首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Echinops kebericho is a critically endangered endemic medicinal plant of Ethiopia. It is threatened due to over harvesting of its roots for medicinal purposes and from poor seed viability. This study aimed to develop a protocol for in vitro shoot regeneration from leaf explants of E. kebericho. The seeds were sterilized using ethanol followed by Clorox or calcium hypochlorite. Shoots from the germinated seeds were cultured on Murashige and Skoog (MS) medium containing different concentrations of α-naphthalene acetic acid (NAA) and 6-benzyl amino purine (BAP). Young leaves were cultured on MS medium containing different concentrations of BAP and NAA for shoot regeneration. For shoot multiplication, shoots were excised and cultured on MS medium containing different concentrations of BAP or kinetin (KIN) and NAA. The highest mean number of initiated shoots (4.00 ± 0.57) with 100% shoot induction was obtained on medium containing 1.0 mg/L BAP and 0.2 mg/L NAA. The highest shoot regeneration (33%) and shoot number (2.13 ± 0.06) were obtained on MS medium containing 2.0 mg/L BAP and 0.5 mg/L NAA. Medium containing 1.0 mg/L KIN and 0.2 mg/L NAA produced the highest number of shoots (4.67 ± 0.33) per explant. This protocol can be used for genetic improvement and conservation of this endangered species.  相似文献   

2.
The chemical composition of essential oils isolated from aerial parts of seven wild sages from Western Canada – Artemisia absinthium L., Artemisia biennis Willd., Artemisia cana Pursh, Artemisia dracunculus L., Artemisia frigida Willd., Artemisia longifolia Nutt. and Artemisia ludoviciana Nutt., was investigated by GC–MS. A total of 110 components were identified accounting for 71.0–98.8% of the oil composition. High contents of 1,8-cineole (21.5–27.6%) and camphor (15.9–37.3%) were found in Artemisia cana, A. frigida, A. longifolia and A. ludoviciana oils. The oil of A. ludoviciana was also characterized by a high content of oxygenated sesquiterpenes with a 5-ethenyltetrahydro-5-methyl-2-furanyl moiety, of which davanone (11.5%) was the main component identified. A. absinthium oil was characterized by high amounts of myrcene (10.8%), trans-thujone (10.1%) and trans-sabinyl acetate (26.4%). A. biennis yielded an oil rich in (Z)-beta-ocimene (34.7%), (E)-beta-farnesene (40.0%) and the acetylenes (11.0%) (Z)- and (E)-en-yn-dicycloethers. A. dracunculus oil contained predominantly phenylpropanoids such as methyl chavicol (16.2%) and methyl eugenol (35.8%). Artemisia oils had inhibitory effects on the growth of bacteria (Escherichia coli, Staphylococcus aureus, and Staphylococcus epidermidis), yeasts (Candida albicans, Cryptococcus neoformans), dermatophytes (Trichophyton rubrum, Microsporum canis, and Microsporum gypseum), Fonsecaea pedrosoi and Aspergillus niger. A. biennis oil was the most active against dermatophytes, Cryptococcus neoformans, Fonsecaea pedrosoi and Aspergillus niger, and A. absinthium oil the most active against Staphylococcus strains. In addition, antioxidant (beta-carotene/linoleate model) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activities were determined, and weak activities were found for these oils.  相似文献   

3.
Leishmaniasis is a widespread tropical infection caused by different species of Leishmania protozoa. There is no vaccine available for Leishmania infections and conventional treatments are very toxic to the patients. Therefore, antileishmanial drugs are urgently needed. In this study we have analyzed the effects of essential oils from Lippia sidoides (LSEO) and its major compound thymol on the growth, viability and ultrastructure of Leishmania amazonensis. The essential oil and thymol showed significant activity against promastigote forms of L. amazonensis, with IC50/48 h of 44.38 and 19.47 μg/mL respectively. However, thymol showed toxicity against peritoneal macrophages and low selectivity against the promastigotes when compared with the crude LSEO. On the other hand, no cytotoxic effect was observed in macrophages treated with the crude essential oil. Incubation of L. amazonensis-infected macrophages with LSEO showed a marked reduction in amastigote survival within the macrophages. Significant morphological alterations as accumulation of large lipid droplets in the cytoplasm, disrupted membrane and wrinkled cells were usually seen in treated parasites. The LSEO's activity against both promastigote and the amstigote forms of L. amazonensis, together with its low toxicity to mammalian cells, point to LSEO as a promising agent for the treatment of cutaneous leishmaniasis.  相似文献   

4.
The plant volatile profile and the essential‐oil chemical composition change during the storage of plant material. The objective of this study was to develop a mathematical model able to predict, explain, and quantify these changes. Mathematical equations, derived under the assumption that the essential oil contained within plant material could be treated as an ideal solution (Raoult's law), were applied for tracking of postharvest changes in the volatile profile of Artemisia absinthium L. (the essential oils were analyzed by GC‐FID and GC/MS). Starting from a specific chemical composition of an essential‐oil sample obtained from plant material after a short drying period (typically 5–10 d), and by using the equations derived from this model, one could easily predict evaporation‐induced changes in the volatile profile of the plant material. Based on the composition of the essential‐oil sample obtained after a given storage time t, it is possible to identify those components that were involved in chemical reactions, both as reactants and possible products. The established model even allowed the recognition of pairs of transformation, i.e., ‘daughter’ products and their ‘parent’ compounds. The obtained results highlight that the essential‐oil composition is highly dependent on the storage period of any plant material and urges caution in different types of phytochemical studies, especially chemotaxonomic ones, or practical application.  相似文献   

5.
植物精油对大菱鲆弧菌的体外和体内抗菌活性   总被引:2,自引:0,他引:2  
【目的】研究天然植物精油对大菱鲆弧菌的体外和体内抗菌活性。【方法】采用纸片扩散法和微量肉汤稀释法对14种植物精油或其组分的体外抑菌活性进行检测;通过细菌形态透射电镜观察、胞内乳酸脱氢酶及核酸释放研究山苍子精油对大菱鲆弧菌的膜损伤作用;采用大菱鲆人工攻毒感染实验研究山苍子精油的体内抗菌作用。【结果】14种植物精油或其组分对大菱鲆弧菌具有不同程度的抑制效果,其中肉桂醛的抗菌活性最强,最低抑菌浓度为0.25μL/m L;百里香酚、丁香酚、柠檬醛和山苍子的抗菌活性次之,最低抑菌浓度为0.5μL/m L;山苍子精油可破坏大菱鲆弧菌的细胞膜,并导致胞内蛋白酶和核酸外泄;经200μL/L山苍子精油浸浴后,大菱鲆攻毒后死亡率由对照组50%降至0。【结论】富含芳香醛、芳香酚和柠檬醛的植物精油对大菱鲆弧菌具有良好抗菌活性,有望替代抗生素用于大菱鲆弧菌病的防治。  相似文献   

6.
We report herein the synthesis and the in vitro antileishmanial evaluation of 5-substituted-2'-deoxyuridine nucleosides. The most active compound against Leishmania donovani promastigotes was Thia-dU (3a) with an IC50 =3 microM. This compound exhibited the same activity as zidovudine (3'-azido-2'-deoxythymidine) used as nucleoside reference compound. Considering the cytotoxicity of synthetic compounds on peritoneal murine macrophages, the most toxic compound was MeThio-dU (3d) with a MTC at 10 microM. Only Methia-dU (3b) was active against intramacrophagic amastigotes with an IC50 =6.5 microM. This latter can now be evaluated in vivo, for further investigations through structure-based drug design.  相似文献   

7.
Ascosphaera apis is one of the major fungal pathogens of honey bee broods and the causative agent of Chalkbrood disease. The factors responsible for the pathogenesis of Chalkbrood disease are still not fully understood, and the increasing resistance of A. apis to commonly used antifungal agents necessitates a search for new agents to control this disease. The in vitro antifungal activities of 27 plant essential oils against two isolates of A. apis (Aksu-4 and Aksu-9) were evaluated. Out of the 27 plant essential oils tested, 21 were found to be effective in killing both isolates of A. apis. Based on their minimum fungicidal concentration (MFC) values, the effective oils were grouped into three categories: highly effective, moderately effective and minimally effective. Mountain pepper oil, Kala Bhangra oil, spearmint oil, babuna oil, betel leaf oil, carrot seed oil, cumin seed oil and clove bud oil were highly effective, with MBC values between 50.0 μg/mL and 600.0 μg/mL. Mountain pepper was the most effective essential oil, with an MBC value of 50.0 μg/mL. Citral and caryophyllene containing oils were the most effective with MIC 50 ppm. The essential oils tested exhibited significant antimicrobial activities against both strains of A. apis, and they may contain compounds that could play an important role in the treatment or prevention of Chalkbrood disease of honeybee.  相似文献   

8.
In our screening program for new agrochemicals from local wild plants, Artemisia lavandulaefolia and A. sieversiana were found to possess insecticidal activity against the maize weevil Sitophilus zeamais. The essential oils of the aerial parts of the two plants were obtained by hydrodistillation and analyzed by GC and GC/MS. The main components of A. lavandulaefolia oil were caryophyllene (15.5%), β‐thujone (13.8%), eucalyptol (13.1%), and β‐farnesene (12.3%), and the principal compounds identified in A. sieversiana oil were eucalyptol (9.2%), geranyl butyrate (9.2%), borneol (7.9%), and camphor (7.9%). The essential oils of A. lavandulaefolia and A. sieversiana possessed fumigant toxicity against S. zeamais adults with LC50 values of 11.2 and 15.0 mg/l air, respectively. Both essential oils also showed contact toxicity against S. zeamais adults with LD50 values of 55.2 and 112.7 μg/adult, respectively.  相似文献   

9.
《Microbiological research》2014,169(4):240-254
Since synthetic antimicrobial agents and food additives can cause a number of adverse effects, there is a growing interest from consumers in ingredients from natural sources. Medicinal plants, such as Myrtus communis L. are a source of new compounds which can be used in both the food industry and for medical purposes, primarily as antimicrobial agents. In this review, the characteristics of myrtle essential oils and extracts are summarized, with particular attention to their chemical composition, biological activities and potential applications.  相似文献   

10.
Artemisia absinthium is an aromatic and medicinal plant ofethnopharmacological interest and it has been widely studied. The use ofA.absinthium based on the collection of wild populations can result invariable compositions of the extracts and essential oils (EOs). The aim of this paperis the identification of the active components of the vapour pressure (VP) EO from aselected and cultivated A. absinthiumSpanish population (T2-11)against two parasitic protozoa with different metabolic pathways: Trypanosomacruzi andTrichomonas vaginalis. VP showed activity onboth parasites at the highest concentrations. The chromatographic fractionation ofthe VP T2-11 resulted in nine fractions (VLC1-9). The chemical composition of thefractions and the antiparasitic effects of fractions and their main compounds suggestthat the activity of the VP is related with the presenceoftrans-caryophyllene and dihydrochamazulene (main components offractions VLC1 and VLC2 respectively). Additionally, the cytotoxicity of VP andfractions has been tested on several tumour and no tumour human cell lines. FractionsVLC1 and VLC2 were not cytotoxic against the nontumoural cell line HS5, suggestingselective antiparasitic activity for these two fractions. The VP and fractionsinhibited the growth of human tumour cell lines in a dose-dependent manner.  相似文献   

11.
Compounds 125 showed varying degree of antileishmanial activities with IC50 values ranging between 1.95 and 88.56 μM. Compounds 2, 10, and 11 (IC50 = 3.29 ± 0.07 μM, 1.95 ± 0.04 μM, and 2.49 ± 0.03 μM, respectively) were found to be more active than standard pentamidine (IC50 = 5.09 ± 0.04 μM). Compounds 7 (IC50 = 7.64 ± 0.1 μM), 8 (IC50 = 13.17 ± 0.46 μM), 18 (IC50 = 13.15 ± 0.02 μM), and 24 (IC50 = 15.65 ± 0.41 μM) exhibited good activities. Compounds 1, 3, 4, 5, 9, 12, 15, 18, and 19 were found to be moderately active. Compounds 13, 14, 16, 17, 2025 showed weak activities with IC50 values ranging between 57 and 88 μM.  相似文献   

12.
杉木心材精油抑菌活性及其化学成分研究   总被引:19,自引:0,他引:19  
叶舟  林文雄  陈伟  俞新妥 《应用生态学报》2005,16(12):2394-2398
通过水蒸气蒸馏法提取杉木心材精油,并进行柱层析分离、气-质联用分析和抑菌活性试验,比较分析了精油含量、化学组成和抑菌活性成分.结果表明,杉木心材精油含量为1.794~2.076(w/w);气-质联用分析共分离出47个色谱峰,鉴定出27个化合物(占精油总量的99%),其中主要成分为柏木脑(76.27%);杉木心材精油对大肠杆菌、金黄色葡萄球菌、枯草芽孢杆菌、伤寒沙门氏菌等均有较明显的抑制作用;柏木脑是杉木精油的主要抑菌活性成分.  相似文献   

13.
The essential oils of Anthospermum emirnense Baker and Anthospermum perrieri Homolle ex Puff, obtained by hydrodistillation in 0.03 and 0.02% yield, respectively, were analyzed by GC/MS. In both cases, the major constituents consisted of sesquiterpene hydrocarbons and oxygenated sesquiterpenes. The two species showed an important qualitative similarity, with 40 compounds common to A. emirnense and A. perrieri, including β-elemene, trans-β-caryophyllene, caryophyllene oxide, and τ-cadinol, which were major components in both cases. When tested for antimicrobial activity, both essential oils showed similar profiles and exhibited interesting minimal-inhibitory-concentration (MIC) values towards Bacillus subtilis, Chryseobacterium indologenes, Flavimonas oryzihabitans, and Yersinia enterocolitica.  相似文献   

14.
植物精油化学成分及其抗菌活性的研究进展   总被引:2,自引:0,他引:2  
植物精油是一类从植物中萃取的芳香味油状液体,是一类优良的天然抗菌材料。作为抗菌材料,植物精油具有以下优点:具有广谱高效的抗菌活性;具有熏蒸特性、气味芳香;取自天然植物,绿色环保;来源广,提取容易。植物精油因其多种优点,在抗菌领域具有巨大的潜在应用价值。本文从植物精油的分布及化学成分、抗细菌活性和抗真菌活性的研究,以及植物精油化学成分与抗菌活性之间的联系等方面对植物精油的抗菌性能进行评述,以期促进植物精油在抗菌领域的广泛应用,同时给从事植物精油抗菌研究的科研工作者提供参考。  相似文献   

15.
艾蒿精油对家蝇的忌避及熏蒸活性   总被引:7,自引:0,他引:7  
王健  李雅  雷朝亮 《昆虫知识》2005,42(1):51-53
应用“Y”型嗅觉仪对家蝇进行了生物测定。结果表明,艾蒿(Artemisia vulgars L.)精油20μL和25μL剂量对家蝇Musca domestica rieina有很强的忌避活性,平均忌避活力分别为86%和88%,显著高于5和10μL剂量。植物精油对家蝇成虫具有很好的熏蒸活性。随着精油浓度的升高和熏蒸时间的延长,试虫的死亡率显著增加。艾蒿精油浓度为20μL/mL时,家蝇成虫的死亡率在24h后即达到100%;对照在24,48,72和96h时家蝇成虫的死亡率分别为0,0,5%和11%。  相似文献   

16.
Essential oils of Artemisia abyssinica and Satureja punctata ssp. punctata from Ethiopia were analyzed by GC and GC/MS, and screened for leishmanicidal activity against promastigote and axenic amastigotes of Leishmania donovani and L. aethiopica, including toxicity studies on human monocytic leukemia cells (THP‐1) and erythrocytes in vitro. GC/MS of A. abyssinica oil revealed 67 compounds (99.94%) with the major constituents yomogi alcohol (38.47%), artemisyl acetate (24.88%), and artemisia alcohol (6.70%), and oxygenated monoterpenes (84.00%) as the dominant group. The oil of S. punctata contained 67 compounds (99.49%) with the main constituents geranial (27.62%), neral (21.72%), α‐bisabolol (13.62%), and (E)‐nerolidol (4.82%), of which oxygenated mono‐ and sesquiterpenes (58.39 and 26.91%, resp.) showed highest abundance. Both oils showed effect on promastigotes (MIC 76.5 to 312.5 nl/ml) and amastigotes (EC50 4.06 to 131.00 nl/ml) of L. donovani and L. aethiopica, and varying toxicities on THP‐1 cells (CC50 0.013 to 350 nl/ml with selectivity index between 0.001 and 28) and erythrocytes (with LC50 0.35 to 1.52 μl/ml). S. punctata oil exerted highest activity against both Leishmania sp. and toxicity. The revealed antileishmanial activities support further isolation and investigation of oil constituents for in vitro/in vivo evaluation.  相似文献   

17.
Aedes aegypti L. (Diptera: Culicidae) is a vector for serious diseases in tropical regions. This pest is mainly controlled by commercial larvicides but the application of such products has led to environmental problems. Essential oils (EO) have been consistently reported as molecules with insecticidal activity and can be used to produce more environmentally friendly larvicides in the control of A. aegypti. In this study, the larvicidal effect of essential oils (EO) from the leaves of three Artemisia species was evaluated against Aaegypti. The oils were obtained from steam distillation and their chemical composition was determined by gas chromatography–mass spectrometry. The EO of Artemisia camphorata was the most active in the screening bioassay and presented LC50 and LC95 of 64.95 and 74.18 μg ml−1, respectively. In addition, we found that germacrene D-4-ol was the constituent responsible for the toxicity of this EO. Artemisia camphorata EO and its major constituent, germacrene D-4-ol, are promising for the development of natural larvicides against A. aegypti.  相似文献   

18.
Potato plants and their tubers in Egypt are affected by one of the most renowned soil-borne pathogen, Ralstonia solanacearum, that caused brown rot in potato tubers and wilt in plants. There is no efficient therapeutic bactericide so; control of bacterial wilt is very rough.The study investigated three different concentrations of seven essential plant oils under in vitro and in vivo conditions as a result of their effects on Ralstonia solanacearum growth and their possibility use as potato seed pieces dressing for controlling bacterial wilt disease incidence. In vitro, anise oil at the three tested different concentrations (0.04, 0.07, and 0.14% vol/vol) was the most effective one inhibiting the growth of T4 and W9 isolates of Ralstonia solanacearum then pursued by thyme, lemongrass, and clove oils. On the other hand, rocket oil at the tested concentration was the least effective one followed by fennel oil. However, wheat germ oil was not completely effective. In vivo, experiment revealed that anise oil at the three concentrations significantly reduced disease incidence and severity in sponta and hermes potato cultivars and their effect was associated with increase of peroxidase, polyphenoloxidase, phenols and the foliar fresh weight of treated plants as well as the weight of tubers/plant followed by thyme and lemongrass oils compared to the infected untreated control.Morphological differences in bacterial cell structure have been observed using a transmission electron microscope (TEM). Anise oil at higher concentration caused of cell wall rupture and degraded cellular components.  相似文献   

19.
20.
Plants are a prospective source of novel natural insect repellents and botanical insecticides. This study was conducted to investigate the chemical composition of the essential oils of three plants growing in Saudi Arabia, namely Ducrosia anethifolia, Achillea fragrantissima, and Teucrium polium; and to evaluate their potential mosquitocidal and repellent activities against adult female Culex pipiens L. The main components of the three oils were found to be decanal (28.9%) and chrysanthenyl acetate (10.04%), (D. anethifolia); sabinyl acetate (35.79) and artemesia ketone (18.28%) (A. fragrantissima); α‐cadinol (49.53%) and δ‐cadinene (10.23%) (T. polium). The oil of A. fragrantissima was the most toxic (LC50 = 0.11 μL/L air) followed by D. anethifolia and T. polium with LC50 values of 5.22 and 25.98 μL/L air, respectively. T. polium oil was the most repellent (292 min at 2 μL/cm2), followed by D. anethifolia and A. fragrantissima. The results indicate that the essential oils have a potential fumigant insecticidal and repellent activities for mosquito control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号