首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Volatile compounds of unifloral Salvia officinalis L. honey has been investigated for the first time. The botanical origin of ten unifloral Salvia honey samples has been ascertained by pollen analysis (the honey samples displayed 23-60% of Salvia pollen). Fifty-four volatile compounds were identified by GC and GC/MS in ten Salvia honey extracts obtained by ultrasound-assisted extraction (USE) with pentane/Et(2)O 1 : 2. The yield of isolated volatiles varied from 25.7 to 30.5 mg kg(-1). Salvia honey could be distinguished on the basis of the high percentage of benzoic acid (6.4-14.8%), and especially phenylacetic acid (5.7-18.4%). Minor, but floral-origin important volatiles were identified such as shikimate pathway derivatives, 'degraded-carotenoid-like' structures (3,5,5-trimethylcyclohex-2-ene derivatives) and 2,6,6-trimethylcyclohex-2-ene derivatives. Compounds from other metabolic pathways such as aliphatic acids and higher linear hydrocarbons, as well as heterocycles (pyrans, furans, and pyrroles), were also present. Most of the identified compounds do not constitute specific Salvia honey markers, due to their presence in honeys of other botanical origins; however, their ratio in different honeys could be useful to distinguish floral origin. Salvia-honey volatile markers were: benzoic acid, phenylacetic acid, p-anisaldehyde, alpha-isophorone, 4-ketoisophorone, dehydrovomifoliol, 2,6,6-trimethyl-4-oxocyclohex-2-ene-1-carbaldehyde, 2,2,6-trimethylcyclohexane-1,4-dione, and coumaran.  相似文献   

2.
The volatile profiles of rare Malus domestica Borkh . honey were investigated for the first time. Two representative samples from Poland (sample I) and Spain (sample II) were selected by pollen analysis (44–45% of Malus spp. pollen) and investigated by GC/FID/MS after headspace solid‐phase microextraction (HS‐SPME) and ultrasonic solvent extraction (USE). The apple honey is characterized by high percentage of shikimic acid‐pathway derivatives, as well as terpenes, norisoprenoids, and some other compounds such as coumaran and methyl 1H‐indole‐3‐acetate. The main compounds of the honey headspace were (sample I; sample II): benzaldehyde (9.4%; 32.1%), benzyl alcohol (0.3%; 14.4%), hotrienol (26.0%, 6.2%), and lilac aldehyde isomers (26.3%; 1.7%), but only Spanish sample contained car‐2‐en‐4‐one (10.2%). CH2Cl2 and pentane/Et2O 1 : 2 (v/v) were used for USE. The most relevant compounds identified in the extracts were: benzaldehyde (0.9–3.9%), benzoic acid (2.0–11.2%), terpendiol I (0.3–7.4%), coumaran (0.0–2.8%), 2‐phenylacetic acid (2.0–26.4%), methyl syringate (3.9–13.1%), vomifoliol (5.0–31.8%), and methyl 1H‐indole‐3‐acetate (1.9–10.2%). Apple honey contained also benzyl alcohol, 2‐phenylethanol, (E)‐cinnamaldehyde, (E)‐cinnamyl alcohol, eugenol, vanillin, and linalool that have been found previously in apple flowers, thus disclosing similarity of both volatile profiles.  相似文献   

3.
The present study is focused on the antioxidant capacity and chemical profiling of eight Croatian Satureja montana L. honey samples. Among the 20 compounds obtained by headspace solid‐phase microextraction (HS‐SPME) and identified by GC‐FID and GC/MS analyses, hotrienol was predominant (75.9–81.7%). The honey matrix volatile/semivolatile profile was investigated by ultrasonic solvent extraction (USE) followed by GC‐FID and GC/MS analyses. The major compounds identified by this latter method were the sinapic‐acid derivatives methyl syringate (36.2–72.8%) and syringaldehyde (2.2–43.1%). Direct, targeted HPLC‐DAD analyses of the native honey samples revealed the presence of methyl syringate (7.10–39.60 mg/kg) and syringic acid (0.10–1.70 mg/kg). In addition, the total phenolic content of the samples was determined by the Folin? Ciocalteu assay (311.0–465.9 mg GAE/kg), and the antioxidant capacity was evaluated by the DPPH radical‐scavenging activity (0.5–1.0 mmol TEAC/kg) and the ferric reducing antioxidant power (2.5–5.1 mmol Fe2+/kg).  相似文献   

4.
Thistle (Galactites tomentosa Moench.) honey organic extracts were obtained by headspace solid‐phase microextraction (HS‐SPME) and ultrasonic solvent extraction (USE) and analyzed by gas chromatography (GC‐FID and GC‐MS) for the first time. Most abundant headspace compounds were terpenes, particularly linalool derivatives (hotrienol was predominant with a range of 38.6–57.5%). 3‐Phenyllactic acid dominated in the solvent extracts (77.4–86.4%) followed by minor percentages of other shikimate pathway derivatives. After determination of an adequate enantioseparation protocol on Chirallica PST‐4 column, the honey solvent extracts were analyzed by high‐performance liquid chromatography (HPLC). The chiral analysis revealed high enantiomeric excess (>95%) of (–)‐3‐phenyllactic acid in all samples. Therefore, previous findings of chemical markers of thistle honey were extended, providing new potential for advanced chemical fingerprinting (optical pure chemical marker). Chirality 26:405–410, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

5.
The compounds responsible for highly individual aroma profile of Coriandrum sativum L. honey were isolated by headspace solid‐phase microextraction (HS‐SPME; used fibers: A: polydimethylsiloxane (PDMS)/divinylbenzene (DVB) and B: divinylbenzene/carboxen/polydimethylsiloxane), as well as ultrasonic solvent extraction (USE; used solvents: A: pentane/Et2O 1 : 2 (v/v) and B: CH2Cl2) and analyzed by gas chromatography (GC) and mass spectrometry (MS). Unusual chromatographic profiles were obtained containing derivatives of linalool/oxygenated methoxybenzene. trans‐Linalool oxide (11.1%; 14.6%) dominated in the headspace, followed by other linalool derivatives (such as cis/trans‐anhydrolinalool oxide (5.0%; 5.9%), isomers of lilac aldehyde/alcohol (14.9%; 13.8%) or p‐menth‐1‐en‐9‐al (15.6%; 18.5%)), octanal, and several low‐molecular‐weight esters. The major compounds in the solvent extracts were oxygenated methoxybenzene derivatives such as 3,4,5‐trimethoxybenzyl alcohol (26.3%; 24.7%), methyl syringate (23.8%; 11.7%), and 3,4‐dimethoxybenzyl alcohol (5.6%; 13.9%). Another group of abundant compounds in the extracts were derivatives of linalool (e.g., (E)/(Z)‐2,6‐dimethylocta‐2,7‐diene‐1,6‐diol (17.8%; 16.1%)). Among the compounds identified, cis/trans‐anhydrolinalool oxides and 3,4,5‐trimethoxybenzyl alcohol can be useful as chemical markers of coriander honey.  相似文献   

6.
Salix spp. nectar honey volatiles of Croatian origin were analyzed by headspace solid‐phase microextraction (HS‐SPME) and ultrasonic solvent extraction (USE), followed by gas chromatography and mass spectrometry (GC, GC/MS). Isolated volatiles were found in the honey headspace and extracts with almost exclusive distribution of several abundant compounds (e.g., phenylacetic acid, pinocembrin, 8‐hydroxy‐4,7‐dimethylcoumarin, and 3‐hydroxy‐transβ‐damascone in the extracts, or safranal and lilac alcohols in the headspace). Comparison with Croatian Salix spp. honeydew honey revealed similarities regarding distribution of important shikimate pathway derivatives (e.g., high percentage of phenylacetic acid) and several norisoprenoids (α‐isophorone and 4‐oxoisophorone). On the other hand, distinct features of this honey were occurrence of compounds such as pinocembrin, 8‐hydroxy‐4,7‐dimethylcoumarin, phenylacetonitrile, norisoprenoids (major ones: 3‐hydroxy‐transβ‐damascenone and transβ‐damascone), more pronounced variability of linalool‐derived compounds, as well as the abundance of 3‐methylpropanoic acid, 3‐methylbutanoic acid, 2‐methylpentanoic acid, and 3‐methylpentan‐1‐ol.  相似文献   

7.
Rare Moltkia petraea (Tratt .) Griseb . honey from Croatia was first time characterised. The spectrophotometric assays on CIE L*a*b*Cab*hab° colour coordinates, total phenol content and antioxidant capacity (FRAP , CUPRAC , DPPH ? and ABTS ?+ assays) determined higher honey values generally close to dark honeys ranges. Headspace solid‐phase microextraction (HS ‐SPME ) on two fibres after GC ‐FID and GC /MS revealed the major compounds 2‐phenylacetaldehyde (12.8%; 15.6%), benzaldehyde (11.1%; 10.0%), octane (9.3%; 7.6%), nonane, propan‐2‐one, pentan‐2‐one, pentanal and nonanal (4.9%; 14.5%). Ultrasonic solvent extraction (USE ) mainly isolated non‐specific higher molecular compounds characteristic of the comb environment. Targeted HLPC ‐DAD analysis of the honey determined higher concentration of phenylalanine (212.08 mg/kg) and lumichrome (16.25 mg/kg) along with tyrosine and kojic acid. The headspace composition (chemical fingerprint) and high concentration of lumichrome can be considered particular for M . petraea honey.  相似文献   

8.
Absolutes isolated from Viola odorata leaves, valuable materials for the flavor and fragrance industry, were studied. Violets are mainly cultivated in France and Egypt and extracted locally. The absolutes of the two origins showed different olfactory profiles both in top and heart notes, as evidenced by sensory analysis. The aims of this study were i) to characterize the volatile compounds, ii) to determine the odorant‐active ones, and iii) to identify some markers of the plant origin. Two complementary analytical methods were used for these purposes, i.e., headspace solid‐phase microextraction (HS‐SPME) using different fiber coatings followed by GC/MS analysis and gas chromatography – olfactometry/mass spectrometry (GC‐O/MS) applied to violet leaf extracts. From a total of 70 identified compounds, 61 have never been reported so far for this species, 17 compounds were characterized by both techniques (with seven among them known from the literature), 23 compounds were solely identified by HS‐SPME GC/MS (among them only two being already mentioned as components of violet absolutes in the literature), and, finally, 30 compounds were only identified by GC‐O/MS. According to the HS‐SPME GC/MS analyses, ethyl hexanoate and (2E,6Z)‐nona‐2,6‐dienol were specific volatile compounds of the sample with French origin, while (E,E)‐hepta‐2,4‐dienal, hexanoic acid, limonene, tridecane, and eugenol were specific of the samples with Egyptian origin. Additional compounds that were not detected by HS‐SPME GC/MS analysis were revealed by GC‐O analyses, some of them being markers of origin. Pent‐1‐en‐3‐ol, 3‐methylbut‐2‐enal, 2‐methoxy‐3‐(1‐methylethyl)pyrazine, 4‐ethylbenzaldehyde, β‐phenethyl formate, and 2‐methoxy‐3‐(2‐methylpropyl)pyrazine revealed to be odorant markers of the French sample, whereas cis‐rose oxide, trans‐rose oxide, and 3,5,5‐trimethylcyclohex‐2‐enone were odorant markers of the Egyptian samples.  相似文献   

9.
Three populations of the epiphyllous liverwort Drepanolejeunea madagascariensis collected in the cloud forests of Reunion Island (Mascarene Archipelago) were investigated for their volatile compounds, because of the pleasant, sweet, warm, woody‐spicy, and herbaceous fragrance, slightly reminiscent of dill, of this species. By applying the headspace solid‐phase microextraction (HS‐SPME) technique coupled to GC/MS analysis, 34 compounds were detected in total, with p‐menth‐1‐en‐9‐ol (28.8–43.5%), limonene (10.5–14.7%), β‐phellandrene (8.8–11.6%), and the so‐called dill ether (8.5–16.6%) as the main components. The presence of 1‐epi‐α‐pinguisene confirms the possible use of pinguisane‐type sesquiterpenoids as a characteristic chemical marker for the order Jungermanniales.  相似文献   

10.
藏药镰形棘豆挥发性成分研究(英文)   总被引:1,自引:0,他引:1  
本文通过水蒸气蒸馏、超临界CO2萃取和顶空萃取三种方法并结合GC和GC/MS技术分析藏药镰形棘豆(Oxytropis falcate Bunge)中的挥发性成分,共鉴定出58个化合物,分别占71.0%,85.6%和84.5%。烷烃类、黄酮类和醛类化合物为主要挥发性成分。3种方法得到的挥发性成分在保留时间值上具有一定的连续性,能更完全地阐述清楚藏药镰形棘豆的挥发性成分,为进一步开发利用这种药用植物提供科学依据。  相似文献   

11.
BackgroundThe antioxidant potential and antiproliferative activity of the extracts of Nigella sativa seeds (Black Cummins) and honey formulations are to be explored.MethodThe gas chromatography-mass spectrum (GC–MS) and Thin Layer Chromatography (TLC) fingerprint of Black Cummins and Honey formulation revealed alkaloid, saponin, volatile oil, flavonoid, glycosides, sugar, and phenolic compound in the extract. GC–MS profiling of the cold extract of Nigella sativa seeds and honey formulation shows peaks for eleven fractions of compounds. Using TLC, the phenolic compounds of Nigella sativa seeds and honey formulations were separated.ResultsThe current study discovers the cytotoxic effect of black Cummins seeds and honey formulation on human ovarian cancer (PA-1) cell line as assessed by MTT assay. PA-1 cells were inhibited with the increasing concentration of Nigella sativa seeds extract and honey formulation.ConclusionThe study validates the importance of the tested extracts in the treatment of cancer.  相似文献   

12.
GC/MS of headspace solid phase micro extraction (HS‐SPME) and solvent extractives along with targeted HPLC‐DAD of Polish fir (Abies alba Mill .) honeydew honey (FHH), were used to determine the chemical profiles and potential markers of botanical origin. Additionally, typical physical‐chemical parameters were also assigned. The values determined for FHH were: conductivity (1.2 mS/cm), water content (16.7 g/100 g), pH (4.5), and CIE chromaticity coordinates (L* = 48.4, a* = 20.6, b* = 69.7, C* = 72.9, and h° = 73.5). FHH contained moderate‐high total phenolic content (533.2 mg GAE/kg) and antioxidant activity (1.1 mmol TEAC/kg) and (3.2 mmol Fe2+/kg) in DPPH and FRAP assays. The chemical profiles were dominated by source plant‐originated benzene derivatives: 3,4‐dihydroxybenzoic acid (up to 8.7 mg/kg, HPLC/honey solution), methyl syringate (up to 14.5%, GC/solvent extracts) or benzaldehyde (up to 43.7%, GC/headspace). Other markers were terpenes including norisoprenoid (4‐hydroxy‐3,5,6‐trimethyl‐4‐(3‐oxobut‐1‐enyl)cyclohex‐2‐en‐1‐one, up to 20.3%, GC/solvent extracts) and monoterpenes, mainly linalool derivatives (up to 49%, GC/headspace) as well as borneol (up to 5.9%, GC/headspace). The application of various techniques allowed comprehensive characterisation of FHH. 4‐Hydroxy‐3,5,6‐trimethyl‐4‐(3‐oxobut‐1‐enyl)cyclohex‐2‐en‐1‐one, coniferyl alcohol, borneol, and benzaldehyde were first time proposed for FHH screening. Protocatechuic acid may be a potential marker of FFH regardless of the geographical origin.  相似文献   

13.
Samples of fresh pollen grains, collected from capitula in full bloom from two genotypes of sunflower (Helianthus annuus L.) and characterized by a different color, i.e., white‐cream (WC) and orange (O), were analyzed by the HS‐SPME (headspace solid phase microextraction)/GC/MS technique. This study defined for the first time the fingerprint of the sunflower pollen, separated from the disc flowers, to define its contribution to the inflorescence aroma. In the GC/MS fingerprints of the WC and O genotypes, 61 and 62 volatile compounds were identified, respectively. Monoterpene hydrocarbons (34% in O vs. 28% in WC) and sesquiterpene hydrocarbons (37% in O vs. 31% in WC) were ubiquitous in all samples analyzed and represented the main chemical classes. α‐Pinene (21% in O vs. 20% in WC) and sabinene (11% in O vs. 6% in WC) were the dominant volatiles, but also a full range of aliphatic hydrocarbons and their oxygenated derivatives gave a decisive contribution to the aroma composition (10% in O vs. 12% in WC). In addition, dendrolasin (3% in O vs. 4% in WC) and some minor constituents such as (E)‐hex‐2‐en‐1‐ol (0.4% in O vs. 0.1% in WC) were pointed out not only for their contribution to the pollen scent, but also for their well‐known role in the plant ecological relationships. Having evaluated two pollen morphs with different carotenoid‐based colors, the study sought to highlight also the presence of some volatile precursors or derivatives of these pigments in the aroma. However, the pollen aroma of the two selected genotypes made a specific chemical contribution to the sunflower inflorescence scent without any influence on carotenoid derivatives.  相似文献   

14.
Honeybee pollination behavior is influenced by flower volatiles, which honeybees sense via olfactory receptors. Honeybees are only weakly attracted to pear flowers. To investigate the potential reasons, we extracted and determined the floral volatile compounds from three pear cultivars (Su, Ya, and Xuehua) using headspace solid-phase micro-extraction (HS-SPME) and gas chromatography-mass spectrometry (GC–MS). The effects of pear flower volatiles on the Asian honeybee (Apis cerana cerana Fabricius) and the European honeybee (Apis mellifera ligustica Spinola) were determined by electroantennogram (EAG) assays and behavioral tests in a three-arm olfactometer. Among the 76 flower volatiles detected with GC–MS, 21 were found in all three pear cultivars, accounting for approximately 70% of the total volatile content. 3-Methyl-1-butanol and (+)-limonene volatiles had the highest relative content. Five compounds elicited strong EAG responses in both bee species: 2-methylbutyraldehyde, 1-nonanal, 6-methyl-5-hepten-2-one, 3-methyl-1-butanol, and (+)-limonene. Neither bee species showed positive taxis to these volatiles. In behavioral tests, A. mellifera ligustica showed a low preference for 6-methyl-5-hepten-2-one (20%, 400 µg/µL) and 2-phenethyl alcohol (16.7%, 400 µg/µL). Apis cerana cerana showed a low preference for 6-methyl-5-hepten-2-one (6.7%, 400 µg/µL) and 1-nonanal (10%, 400 µg/µL), whereas its preferences for 3-methyl-1-butanol (43.3%, 400 µg/µL) and α-farnesene (40%, 400 µg/µL) were similar to that for the control. Therefore, a lack of attractive volatile compounds could explain why honeybees are only weakly attracted to pear flowers. Therefore, to achieve acceptable pollination in pear orchards, we suggest using flower-scent sugar syrup feeding and a saturation pollination strategy.  相似文献   

15.
为探究不同蜜源蜂蜜中的挥发性标记物并籍以对这些蜂蜜进行有效区分,本研究优化了静态顶空气相色谱-质谱联用技术(SHS-GC-MS)检测蜂蜜中挥发性化合物的方法,采用此方法分析了油菜蜜、椴树蜜、荆条蜜和洋槐蜜等4种蜂蜜总计38份样品的挥发性成分,并结合主成分分析(PCA)和聚类分析(CA)等对蜂蜜进行区分。研究结果表明,采用SHS-GC-MS共检测到23种化合物。4种蜂蜜的挥发性成分在物质种类或含量上存在明显差异,其中3-苯丙酸乙酯可作为油菜蜜的典型挥发性代谢物质;1-异丙烯基-3-甲基苯和反式玫瑰醚可作为椴树蜜的典型挥发性代谢物质;在荆条蜜和洋槐蜜中均未发现典型挥发性代谢物质。PCA可以将4种蜂蜜进行很好地区分,PC1、PC2和PC3累计贡献率达到77.3%,表明模型有效;当临界值取10时,CA可以将同种蜂蜜聚为一类。SHS-GC-MS检测的蜂蜜挥发性成分结果结合多变量分析,可用于区分不同蜜源蜂蜜。研究结果为蜂蜜溯源和鉴别提供了理论依据。  相似文献   

16.
Real-time profiling of mango ripening based on proton transfer reaction-time of flight-mass spectrometry (PTR–ToF–MS) of small molecular weight volatile organic compounds (VOCs), is demonstrated using headspace measurements of ‘Tommy Atkins’ mangoes. VOC metabolites produced during the ripening process were sampled directly, which enabled simultaneous and rapid detection of a wide range of compounds. Headspace measurements of ‘Keitt’ mangoes were also conducted for comparison. A principle component analysis of the results indicated that several mass channels were not only key to the ripening process but could also be used to distinguish between mango cultivars. The identities of 22 of these channels, tentatively speciated using contemporaneous GC–MS measurements of sorbent tubes, are rationalized through examination of the biochemical pathways that produce volatile flavour components. Results are discussed with relevance to the potential of headspace analysers and electronic noses in future fruit ripening and quality studies.  相似文献   

17.
The volatile fraction of the whole plant and separated organs of Adenostyles briquetii Gamisans (syn. Cacalia briquetii; family Asteraceae), an endemic species from Corsica, has been studied by headspace solid-phase microextraction (HS-SPME), GC and GC-MS(EI and CI). A total of 141 components were identified, representing 93% of the entire amount. The volatile fraction was characterised by sesquiterpene hydrocarbons (52.8%) and oxygenated sesquiterpenes (25.9%). The major components were germacrene D (18.5%), zingiberene (12.9%) and beta-oplopenone (10.8%). The influence of HS-SPME parameters on the extraction of family components is reported for the first time.  相似文献   

18.
《Journal of Asia》2020,23(2):504-508
The small hive beetle (Aethina tumida Murray) is an invasive pest affecting honey bee colonies. The beetles are known to be attracted to volatiles from hive products and honey bees like Apis mellifera L. Previously we reported the presence of five major compounds from the volatile extracts of hive materials; ethyl linolenate and ethyl palmitate from pollen dough, oleamide and tetracosane in fermenting honey, and oleamide and 5-methyl-2-phenyl-1H-indole from A. mellifera worker bees. This study tested the attractiveness of the aforementioned five volatile organic compounds to small hive beetles (SHB) by Y-tube olfactometric bioassay. Ethyl linolenate was highly attractive to both male and female adults of SHB. Ethyl palmitate was attractive to SHB only at higher concentration (0.01–01 mg/ml). Interestingly, tetracosane, 5-methyl-2-phenyl-1H-indole and oleamide were repellent for SHB of both sexes, but ethyl linolenate and ethyl palmitate as components of honey bee brood pheromone attracted SHB. The results highlight that SHB differentially utilizes volatile chemicals from hive materials and honey bees as cues to locate honey bee hives.  相似文献   

19.
Headspace solid-phase microextraction (HS-SPME) coupled with GC/FID and GC/MS was applied for the first time in the analysis of the volatile fraction of an Ephedra species. Notably, six Italian populations (Marche, Abruzzo, and Sardinia) of Ephedra nebrodensis subsp. nebrodensis, covering almost the entire Italian area, were investigated to examine the chemical variability and to support the taxonomy of the species. A fiber screening with polymethylsiloxane (PDMS), Carboxen(TM) /polymethylsiloxane (CAR/PDMS), and polymethylsiloxane/divinylbenzene (PDMS/DVB) coatings, together with an optimization of the extraction conditions were carried out before analysis of the six populations. A total of 119 volatiles were identified in the headspace of different samples, accounting for 63.35-100.00% of the total volatiles. A great variability was found in the qualitative composition of different samples, since only 18 components were in common among all populations. The headspace composition was dominated by sesquiterpene hydrocarbons (52.30-88.32%), with β-maaliene (traces-7.49%), β-patchoulene (traces-1.29%), β-panasinsene (traces-6.85%), α-isocomene (traces-31.25%), α-trans-bergamotene (traces-6.95%), alloaromadendrene (traces-33.20%), α-acoradiene (traces-9.41%), and γ-muurolene (0.61-16.33%) being the most abundant constituents. Noteworthy is the occurrence in a sample of two major unknown sesquiterpenes, one hydrocarbon (24.49%, RI: 1396) and one oxygenated compound (10.37%, RI: 1591), whose mass spectra were reported for the first time. Multivariate chemometric techniques, such as cluster analysis (CA) and principal component analysis (PCA), were used to characterize the samples according to the geographical origin.  相似文献   

20.
The chemical profile and allelopathic action of the volatiles produced by Artemisia selengensis were studied. Artemisia selengensis was found to release volatile chemicals to the environment to influence other plants’ growth, which suppressed the root length of Amaranthus retroflexus and Poa annua by 50.46 % and 87.83 % under 80 g/1.5 L treatment, respectively. GC/MS analysis led to the identification of 41 compounds (by hydrodistillation, HD) and 48 compounds (by headspace solid-phase microextraction, HS-SPME), with eucalyptol (15.45 % by HD and 28.09 % by HS-SPME) being detected as the most abundant constituent. The essential oil (EO) of A. selengensis completely inhibited the seed germination of A. retroflexus and P. annua at 1 mg/mL and 0.5 mg/mL, respectively. However, eucalyptol displayed much weaker activity compared with the EO, indicating that other less abundant constituents might contribute significantly to the EO's activity. Our study is the first report on the phytotoxicity of A. selengensis EO, suggesting that A. selengensis might release allelopathic volatile agents into the environment that negatively affect other plants’ development so as to facilitate its own dominance; the potential value of utilizing A. selengensis EO as an environmentally friendly herbicide is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号