首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
董鹏  王进军 《动物学研究》2004,25(5):456-459
采用常规PCR和巢式PCR方法对三色书虱Liposcelis tricolor体内的共生微生物Wolbachia的wsp基因进行分子检测;通过Wolbachia的通用引物以及A、B亚群引物分别比较了常规PCR和巢式PCR对wsp基因扩增的灵敏性。从三色书虱体内扩增出了610bp的Wolbachia的wsp基因片段,500bp的WolbachiaA亚群的wsp基因片段和450bp的Wolbachia B亚群的wsp基因片段。扩增结果说明三色书虱被A和B两个亚群的Wolbachia混合感染;巢式PCR比常规PCR更为灵敏。  相似文献   

2.
BACKGROUND: The majority of filarial nematode species are host to Wolbachia bacterial endosymbionts, although a few including Acanthocheilonema viteae, Onchocerca flexuosa and Setaria equina have been shown to be free of infection. Comparisons of species with and without symbionts can provide important information on the role of Wolbachia symbiosis in the biology of the nematode hosts and the contribution of the bacteria to the development of disease. Previous studies by electron microscopy and PCR have failed to detect intracellular bacterial infection in Loa loa. Here we use molecular and immunohistological techniques to confirm this finding. METHODS: We have used a combination of PCR amplification of bacterial genes (16S ribosomal DNA [rDNA], ftsZ and Wolbachia surface protein [WSP]) on samples of L. loa adults, third-stage larvae (L3) and microfilariae (mf) and immunohistology on L. loa adults and mf derived from human volunteers to determine the presence or absence of Wolbachia endosymbionts. Samples used in the PCR analysis included 5 adult female worms, 4 adult male worms, 5 mf samples and 2 samples of L3. The quality and purity of nematode DNA was tested by PCR amplification of nematode 5S rDNA and with diagnostic primers from the target species and used to confirm the absence of contamination from Onchocerca sp., Mansonella perstans, M. streptocerca and Wuchereria bancrofti. Immunohistology was carried out by light and electron microscopy on L. loa adults and mf and sections were probed with rabbit antibodies raised to recombinant Brugia malayi Wolbachia WSP. Samples from nematodes known to be infected with Wolbachia (O. volvulus, O. ochengi, Litomosoides sigmodontis and B. malayi) were used as positive controls and A. viteae as a negative control. RESULTS: Single PCR analysis using primer sets for the bacterial genes 16S rDNA, ftsZ, and WSP were negative for all DNA samples from L. loa. Positive PCR reactions were obtained from DNA samples derived from species known to be infected with Wolbachia, which confirmed the suitability of the primers and PCR conditions. The quality and purity of nematode DNA samples was verified by PCR amplification of 5S rDNA and with nematode diagnostic primers. Additional analysis by 'long PCR' failed to produce any further evidence for Wolbachia symbiosis. Immunohistology of L. loa adults and mf confirmed the results of the PCR with no evidence for Wolbachia symbiosis. CONCLUSION: DNA analysis and immunohistology provided no evidence for Wolbachia symbiosis in L. loa.  相似文献   

3.
Filarial nematodes harbour intracellular symbiotic bacteria belonging to the genus Wolbachia. Wolbachia is thought to play an important role in the biology of the nematode. Moreover, Wolbachia appears to be involved in the immunopathogenesis of filariasis and in the onset of the side-effects of antifilarial therapy. Investigations in these research areas require reliable methods to quantify Wolbachia both in nematodes and in vertebrate tissues. To this purpose, we designed a quantitative real-time PCR targeted on the ftsZ gene of the Wolbachia of Brugia pahangi, a model filarial species maintained in gerbils. The method was applied to quantify Wolbachia in Brugia pahangi, from animals with or without tetracycline treatment. Our results show that tetracycline treatment leads to dramatic reduction or clearance of Wolbachia from the nematode. Results obtained from different replicates were reproducible and the method appeared very sensitive compared to other PCR protocols for Wolbachia detection. Real-time PCR is thus an appropriate method for investigations on the biological role of Wolbachia and on the implication of these bacteria in the pathogenesis of filariasis. With slight modifications of the primers and probe, the protocol we have developed could be applied in studies of the human pathogen Brugia malayi and on the model filarial species Litomosoides sigmodontis.  相似文献   

4.
An extensive survey of Wolbachia endosymbionts in Japanese terrestrial heteropteran bugs was performed by PCR detection with universal primers for wsp and ftsZ genes of Wolbachia, cloning of the PCR products, restriction fragment length polymorphism analysis of infecting Wolbachia types, and molecular phylogenetic characterization of all the detected Wolbachia strains. Of 134 heteropteran species from 19 families examined, Wolbachia infection was detected in 47 species from 13 families. From the 47 species, 59 Wolbachia strains were identified. Of the 59 strains, 16 and 43 were assigned to A group and B group in the Wolbachia phylogeny, respectively. The 47 species of Wolbachia-infected bugs were classified into 8 species with A infection, 28 species with B infection, 2 species with AA infection, 3 species with AB infection, 5 species with BB infection, and 1 species with ABB infection. Molecular phylogenetic analysis showed little congruence between Wolbachia phylogeny and host systematics, suggesting frequent horizontal transfers of Wolbachia in the evolutionary course of the Heteroptera. The phylogenetic analysis also revealed several novel lineages of Wolbachia. Based on statistical analyses of the multiple infections, we propose a hypothetical view that, in the heteropteran bugs, interactions between coinfecting Wolbachia strains are generally not intense and that Wolbachia coinfections have been established through a stochastic process probably depending on occasional horizontal transfers.  相似文献   

5.
Wolbachia是一类胞质遗传的内共生菌, 广泛分布于节肢动物和其他动物中, 与宿主的生殖调控密切相关。通过研究迁飞性害虫稻纵卷叶螟Cnaphalocrocis medinalis (Guenée)的Wolbachia感染情况, 为探讨Wolbachia在迁飞性昆虫中的生殖调控和传递方式等提供基础资料。本研究应用Wolbachia的ftsZ基因和16S rDNA基因的特异性引物, 通过PCR扩增的方法对我国20个地区的稻纵卷叶螟样本进行了检测。结果表明: 中国不同地区的稻纵卷叶螟感染Wolbachia的现象较为普遍, 其中浙江温州和江苏扬州样本的感染率最高(90%); 四川雅安、 湖南长沙和天津宁河样本的感染率最低(40%)。不同地区稻纵卷叶螟的Wolbachia ftsZ基因序列完全一致, 而且不同地区的Wolbachia 16S rDNA基因序列也完全相同。此外, 稻纵卷叶螟感染的Wolbachia ftsZ基因和16S rDNA基因序列与其他物种感染的Wolbachia B群的ftsZ基因序列和16S rDNA基因序列相似性分别在99%~100%和98%~99%之间, 说明我国稻纵卷叶螟感染的Wolbachia隶属B群。研究结果表明, 稻纵卷叶螟感染的Wolbachia类型较为单一, 这也是我国有关稻纵卷叶螟内共生菌Wolbachia的首次研究报道。  相似文献   

6.
Wolbachia infections of the whitefly Bemisia tabaci   总被引:7,自引:0,他引:7  
We report the first systematic survey for the presence of Wolbachia endosymbionts in aphids and whiteflies, particularly different populations and biotypes of Bemisia tabaci. Additional agriculturally important species included were predator species, leafhoppers, and lepidopterans. We used a polymerase chain reaction (PCR)-based detection assay with ribosomal 16S rDNA and Wolbachia cell surface protein (wsp) gene primers. Wolbachia were detected in a number of whitefly populations and species, whitefly predators, and one leafhopper species; however, none of the aphid species tested were found infected. Single, double, and triple infections were detected in some of the B. tabaci populations. PCR and phylogenetic analysis of wsp gene sequences indicated that all Wolbachia strains found belong to group B. Topologies of the optimal tree derived by maximum likelihood (ML) and a ML tree in which Wolbachia sequences from B. tabaci are constrained to be monophyletic are significantly different. Our results indicate that there have been at least four independent Wolbachia infection events in B. tabaci. The importance of the presence of Wolbachia infections in B. tabaci is discussed.  相似文献   

7.
Prevailing triple infection with three distinct Wolbachia strains was identified in Japanese populations of the adzuki bean beetle, Callosobruchus chinensis. When a polymerase chain reaction (PCR) assay was conducted using universal primers for ftsZ and wsp, Wolbachia was detected in all the individuals examined, 288 males and 334 females from nine Japanese populations. PCR-restriction fragment length polymorphism (RFLP) analysis of cloned wsp gene fragments from single insects revealed that three types of wsp sequences coexist in the insects. Molecular phylogenetic analysis of the wsp sequences unequivocally demonstrated that C. chinensis harbours three phylogenetically distinct Wolbachia, tentatively designated as wBruCon, wBruOri and wBruAus, respectively. Diagnostic PCR analysis using specific primers demonstrated that, of 175 males and 235 females from nine local populations, infection frequencies with wBruCon, wBruOri and wBruAus were 100%, 96.3% and 97.0%, respectively. As for the infection status of individuals, triple infection (93.7%) dominated over double infection (6.1%) and single infection (0.2%). The amounts of wBruCon, wBruOri and wBruAus in field-collected adult insects were analysed by using a quantitative PCR technique in terms of wsp gene copies per individual insect. Irrespective of original populations, wBruCon and wBruOri (107 -108 wsp copies/insect) were consistently greater in amount than wBruAus (106 -107 wsp copies/insect), suggesting that the population sizes of the three Wolbachia strains are controlled, although the mechanism is unknown. Mating experiments suggested that the three Wolbachia cause cytoplasmic incompatibility at different levels of intensity.  相似文献   

8.
Sun X  Cui L  Li Z 《Environmental entomology》2007,36(5):1283-1289
Wolbachia are a common and widespread group of symbiotic bacteria found in the reproductive tissues of arthropods. Bactrocera dorsalis (Hendel) is an important pest causing considerable economic losses of fruits and vegetables in several southern provinces of China. In this study, polymerase chain reaction (PCR) with general Wolbachia surface protein (wsp) primers was used to test the presence of Wolbachia in 1,500 individuals of B. dorsalis from five geographical populations of China. We detected 19 individuals of B. dorsalis infected by Wolbachia, and the infection rates of different populations varied. Comparison of wsp gene sequences from 19 individuals and search of the GenBank identified four new sequences, probably representing four Wolbachia strains. Sequence comparison showed that the four Wolbachia strains from B. dorsalis in China belonged to three groups (Kue, Mel, and Cuc). Phylogenetic analysis of the wsp sequences suggests that geographical isolation of Wolbachia exists among the populations of B. dorsalis in China, and gene flow of Wolbachia might have occurred between B. dorsalis populations of China and Thailand. Phylogenetic analysis performed on the host mitochondrial cytochrome oxidase I (COI) gene and wsp gene suggests that host has coevolved with Wolbachia.  相似文献   

9.
【目的】对苹果蠹蛾Cydia pomonella L.体内共生菌Wolbachia进行分子生物学鉴定,确定该虫体内Wolbachia的进化位置,为进一步探讨Wolbachia对其生殖作用的调控机制提供理论依据。【方法】应用Wolbachia的wsp基因特异引物,通过PCR扩增法检测了苹果蠹蛾10个地理种群(新疆伊犁、吐鲁番、和田、石河子、奎屯、哈密、库尔勒、阿拉尔、喀什、和甘肃张掖)感染Wolbachia的状况,并对阿拉尔种群体内的Wolbachia的wsp基因进行测序和序列分析。【结果】苹果蠹蛾10个地理种群全部感染了tWolbachia,利用wsp基因的特异性引物从阿拉尔种群体内扩增出了617 bp的Wolbachia的wsp基因片段(GenBank登录号为KC832324),系统发育分析结果表明,苹果蠹蛾体内感染的Wolbachia属于A群Dor亚群,与锤角细蜂亲缘关系较近。【结论】苹果蠹蛾体内普遍感染了Wolbachia,属于A群Dor亚群。  相似文献   

10.
Wolbachia is a genus of alpha-proteobacteria found in obligate intracellular association with a wide variety of arthropods, including an estimated 10-20% of all insect species [1]. Wolbachia represents one of a number of recently identified 'reproductive parasites' [2] which manipulate the reproduction of their hosts in ways that enhance their own transmission [3] [4] [5] [6] [7] [8] [9]. The influence of Wolbachia infection on the dynamics of host populations has focused considerable interest on its possible role in speciation through reproductive isolation [3] [10] [11] and as an agent of biological control [2] [12] [13]. Although Wolbachia normally undergoes vertical transmission through the maternal line of its host population [14], there is compelling evidence from molecular phylogenies that extensive horizontal (intertaxon) transmission must have occurred [1] [9] [15] [16] [17]. Some of the best candidate vectors for the horizontal transmission of Wolbachia are insect parasitoids [15], which comprise around 25% of all insect species and attack arthropods from an enormous range of taxa [18]. In this study, we used both fluorescence microscopy and PCR amplification with Wolbachia-specific primers to show that Wolbachia can be transmitted to a parasitic wasp (Leptopilina boulardi) from its infected host (Drosophila simulans) and subsequently undergo diminishing vertical transmission in this novel host species. These results are, to our knowledge, the first to reveal a natural horizontal transfer route for Wolbachia between phylogenetically distant insect species.  相似文献   

11.
Wolbachia是专性的细胞内细菌,广泛存在于节肢动物生殖组织。已有的研究结果表明,节肢动物中存在A组和B组Wolbachia,而烟粉虱Bemisia tabaci中主要检测到了B组Wolbachia。本研究从福建省采集到17个不同烟粉虱地理种群,首先通过rDNA-ITS1克隆测序鉴定了不同烟粉虱地理种群的生物型,然后采用Wolbachia 16S rDNA的特异引物,并通过PCR-RFLP技术分析了不同烟粉虱地理种群中Wolbachia的感染特点。结果表明:从福建省闽侯、平潭、南平、来舟、漳平和沙县采集到的烟粉虱自然种群属于非B型,而非B型烟粉虱种群中存在广泛的超感染现象,即单个非B型烟粉虱个体中同时感染了不同型Wolbachia。相反,B型烟粉虱自然种群的个体中只感染A组Wolbachia。该研究依据密集采样的数据进一步证实了Wolbachia在烟粉虱自然种群中的分布确实与宿主的生物型密切相关,提示Wolbachia可能在烟粉虱的种群分化中发挥作用。  相似文献   

12.
Wolbachia are obligatory, cytoplasmatically inherited alpha-Proteobacteria which are known for infecting the reproductive tissues of many arthropods. Their prevalence in the large group of Collembola, however, is not known, except for PCR detection in the parthenogenetically reproducing species Folsomia candida (Order: Entomobryomorpha; Family: Isotomidae). In this study, fluorescence in situ hybridization on microscopic sections of F. candida specimens indicated that Wolbachia-related bacteria were restricted to tissues of the ovary and brain. PCR with primers designed to detect 16S rRNA genes of Wolbachia were positive with specimens from all of five geographically independent F. candida breeding stocks and with three parthenogenetic species from another order (Poduromorpha; Family Tullbergiidae), i.e. Mesaphorura italica, M. macrochaeta and Paratullbergia callipygos. In contrast, negative results were obtained with the two sexually reproducing species, Isotoma viridis (Isotomidae) and Protaphorura fimata (Poduromorpha; Onychiuridae). The ftsZ gene of Wolbachia could be PCR-amplified from all Wolbachia-positive hosts with the exception of M. macrochaeta. The phylogenetic distances of the ftsZ and 16S rRNA gene sequences reflected the phylogenetic distances of the host organisms but the sequences of Wolbachia were relatively closely related, indicating that Wolbachia infections took place after the Collembola had diversified. Our study confirms a monophyletic branch (supergroup E) of Collembola colonizing Wolbachia and indicates that this group is a sister group of supergroup A, the latter harbouring a high diversity of host organisms within the group of insects.  相似文献   

13.
Wolbachia are a group of intracellular inherited bacteria that infect a wide range of arthropods. They are associated with a number of different reproductive phenotypes in their hosts, such as cytoplasmic incompatibility, parthenogenesis and feminization. While it is known that the bacterial strains responsible for these different host phenotypes form a single clade within the alpha-Proteobacteria, until now it has not been possible to resolve the evolutionary relationships between different Wolbachia strains. To address this issue we have cloned and sequenced a gene encoding a surface protein of Wolbachia (wsp) from a representative sample of 28 Wolbachia strains. The sequences from this gene were highly variable and could be used to resolve the phylogenetic relationships of different Wolbachia strains. Based on the sequence of the wsp gene from different Wolbachia isolates we propose that the Wolbachia pipientis clade be initially divided into 12 groups. As more sequence information becomes available we expect the number of such groups to increase. In addition, we present a method of Wolbachia classification based on the use of group-specific wsp polymerase chain reaction (PGR) primers which will allow Wolbachia isolates to be typed without the need to clone and sequence individual Wolbachia genes. This system should facilitate future studies investigating the distribution and biology of Wolbachia strains from large samples of different host species.  相似文献   

14.
Wolbachia is a genus of bacterial endosymbionts that impacts the breeding systems of their hosts. Wolbachia can confuse the patterns of mitochondrial variation, including DNA barcodes, because it influences the pathways through which mitochondria are inherited. We examined the extent to which these endosymbionts are detected in routine DNA barcoding, assessed their impact upon the insect sequence divergence and identification accuracy, and considered the variation present in Wolbachia COI. Using both standard PCR assays (Wolbachia surface coding protein--wsp), and bacterial COI fragments we found evidence of Wolbachia in insect total genomic extracts created for DNA barcoding library construction. When >2 million insect COI trace files were examined on the Barcode of Life Datasystem (BOLD) Wolbachia COI was present in 0.16% of the cases. It is possible to generate Wolbachia COI using standard insect primers; however, that amplicon was never confused with the COI of the host. Wolbachia alleles recovered were predominantly Supergroup A and were broadly distributed geographically and phylogenetically. We conclude that the presence of the Wolbachia DNA in total genomic extracts made from insects is unlikely to compromise the accuracy of the DNA barcode library; in fact, the ability to query this DNA library (the database and the extracts) for endosymbionts is one of the ancillary benefits of such a large scale endeavor--which we provide several examples. It is our conclusion that regular assays for Wolbachia presence and type can, and should, be adopted by large scale insect barcoding initiatives. While COI is one of the five multi-locus sequence typing (MLST) genes used for categorizing Wolbachia, there is limited overlap with the eukaryotic DNA barcode region.  相似文献   

15.
The European cherry fruit fly Rhagoletis cerasi has been a field model for cytoplasmic incompatibility since the mid 1970s. Two Wolbachia strains were detected in this tephritid species and w Cer2 was described as the CI inducing agent dividing European populations into two unidirectional incompatible groups, i.e. southern females produce viable offspring with northern males, whereas the reciprocal cross results in incompatibility. We detected three new Wolbachia strains by sequencing a multitude of plasmids derived from Wolbachia surface protein gene ( wsp ) polymerase chain reaction (PCR) products. Strain-specific primers were developed allowing individual diagnosis without need for cloning. Hybridization of specific PCR products with a wsp oligonucleotide enhanced the detection limit significantly and revealed the presence of low-titre infections in some strains, in different ontogenetic stages and in adults of different age. We then performed a survey of strain prevalence and infection frequency in eight European regions. w Cer1 was fixed in all populations, whereas w Cer2 was detected only in the South. w Cer3 frequency was the lowest without a clear distribution pattern. The abundance of w Cer4 was homogenous across Europe. Like w Cer2, w Cer5 showed significant differences in spatial distribution. Our new findings of previously undetected and recombinant Wolbachia strains in R. cerasi reveal a major caveat to the research community not to overlook hidden Wolbachia diversity in field populations. Low-titres and geographical variability in Wolbachia diversity are expected to influence the outcome of Wolbachia population dynamics and Wolbachia- based insect population control and may create invasion barriers for expanding and artificially introduced Wolbachia strains.  相似文献   

16.
铃木氏果蝇不同地理种群中Wolbachia的检测和系统发育分析   总被引:1,自引:0,他引:1  
于毅  王静  陶云荔  国栋  褚栋 《昆虫学报》2013,56(3):323-328
铃木氏果蝇Drosophila suzukii是原产于东南亚地区的重要果树害虫, 近年来传入北美和欧洲等地区造成严重的危害。本研究利用Wolbachia的16S rDNA和wsp基因特异引物(分别为16S-F/16S-R和81F/691R)对铃木氏果蝇7个地理种群(中国的5个种群、 韩国的1个种群和美国的1个种群)的Wolbachia进行了PCR检测并对检测结果进行了比较; 对感染个体体内Wolbachia的16S rDNA基因片段进行测序, 确定了我国铃木氏果蝇体内Wolbachia的分类地位。基于Wolbachia的16S rDNA基因特异引物检测结果发现, 我国5个铃木氏果蝇种群广泛感染Wolbachia(感染率36.7%~80.0%), 而韩国和美国2个种群均未检测到该菌的感染。而利用wsp基因特异引物无法检测到该菌。基于Wolbachia的16S rDNA基因构建系统发育树表明, 我国铃木氏果蝇种群感染的Wolbachia全部属于A组。这些结果为研究Wolbachia感染对铃木氏果蝇生物学及生态学的影响奠定了基础。  相似文献   

17.
【目的】为了揭示山东省韭菜迟眼蕈蚊Bradysia odoriphaga Yang et Zhang种群共生菌 Wolbachia 的感染率及其分类地位,探讨该共生菌对韭菜迟眼蕈蚊的潜在影响。【方法】利用线粒体细胞色素氧化酶I(mtCOI)基因引物(LCO1490/HCO2198),通过扩增测序和序列比对对采自山东省12个地区的根蛆种群进行了分类鉴定。在上述基础上,利用 Wolbachia 的16S rDNA和 wsp 基因特异引物(分别为16S-F/16S-R和81F/691R)对鉴别出的11个韭菜迟眼蕈蚊种群体内Wolbachia 感染情况进行了PCR检测;对感染个体体内 Wolbachia 依据16S rDNA基因片段序列进行分类鉴定。【结果】山东省12个根蛆种群中,11个种群为韭菜迟眼蕈蚊种群。基于 Wolbachia 的16S rDNA基因特异引物检测结果发现,这些韭菜迟眼蕈蚊种群广泛感染 Wolbachia (感染率为6.67%~93.33%),而利用wsp 基因特异引物检测的感染率(0.00%~40.00%)相对较低些。基于 Wolbachia 的16S rDNA基因构建系统发育树表明,这些韭菜迟眼蕈蚊种群感染的Wolbachia 全部属于A组。【结论】确定了 Wolbachia 在山东省韭菜迟眼蕈蚊体内的感染率及其分类地位,为研究 Wolbachia 对韭菜迟眼蕈蚊生物学及生态学的影响奠定了基础。  相似文献   

18.
朱砂叶螨体内感染的Wolbachia的wsp基因序列测定与分析   总被引:5,自引:2,他引:3  
苗慧  洪晓月  谢霖  薛晓峰 《昆虫学报》2004,47(6):738-743
应用Wolbachiawsp基因特异引物,通过PCR扩增法对我国朱砂叶螨Tetranychus cinnabarinus7个地理种群进行了检测。在采自黑龙江佳木斯、安徽安庆、江苏镇江和浙江慈溪的4个地理种群中扩增出了596bp左右的Wolbachiawsp基因片段,而在河北威县、山东滨州和湖北赤壁3个地理种群中未发现这个Wolbachia特征基因片段,表明 Wolbachia在我国朱砂叶螨中的侵染较为普遍。通过对我国朱砂叶螨体内感染的 Wolbachiawsp基因序列进行系统发育分析,得出它们全部与B大组的Ori组的Wolbachia株十分相近或完全相同,提示它们可能是相近或相同的株。  相似文献   

19.
Intracellular bacteria have been observed in various species of filarial nematodes (family Onchocercidae). The intracellular bacterium of the canine filaria Dirofilaria immitis has been shown to be closely related to Wolbachia, a rickettsia-like micro-organism that is widespread among arthropods. However, the relationships between endosymbionts of different filariae, and between these and the arthropod wolbachiae, appear not to have been studied. To address these issues we have examined ten species of filarial nematodes for the presence of Wolbachia. For nine species, all samples examined were PCR positive using primers specific for the ftsZ gene of Wolbachia. For one species, the examined samples were PCR negative. Sequences of the amplified ftsZ gene fragments of filarial wolbachiae fall into two clusters (C and D), which are distinct from the A and B clusters recognized for arthropod wolbachiae. These four lineages (A-D) are related in a star-like phylogeny, with higher nucleotide divergence observed between C and D wolbachiae than that observed between A and B wolbachiae. In addition, within each of the two lineages of filarial wolbachiae, the phylogeny of the symbionts is consistent with the host phylogeny. Thus, there is no evidence for recent Wolbachia transmission between arthropods and nematodes. Endosymbiont 16S ribosomal DNA sequences from a subset of filarial species support these findings.  相似文献   

20.
Wolbachia spp. are obligate maternally inherited endosymbiotic bacteria that infect diverse arthropods and filarial nematodes. Previous microscopic and molecular studies have identified Wolbachia in several bed bug species (Cimicidae), but little is known about how widespread Wolbachia infections are among the Cimicidae. Because cimicids of non-medical importance are not commonly collected, we hypothesized that preserved museum specimens could be assayed for Wolbachia infections. For the screening of museum specimens, we designed a set of primers that specifically amplify small diagnostic fragments (130 to 240 bp) of the Wolbachia 16S rRNA gene. Using these and other previously published primers, we screened 39 cimicid species (spanning 16 genera and all 6 recognized subfamilies) and 2 species of the sister family Polyctenidae for Wolbachia infections using museum and wild-caught material. Amplified fragments were sequenced to confirm that our primers were amplifying Wolbachia DNA. We identified 10 infections, 8 of which were previously undescribed. Infections in the F supergroup were common in the subfamily Cimicinae, while infections in the A supergroup were identified in the subfamilies Afrocimicinae and Haematosiphoninae. Even though specimens were degraded, we detected infections in over 23% of cimicid species. Our results indicate that Wolbachia infections may be common among cimicids and that archived museum material is a useful untapped resource for invertebrate endosymbiont surveys. The new screening primers listed in this report will be useful for other researchers conducting Wolbachia surveys with specimens with less-than-optimum DNA quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号