首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
The plant volatile profile and the essential‐oil chemical composition change during the storage of plant material. The objective of this study was to develop a mathematical model able to predict, explain, and quantify these changes. Mathematical equations, derived under the assumption that the essential oil contained within plant material could be treated as an ideal solution (Raoult's law), were applied for tracking of postharvest changes in the volatile profile of Artemisia absinthium L. (the essential oils were analyzed by GC‐FID and GC/MS). Starting from a specific chemical composition of an essential‐oil sample obtained from plant material after a short drying period (typically 5–10 d), and by using the equations derived from this model, one could easily predict evaporation‐induced changes in the volatile profile of the plant material. Based on the composition of the essential‐oil sample obtained after a given storage time t, it is possible to identify those components that were involved in chemical reactions, both as reactants and possible products. The established model even allowed the recognition of pairs of transformation, i.e., ‘daughter’ products and their ‘parent’ compounds. The obtained results highlight that the essential‐oil composition is highly dependent on the storage period of any plant material and urges caution in different types of phytochemical studies, especially chemotaxonomic ones, or practical application.  相似文献   

2.
    
Essential oils of Artemisia abyssinica and Satureja punctata ssp. punctata from Ethiopia were analyzed by GC and GC/MS, and screened for leishmanicidal activity against promastigote and axenic amastigotes of Leishmania donovani and L. aethiopica, including toxicity studies on human monocytic leukemia cells (THP‐1) and erythrocytes in vitro. GC/MS of A. abyssinica oil revealed 67 compounds (99.94%) with the major constituents yomogi alcohol (38.47%), artemisyl acetate (24.88%), and artemisia alcohol (6.70%), and oxygenated monoterpenes (84.00%) as the dominant group. The oil of S. punctata contained 67 compounds (99.49%) with the main constituents geranial (27.62%), neral (21.72%), α‐bisabolol (13.62%), and (E)‐nerolidol (4.82%), of which oxygenated mono‐ and sesquiterpenes (58.39 and 26.91%, resp.) showed highest abundance. Both oils showed effect on promastigotes (MIC 76.5 to 312.5 nl/ml) and amastigotes (EC50 4.06 to 131.00 nl/ml) of L. donovani and L. aethiopica, and varying toxicities on THP‐1 cells (CC50 0.013 to 350 nl/ml with selectivity index between 0.001 and 28) and erythrocytes (with LC50 0.35 to 1.52 μl/ml). S. punctata oil exerted highest activity against both Leishmania sp. and toxicity. The revealed antileishmanial activities support further isolation and investigation of oil constituents for in vitro/in vivo evaluation.  相似文献   

3.
    
In our screening program for new agrochemicals from local wild plants, Artemisia lavandulaefolia and A. sieversiana were found to possess insecticidal activity against the maize weevil Sitophilus zeamais. The essential oils of the aerial parts of the two plants were obtained by hydrodistillation and analyzed by GC and GC/MS. The main components of A. lavandulaefolia oil were caryophyllene (15.5%), β‐thujone (13.8%), eucalyptol (13.1%), and β‐farnesene (12.3%), and the principal compounds identified in A. sieversiana oil were eucalyptol (9.2%), geranyl butyrate (9.2%), borneol (7.9%), and camphor (7.9%). The essential oils of A. lavandulaefolia and A. sieversiana possessed fumigant toxicity against S. zeamais adults with LC50 values of 11.2 and 15.0 mg/l air, respectively. Both essential oils also showed contact toxicity against S. zeamais adults with LD50 values of 55.2 and 112.7 μg/adult, respectively.  相似文献   

4.
The chemical composition of essential oils isolated from aerial parts of seven wild sages from Western Canada – Artemisia absinthium L., Artemisia biennis Willd., Artemisia cana Pursh, Artemisia dracunculus L., Artemisia frigida Willd., Artemisia longifolia Nutt. and Artemisia ludoviciana Nutt., was investigated by GC–MS. A total of 110 components were identified accounting for 71.0–98.8% of the oil composition. High contents of 1,8-cineole (21.5–27.6%) and camphor (15.9–37.3%) were found in Artemisia cana, A. frigida, A. longifolia and A. ludoviciana oils. The oil of A. ludoviciana was also characterized by a high content of oxygenated sesquiterpenes with a 5-ethenyltetrahydro-5-methyl-2-furanyl moiety, of which davanone (11.5%) was the main component identified. A. absinthium oil was characterized by high amounts of myrcene (10.8%), trans-thujone (10.1%) and trans-sabinyl acetate (26.4%). A. biennis yielded an oil rich in (Z)-beta-ocimene (34.7%), (E)-beta-farnesene (40.0%) and the acetylenes (11.0%) (Z)- and (E)-en-yn-dicycloethers. A. dracunculus oil contained predominantly phenylpropanoids such as methyl chavicol (16.2%) and methyl eugenol (35.8%). Artemisia oils had inhibitory effects on the growth of bacteria (Escherichia coli, Staphylococcus aureus, and Staphylococcus epidermidis), yeasts (Candida albicans, Cryptococcus neoformans), dermatophytes (Trichophyton rubrum, Microsporum canis, and Microsporum gypseum), Fonsecaea pedrosoi and Aspergillus niger. A. biennis oil was the most active against dermatophytes, Cryptococcus neoformans, Fonsecaea pedrosoi and Aspergillus niger, and A. absinthium oil the most active against Staphylococcus strains. In addition, antioxidant (beta-carotene/linoleate model) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activities were determined, and weak activities were found for these oils.  相似文献   

5.
    
Echinops kebericho is a critically endangered endemic medicinal plant of Ethiopia. It is threatened due to over harvesting of its roots for medicinal purposes and from poor seed viability. This study aimed to develop a protocol for in vitro shoot regeneration from leaf explants of E. kebericho. The seeds were sterilized using ethanol followed by Clorox or calcium hypochlorite. Shoots from the germinated seeds were cultured on Murashige and Skoog (MS) medium containing different concentrations of α-naphthalene acetic acid (NAA) and 6-benzyl amino purine (BAP). Young leaves were cultured on MS medium containing different concentrations of BAP and NAA for shoot regeneration. For shoot multiplication, shoots were excised and cultured on MS medium containing different concentrations of BAP or kinetin (KIN) and NAA. The highest mean number of initiated shoots (4.00 ± 0.57) with 100% shoot induction was obtained on medium containing 1.0 mg/L BAP and 0.2 mg/L NAA. The highest shoot regeneration (33%) and shoot number (2.13 ± 0.06) were obtained on MS medium containing 2.0 mg/L BAP and 0.5 mg/L NAA. Medium containing 1.0 mg/L KIN and 0.2 mg/L NAA produced the highest number of shoots (4.67 ± 0.33) per explant. This protocol can be used for genetic improvement and conservation of this endangered species.  相似文献   

6.
    
The oil obtained by hydrodistillation from the aerial parts of Artemisia incana (L.) Druce from Turkey was analyzed by GC and GC/MS. Sixty‐three compounds were characterized, representing 97.2% of the total components detected, and camphor (19.0%), borneol (18.9%), 1,8‐cineole (14.5%), bornyl acetate (7.8%), camphene (4.9%), and α‐thujone (4.8%) were identified as predominant components. The essential oil was also tested for its antimicrobial activity against 44 different foodborne microorganisms, including 26 bacteria, 15 fungi, and 3 yeast species. The essential oil of A. incana exhibited considerable inhibitory effects against all bacteria, fungi, and yeast species tested. However, the oil showed lower inhibitory activity against the tested bacteria than the reference antibiotics.  相似文献   

7.
Artemisia absinthium is an aromatic and medicinal plant ofethnopharmacological interest and it has been widely studied. The use ofA.absinthium based on the collection of wild populations can result invariable compositions of the extracts and essential oils (EOs). The aim of this paperis the identification of the active components of the vapour pressure (VP) EO from aselected and cultivated A. absinthiumSpanish population (T2-11)against two parasitic protozoa with different metabolic pathways: Trypanosomacruzi andTrichomonas vaginalis. VP showed activity onboth parasites at the highest concentrations. The chromatographic fractionation ofthe VP T2-11 resulted in nine fractions (VLC1-9). The chemical composition of thefractions and the antiparasitic effects of fractions and their main compounds suggestthat the activity of the VP is related with the presenceoftrans-caryophyllene and dihydrochamazulene (main components offractions VLC1 and VLC2 respectively). Additionally, the cytotoxicity of VP andfractions has been tested on several tumour and no tumour human cell lines. FractionsVLC1 and VLC2 were not cytotoxic against the nontumoural cell line HS5, suggestingselective antiparasitic activity for these two fractions. The VP and fractionsinhibited the growth of human tumour cell lines in a dose-dependent manner.  相似文献   

8.
9.
分析了171个中国蒿属植物样品的精油化学成分,鉴定出305个化合物。这些样品代表64个种,其中蒿亚属47种,龙蒿亚属17种。 分析结果表明,这些化合物在两亚属中的分布有一定的规律性。在蒿亚属精油中主要含单萜类和倍半萜类化合物,而在龙蒿亚屑精油中主要含倍半萜类化合物和芳香族化合物。这种分布与中国蒿属植物从较原始到进化划分为7个组的系统分类有一定的相关性,即蒿亚属:莳萝蒿组(单萜类化合物)→艾蒿组(单萜类化合物)→艾组(单萜类化合物)→腺毛蒿组(单萜类化合物和倍半萜类化合物)→白苞蒿组(倍半萜类化合物)。龙蒿亚属:龙蒿组(倍半萜类化合物和芳香族化合物)→牡蒿组(倍半萜类化合物和芳香族化合物)。  相似文献   

10.
    
The essential oils isolated from three organs, i.e., fruits, stems and leaves, and flowers, of the endemic North African plant Scabiosa arenaria Forssk . were screened for their chemical composition, as well as their possible antibacterial, anticandidal, and antifungal properties. According to the GC‐FID and GC/MS analyses, 61 (99.26% of the total oil composition), 79 (98.43%), and 51 compounds (99.9%) were identified in the three oils, respectively. While α‐thujone (34.39%), camphor (17.48%), and β‐thujone (15.29%) constituted the major compounds of the fruit oil, chrysanthenone (23.43%), together with camphor (12.98%) and α‐thujone (10.7%), were the main constituents of the stem and leaf oil. In the case of the flower oil, also chrysanthenone (38.52%), camphor (11.75%), and α‐thujone (9.5%) were identified as the major compounds. Furthermore, the isolated oils were tested against 16 Gram‐positive and Gram‐negative bacteria, four Candida species, and nine phytopathogenic fungal strains. It was found that the oils exhibited interesting antibacterial and anticandidal activities, comparable to those of thymol, which was used as positive control, but no activity against the phytopathogenic fungal strains was observed.  相似文献   

11.
    
Guatteria pogonopus Martius , a plant belonging to the Annonaceae family, is found in the remaining Brazilian Atlantic Forest. In this study, the chemical composition and antitumor effects of the essential oil isolated from leaves of G. pogonopus was investigated. The chemical composition of the oil was determined by GC‐FID and GC/MS analyses. The in vitro cytotoxicity was evaluated against three different tumor cell lines (OVCAR‐8, NCI‐H358M, and PC‐3M), and the in vivo antitumor activity was tested in mice bearing sarcoma 180 tumor. A total of 29 compounds was identified and quantified in the oil. The major compounds were γ‐patchoulene (13.55%), (E)‐caryophyllene (11.36%), β‐pinene (10.37%), germacrene D (6.72%), bicyclogermacrene (5.97%), α‐pinene (5.33%), and germacrene B (4.69%). The essential oil, but neither (E)‐caryophyllene nor β‐pinene, displayed in vitro cytotoxicity against all three tumor cell lines tested. The obtained average IC50 values ranged from 3.8 to 20.8 μg/ml. The lowest and highest values were obtained against the NCI‐H358M and the OVCAR‐8 cell lines, respectively. The in vivo tumor‐growth‐inhibition rates in the tumor‐bearing mice treated with essential oil (50 and 100 mg/kg/d) were 25.3 and 42.6%, respectively. Hence, the essential oil showed significant in vitro and in vivo antitumor activity.  相似文献   

12.
    
The essential oils of Anthospermum emirnense Baker and Anthospermum perrieri Homolle ex Puff, obtained by hydrodistillation in 0.03 and 0.02% yield, respectively, were analyzed by GC/MS. In both cases, the major constituents consisted of sesquiterpene hydrocarbons and oxygenated sesquiterpenes. The two species showed an important qualitative similarity, with 40 compounds common to A. emirnense and A. perrieri, including β-elemene, trans-β-caryophyllene, caryophyllene oxide, and τ-cadinol, which were major components in both cases. When tested for antimicrobial activity, both essential oils showed similar profiles and exhibited interesting minimal-inhibitory-concentration (MIC) values towards Bacillus subtilis, Chryseobacterium indologenes, Flavimonas oryzihabitans, and Yersinia enterocolitica.  相似文献   

13.
植物精油化学成分及其抗菌活性的研究进展   总被引:2,自引:0,他引:2       下载免费PDF全文
植物精油是一类从植物中萃取的芳香味油状液体,是一类优良的天然抗菌材料。作为抗菌材料,植物精油具有以下优点:具有广谱高效的抗菌活性;具有熏蒸特性、气味芳香;取自天然植物,绿色环保;来源广,提取容易。植物精油因其多种优点,在抗菌领域具有巨大的潜在应用价值。本文从植物精油的分布及化学成分、抗细菌活性和抗真菌活性的研究,以及植物精油化学成分与抗菌活性之间的联系等方面对植物精油的抗菌性能进行评述,以期促进植物精油在抗菌领域的广泛应用,同时给从事植物精油抗菌研究的科研工作者提供参考。  相似文献   

14.
    
The volatile fractions isolated from Prangos peucedanifolia Fenzl leaves and flowers were investigated for their phytochemical composition and biological properties. Flower and leaf hydrodistillation afforded 3.14 and 0.49 g of yellowish oils in 1.25 and 0.41% yields, respectively, from dry vegetable materials. According to the GC‐FID and GC/MS analyses, 36 (99.35% of the total oil composition) and 26 compounds (89.12%) were identified in the two oils, respectively. The major constituents in the flower volatile fraction were β‐pinene (35.58%), α‐pinene (22.13%), and β‐phellandrene (12.54%), while m‐cresol (50.38%) was the main constituent of the leaf volatile fraction. The antimicrobial activity was evaluated against several bacterial and fungal strains, on the basis of the minimum inhibitory concentration (MIC) by the micro‐ and macrodilution methods. The two volatile fractions showed moderate antifungal and antibacterial activities, especially against Trichophyton rubrum (MIC of 2×103 μg/ml), Streptococcus mutans, Streptococcus pyogenes, and Staphylococcus aureus (MIC≤1.9×103 μg/ml for all).  相似文献   

15.
The phytochemical profile and the antimicrobial effects of the volatile oil and the aqueous extract of Campanula portenschlagiana, a wild growing plant endemic to Croatia, were described. In the volatile oil, 53 compounds were identified by GC‐FID and GC/MS analyses. Diterpene alcohols constituted the major compound class with labda‐13(16),14‐dien‐8‐ol as the main compound. The aqueous extract was characterized by the total phenolic content. The antimicrobial potential of the volatile oil and the aqueous extract was evaluated against a diverse range of microorganisms comprising food‐spoilage and food‐borne pathogens. The volatile oil exhibited interesting and promising antimicrobial effects against the tested species, which were generally more pronounced against Gram‐negative bacteria. In addition, the inhibitory effect of this volatile oil was also evaluated against eleven extended‐spectrum β‐lactamase (ESBL)‐producing isolates. The results suggest that the C. portenschlagiana volatile oil might be used as antimicrobial agent against ESBL‐producing isolates and Gram‐negative bacteria.  相似文献   

16.
17.
The phytochemical composition of the essential oil of Teucrium ramosissimum (aerial parts), harvested in a mountainous region of Tunisia, was analyzed. A total of 68 compounds, accounting for 99.44% of the essential oil, were identified by GC and GC/MS. The major compounds were beta-eudesmol (61; 44.52%), caryophyllene oxide (56; 9.35%), alpha-thujene (1; 5.51%), sabinene (4; 4.71%), and T-cadinol (59; 3.9%). The essential oil, which is being used in Tunisian folk medicine against infectious diseases, was tested for its antimicrobial properties against five different bacteria, and found to have weak to moderate activity, with minimal-inhibitory-concentration (MIC) and minimal-bactericidal-concentration (MBC) values in the range 0.24-0.36 and 1.3-2.9 mg/ml, resp.  相似文献   

18.
    
The chemical composition and antimicrobial activity of essential oils of Laserpitium latifolium and L. ochridanum were investigated. The essential oils were isolated by steam distillation and characterized by GC‐FID and GC/MS analyses. All essential oils were distinguished by high contents of monoterpenes, and α‐pinene was the most abundant compound in the essential oils of L. latifolium underground parts and fruits (contents of 44.4 and 44.0%, resp.). The fruit essential oil was also rich in sabinene (26.8%). Regarding the L. ochridanum essential oils, the main constituents were limonene in the fruit oil (57.7%) and sabinene in the herb oil (25.9%). The antimicrobial activity of these essential oils as well as that of L. ochridanum underground parts, whose composition was reported previously, was tested by the broth‐microdilution method against four Gram‐positive and three Gram‐negative bacteria and two Candida albicans strains. Except the L. latifolium underground‐parts essential oil, the other investigated oils showed a high antimicrobial potential against Staphylococcus aureus, S. epidermidis, Micrococcus luteus, or Candida albicans (minimal inhibitory concentrations of 13.0–73.0 μg/ml), comparable to or even higher than that of thymol, which was used as reference compound.  相似文献   

19.
    
The essential oil obtained from hydrodistillation of flowering aerial parts of Athanasia brownii (Asteraceae) was studied for its chemical composition by GC/FID and GC/MS, and for biological activity, namely, antioxidant, antimicrobial, and chemopreventive potential, by DPPH (=2,2‐diphenyl‐1‐picrylhydrazyl), ABTS (=2,2′‐azinobis[3‐ethylbenzothioline‐6‐sulfonic acid), and FRAP (=ferric reducing antioxidant power), disk diffusion test, and MTT (=3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide) assay, respectively. The oil was characterized by a high content of oxygenated sesquiterpenes (71.2%), with selin‐11‐en‐4α‐ol (24.6%), caryophyllene oxide (8.7%), humulene epoxide II (5.1%), and (E)‐nerolidol (4.9%) as the predominant compounds. The oil showed a moderate activity against streptococci as well as radical‐scavenging potential, while the inhibitory effects against human cancer cells examined such as A375 (malignant melanoma) and HCT 116 (colon carcinoma) were significant, with IC50 values of 19.85 and 29.53 μg/ml, respectively.  相似文献   

20.
    
The phytochemical profile of Melaleuca leucadendra L. leaf and fruit oils from Cuba was investigated by GC and GC/MS. Forty‐one and sixty‐four volatile compounds were identified and quantified, accounting for 99.2 and 99.5% of the leaf‐oil and fruit‐oil total composition, respectively. The main components were 1,8‐cineol (43.0%), viridiflorol (24.2%), α‐terpineol (7.0%), α‐pinene (5.3%), and limonene (4.8%) in the leaf oil, and viridiflorol (47.6%), globulol (5.8%), guaiol (5.3%), and α‐pinene (4.5%) in the fruit oil. The antioxidant capacity of these essential oils was determined by three different in vitro assays (2,2‐diphenyl‐1‐picrylhydrazyl (DPPH) radical, thiobarbituric acid reactive species (TBARS), and 2,2′‐Azinobis(3‐ethylbenzothiazoline‐6‐sulfonic acid) (ABTS) radical cation), and significant activities were evidenced for all of them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号