together to generate a new molecular model of the ligand-occupied secretin receptor. The amino-terminal domain of this receptor presented a stable platform for peptide ligand interaction, with the amino terminus of the peptide hormone extended toward the transmembrane helix domain of the receptor. This provides clear insights into the molecular basis of natural ligand binding and supplies testable hypotheses regarding the molecular basis of activation of this receptor.  相似文献   

6.
B P Dwyer 《Biochemistry》1988,27(15):5586-5592
Evidence has been obtained demonstrating that the peptides GVKYIAE and AIKYIAE found in the potential amphipathic helices of the alpha and beta subunits, respectively, of acetylcholine receptor are not buried in the membrane. The peptide KYIAE was synthesized, and polyclonal antibodies were prepared against a conjugate of bovine serum albumin and synthetic peptide. An immunoadsorbent capable of binding and subsequently releasing peptides ending with the sequence-YIAE was produced by attaching these specific antibodies to agarose. Native acetylcholine receptor was labeled with pyridoxal phosphate and Na[3H]BH4. The labeled protein was stripped of phospholipid and digested with the protease from Staphylococcus aureus strain V8. The digest was submitted to immunoadsorption to isolate the labeled indigenous peptides. As a control, alpha and beta polypeptides prepared by gel filtration of a solution of acetylcholine receptor in detergent were stripped of detergent and labeled with pyridoxal phosphate and Na[3H]BH4 in the presence of 8 M urea. The labeled alpha and beta polypeptides were digested and submitted to immunoadsorption. The specific radioactivities of the indigenous peptides from the alpha and beta subunits labeled under native and denaturing conditions were nearly equal. In similar experiments using isethionyl (2', 4'-dinitrophenyl)-3-amino-propionimidate as the labeling agent, the indigenous peptides from native and denatured receptor were also labeled to the same extent. Since these peptides are labeled to the same extent whether or not the protein is denatured, they cannot be buried in the membrane.  相似文献   

7.
Radiosequence analysis of peptide fragments of the estrogen receptor (ER) from MCF-7 human breast cancer cells has been used to identify cysteine 530 as the site of covalent attachment of an estrogenic affinity label, ketononestrol aziridine (KNA), and an antiestrogenic affinity label, tamoxifen aziridine (TAZ). ER from MCF-7 cells was covalently labeled with [3H]TAZ or [3H]KNA and purified to greater than 95% homogeneity by immunoadsorbent chromatography. Limit digest peptide fragments, generated by prolonged exposure of the labeled receptor to trypsin, cyanogen bromide, or Staphylococcus aureus V8 protease, were purified to homogeneity by high performance liquid chromatography (HPLC), and the position of the labeled residue was determined by sequential Edman degradation. With both aziridines, the labeled residue was at position 1 in the tryptic peptide, position 2 in the cyanogen bromide peptide, and position 7 in the V8 protease peptide. This localizes the site of labeling to a single cysteine at position 530 in the receptor sequence. The identity of cysteine as the site of labeling was confirmed by HPLC comparison of the TAZ-labeled amino acid (as the phenylthiohydantoin and phenylthiocarbamyl derivatives) and the KNA-labeled amino acid (as the phenylthiocarbamyl derivative) with authentic standards prepared by total synthesis. Cysteine 530 is located in the hormone binding domain of the receptor, near its carboxyl terminus. This location is consistent with earlier studies using sodium dodecyl sulfate-polyacrylamide gel electrophoresis to analyze the size of the proteolytic fragments containing the covalent labeling sites for TAZ and KNA and the antigen recognition sites for monoclonal antibodies. The fact that both the estrogenic and antiestrogenic affinity labeling agents react covalently with the same cysteine indicates that differences in receptor-agonist and receptor-antagonist complexes do not result in differential covalent labeling of amino acid residues in the hormone binding domain.  相似文献   

8.
A1 adenosine receptor-binding subunits can be visualized using high affinity antagonist and agonist photoaffinity radioligands. In the present study, we examined whether agonists and antagonists bind to the same receptor-binding subunit and if agonists and antagonists induce different conformational states of the receptor in intact membranes. It was demonstrated that several agonist and antagonist photoaffinity receptor-binding subunit. When the agonist and antagonist photoaffinity labeled peptides were denatured and subjected to partial peptide map analysis using a two-dimensional gel electrophoresis system similar peptide fragments were generated from each specifically labeled protein. This suggests that both classes of ligand label and incorporate into the same binding subunit. Proteolytic digestions of agonist- and antagonist-occupied receptors in native intact membranes revealed distinct and different peptide fragments depending on whether the ligand was an agonist or an antagonist. Manipulation of incubation conditions to perturb ligand-receptor interactions alter the pattern of peptide fragments generated with each specific protease. These data suggest that agonist and antagonist photoaffinity probes interact with an incorporate into the same binding subunit but that agonist binding is associated with a unique and detectable receptor conformation.  相似文献   

9.
Affinity column-purified GABA-benzodiazepine receptor protein from bovine brain was photoaffinity labeled with both [3H]flunitrazepam and [3H]muscimol. Gel electrophoresis in sodium dodecyl sulfate revealed that the benzodiazepine binding site labeled with [3H]flunitrazepam was primarily associated with a major peptide subunit revealed by protein staining with Mr = 52 kiloDaltons, with minor labeling of a second peptide of Mr = 57 kiloDaltons, corresponding to a second major stained band. Covalent incorporation of [3H]muscimol was limited to the 57 kiloDalton band, with no labeling of the 52 kiloDalton peptide, showing that the GABA binding site is carried by a subunit distinct from that carrying the benzodiazepine binding site.  相似文献   

10.
We have purified the epidermal growth factor receptor/kinase from A431 membrane vesicles which had been affinity labeled with the ATP analog, 5'-p-fluorosulfonylbenzoyl[8-14C]adenosine. The resulting purified, affinity labeled receptor/kinase preparation has been subjected to reduction and carboxymethylation followed by tryptic digestion. From this digest, we have isolated and sequenced the tryptic peptide containing the major site of labeling by the ATP analog. The sequence of this peptide is Ile-Pro-Val-Ala-Ile-X-Glu-Leu, where X corresponds to Lys 721 of the derived sequence of the EGF receptor/kinase.  相似文献   

11.
Affinity-labeling probes with sites of cross-linking distributed along the ligand have been used to biochemically characterize the pancreatic cholecystokinin (CCK) receptor. Probes with photolabile sites spanning the receptor-binding domain have labeled a Mr = 85,000-95,000 plasma membrane protein, while a probe cross-linked via the amino terminus of CCK-33, far removed from the carboxyl-terminal receptor-binding domain, has labeled a distinct Mr = 80,000 protein. In this work, protease peptide mapping of the pancreatic proteins labeled by each of these probes has been performed to gain insight into the identities of the bands and to define domains of the labeled proteins. Photolabile decapeptide probes with sites of cross-linking at the amino terminus, mid region, and carboxyl terminus of the receptor-binding domain each labeled a Mr = 85,000-95,000 glycoprotein with a Mr = 42,000 core protein and similar Staphylococcus aureus V8 protease peptide maps. This confirms that each probe labels the same binding protein and the same domain of that protein. Serial slices through the broad labeled band were separately deglycosylated and protease-treated, demonstrating a single protein core with differential glycosylation. The CCK-33-based probe, however, labeled predominantly two proteins, one having similar sizes in its native and deglycosylated forms to that labeled by the decapeptide probes and a distinct Mr = 80,000 protein. Of note, the peptide map of the protein believed to be the same as that labeled by the shorter probes was different, suggesting that this probe labeled the binding subunit at a site distinct from that which was labeled by the short probes.  相似文献   

12.
Using amide hydrogen exchange combined with electrospray ionization mass spectrometry, we have in this study determined the number of amide hydrogens on several peptides that become solvent-inaccessible as a result of their high-affinity interaction with the urokinase-type plasminogen activator receptor (uPAR). These experiments reveal that at least six out of eight amide hydrogens in a synthetic nine-mer peptide antagonist (AE105) become sequestered upon engagement in uPAR binding. Various uPAR mutants with decreased affinity for this peptide antagonist gave similar results, thereby indicating that deletion of the favorable interactions involving the side chains of these residues in uPAR does not affect the number of hydrogen bonds established by the main chain of the peptide ligand. The isolated growth factor-like domain (GFD) of the cognate serine protease ligand for uPAR showed 11 protected amide hydrogens in the receptor complex. Interestingly, a naturally occurring O-linked fucose on Thr(18) confers protection of two additional amide hydrogens in GFD when it forms a complex with uPAR. Dissociation of the uPAR-peptide complexes is accompanied by a correlated exchange of nearly all amide hydrogens on the peptide ligand. This yields bimodal isotope patterns from which dissociation rate constants can be determined. In addition, the distinct bimodal isotope distributions also allow investigation of the exchange kinetics of receptor-bound peptides providing information about the local structural motions at the interface. These exchange experiments therefore provide both structural and kinetic information on the interaction between uPAR and these small peptide antagonists, which in model systems show promise as inhibitors of intravasation of human cancer cells.  相似文献   

13.
A radioactive photoaffinity probe for the insulin receptor was prepared by derivatizing insulin at its B29 lysine with a novel crosslinking reagent having a cleavable azo linkage. Insulin receptors purified from human placental membranes were photoaffinity labeled with this probe. The photolabeled receptor was treated with dithionite to cleave the azo linkage, thereby removing the insulin ligand and transferring the radioactivity to the receptor protein. The radioactive labeled subunit was isolated and digested with elastase for peptide mapping and separation by high performance liquid chromatography. Results obtained indicated that it will be feasible to use this new photoaffinity probe to obtain radioactive peptides representing the insulin-binding site(s) on the receptor subunit.  相似文献   

14.
The human adrenomedullin (ADM) is a 52 amino acid peptide hormone belonging to the calcitonin family of peptides, which plays a major role in the development and regulation of cardiovascular and lymphatic systems. For potential use in clinical applications, we aimed to investigate the fate of the peptide ligand after binding and activation of the adrenomedullin receptor (AM1), a heterodimer consisting of the calcitonin receptor‐like receptor (CLR), a G protein‐coupled receptor, associated with the receptor activity‐modifying protein 2 (RAMP2). Full length and N‐terminally shortened ADM peptides were synthesized using Fmoc/tBu solid phase peptide synthesis and site‐specifically labeled with the fluorophore carboxytetramethylrhodamine (Tam) either by amide bond formation or copper(I)‐catalyzed azide alkyne cycloaddition. For the first time, Tam‐labeled ligands allowed the observation of co‐internalization of the whole ligand‐receptor complex in living cells co‐transfected with fluorescent fusion proteins of CLR and RAMP2. Application of a fluorescent probe to track lysosomal compartments revealed that ADM together with the CLR/RAMP2‐complex is routed to the degradative pathway. Moreover, we found that the N‐terminus of ADM is not a crucial component of the peptide sequence in terms of AM1 internalization behavior. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

15.
We have identified a series of potent, orally bioavailable, non-peptidyl, triarylimidazole and triarylpyrrole glucagon receptor antagonists. 2-(4-Pyridyl)-5-(4-chlorophenyl)-3-(5-bromo-2-propyloxyphenyl)p yrr ole (L-168,049), a prototypical member of this series, inhibits binding of labeled glucagon to the human glucagon receptor with an IC50 = 3. 7 +/- 3.4 nM (n = 7) but does not inhibit binding of labeled glucagon-like peptide to the highly homologous human glucagon-like peptide receptor at concentrations up to 10 microM. The binding affinity of L-168,049 for the human glucagon receptor is decreased 24-fold by the inclusion of divalent cations (5 mM). L-168,049 increases the apparent EC50 for glucagon stimulation of adenylyl cyclase in Chinese hamster ovary cells expressing the human glucagon receptor and decreases the maximal glucagon stimulation observed, with a Kb (concentration of antagonist that shifts the agonist dose-response 2-fold) of 25 nM. These data suggest that L-168,049 is a noncompetitive antagonist of glucagon action. Inclusion of L-168, 049 increases the rate of dissociation of labeled glucagon from the receptor 4-fold, confirming that the compound is a noncompetitive glucagon antagonist. In addition, we have identified two putative transmembrane domain residues, phenylalanine 184 in transmembrane domain 2 and tyrosine 239 in transmembrane domain 3, for which substitution by alanine reduces the affinity of L-168,049 46- and 4. 5-fold, respectively. These mutations do not alter the binding of labeled glucagon, suggesting that the binding sites for glucagon and L-168,049 are distinct.  相似文献   

16.
The adrenergic receptors of rat pineal gland were investigated using radiolabeled ligand binding and photoaffinity labeling techniques. 125I-2-[beta-(4-hydroxyphenyl)ethylaminomethyl]tetralone (125I-HEAT) and 125I-cyanopindolol (125I-CYP) labeled specific sites on rat pineal gland membranes with equilibrium dissociation constants (KD) of 48 (+/- 5) pM and 30 (+/- 5) pM, respectively. Binding site maxima were 481 (+/- 63) and 1,020 (+/- 85) fmol/mg protein. The sites labeled by 125I-HEAT had the pharmacological characteristics of alpha 1-adrenergic receptors. 125I-CYP-labeled beta-adrenergic receptors were characterized as a homogeneous population of beta 1-adrenergic receptors. The alpha 1- and beta 1-adrenergic receptors were covalently labeled with the specific photoaffinity probes 4-amino-6,7-dimethoxy-2-(4-[5-(4-azido-3-[125I]iodophenyl) pentanoyl]-1-piperazinyl) quinazoline (125I-APDQ) and 125I-p-azidobenzylcarazolol (125I-pABC). 125I-APDQ labeled an alpha 1-adrenergic receptor peptide of Mr = 74,000 (+/- 4,000), which was similar to peptides labeled in rat cerebral cortex, liver, and spleen. 125I-pABC labeled a single beta 1-adrenergic receptor peptide with a Mr = 42,000 (+/- 1,500), which differed from the 60-65,000 peptide commonly seen in mammalian tissues. Possible reasons for these differences are discussed.  相似文献   

17.
The GABAA/benzodiazepine receptor has been solubilized from membrane preparations of bovine cerebral cortex and has been reconstituted, in a functionally active form, into phospholipid vesicles. In preliminary experiments, the receptor was labeled with the photoactive benzodiazepine [3H]flunitrazepam prior to solubilization. A peptide of apparent molecular weight 53,500 was specifically labeled by this method, and this was used as a marker for the receptor during the reconstitution procedures. The labeled protein was solubilized with approximately 40% efficiency by 1% beta-octyl glucoside. Reconstitution was achieved by mixing the solubilized proteins with a 4:1 mixture of soybean asolectin and bovine brain phospholipids, followed by chromatography on Sephadex G-50-80 to remove detergent. The incorporation of the GABAA receptor into membrane vesicles has been verified by sucrose gradient centrifugation in which the [3H]-flunitrazepam-labeled peptide comigrated with [14C]phosphatidylcholine used as a lipid marker. Vesicles prepared without labeled markers retained the ability to bind both [3H]flunitrazepam and the GABA analogue [3H]muscimol. Furthermore, the binding parameters were very similar to those measured using native membrane preparations. A novel fluorescence technique has been used to measure chloride transport mediated by the GABAA receptor in reconstituted vesicles. Chloride influx was rapidly stimulated in the presence of micromolar concentrations of muscimol and was blocked by preincubation of the membranes with muscimol (desensitization). Flux was also blocked by pretreatment with the competitive GABAA receptor blocker bicuculline or with the noncompetitive GABAA receptor antagonist picrotoxin.  相似文献   

18.
The binding of 125I-labeled rabies virus to a synthetic peptide comprising residues 173-204 of the alpha 1-subunit of the nicotinic acetylcholine receptor was investigated. Binding of rabies virus to the receptor peptide was dependent on pH, could be competed with by unlabeled homologous virus particles, and was saturable. Synthetic peptides of snake venom, curaremimetic neurotoxins and of the structurally similar segment of the rabies virus glycoprotein, were effective in competing with labeled virus binding to the receptor peptide at micromolar concentrations. Similarly, synthetic peptides of the binding domain on the acetylcholine receptor competed for binding. These findings suggest that both rabies virus and neurotoxins bind to residues 173-204 of the alpha 1-subunit of the acetylcholine receptor. Competition studies with shorter alpha-subunit peptides within this region indicate that the highest affinity virus binding determinants are located within residues 179-192. A rat nerve alpha 3-subunit peptide, that does not bind alpha-bungarotoxin, inhibited binding of virus to the alpha 1 peptide, suggesting that rabies binds to neuronal nicotinic acetylcholine receptors. These studies indicate that synthetic peptides of the glycoprotein binding domain and of the receptor binding domain may represent useful antiviral agents by targeting the recognition event between the viral attachment protein and the host cell receptor, and inhibiting attachment of virus to the receptor.  相似文献   

19.
Amino acid residues that participate in antagonist binding to the strychnine-sensitive glycine receptor (GlyR) have been identified by selectively modifying functional groups with chemical reagents. Moreover, a region directly involved with strychnine binding has been localized in the 48-kDa subunit of this receptor by covalent labeling and proteolytic mapping. Modification of tyrosyl or arginyl residues promotes a marked decrease of specific [3H]strychnine binding either to rat spinal cord plasma membranes or to the purified GlyR incorporated into phospholipid vesicles. Occupancy of the receptor by strychnine, but not by glycine, completely protects from the inhibition caused by chemical reagents. Furthermore, these tyrosine- or arginine-specific reagents decrease the number of binding sites (Bmax) for [3H]strychnine binding without affecting the affinity for the ligand (Kd). These observations strongly suggest that such residues are present at, or very close to, the antagonist binding site. In order to localize the strychnine binding domain within the GlyR, purified and reconstituted receptor preparations were photoaffinity labeled with [3H]strychnine. The radiolabeled 48-kDa subunit was then digested with specific chemical proteolytic reagents, and the peptides containing the covalently bound radioligand were identified by fluorography after gel electrophoresis. N-Chlorosuccinimide treatment of [3H]strychnine-labeled 48K polypeptide yielded a single labeled peptide of Mr approximately 7300, and cyanogen bromide gave a labeled peptide of Mr 6200.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
A novel photoactivatable linear peptide antagonist selective for the V(1a) vasopressin receptor, [(125)I][Lys(3N(3) Phpa)(8)]HO-LVA, was synthesized, characterized, and used to photolabel the human receptor expressed in Chinese hamster ovary cells. Two specific glycosylated protein species at 85-90 and 46 kDa were covalently labeled, a result identical to that obtained with a previous photosensitive ligand, [(125)I]3N(3)Phpa-LVA (Phalipou, S., Cotte, N. , Carnazzi, E., Seyer, R., Mahe, E., Jard, S., Barberis, C., and Mouillac, B. (1997) J. Biol. Chem. 272, 26536-26544). To identify contact sites between the new photoreactive analogue and the V(1a) receptor, the labeled receptors were digested with Lys-C or Asp-N endoproteinases and chemically cleaved with CNBr. Fragmentation with CNBr, Lyc-C, and Asp-N used alone or in combination, led to the identification of a restricted receptor region spanning the first extracellular loop. The results established that sequence Asp(112)-Pro(120) could be considered as the smallest covalently labeled fragment with [(125)I][Lys(3N(3)Phpa)(8)]HO-LVA. Based on the present experimental result and on previous photoaffinity labeling data obtained with [(125)I]3N(3)Phpa-LVA (covalent attachment to transmembrane domain VII), three-dimensional models of the antagonist-bound receptors were constructed and then verified by site-directed mutagenesis studies. Strikingly, these two linear peptide antagonists, when bound to the V(1a) receptor, could adopt a pseudocyclic conformation similar to that of the cyclic agonists. Despite divergent functional properties, these peptide antagonists could interact with a transmembrane-binding site significantly overlapping that of the natural hormone vasopressin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号