首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Immunoreactive somatostatin is released from islets of Langerhans, isolated from rat pancreas by collagenase digestion, when incubated in an in vitro system. The rate of somatostatin secretion is independent of extracellular glucose concentration, but is stimulated by addition of 8-Br-cyclic AMP or theophylline.  相似文献   

2.
Dehydrouramil hydrate hydrochloride (DHU), a stable analogue of alloxan, inhibited the phosphorylation of an endogenous protein of Mr 53,000 catalysed by a Ca2+-calmodulin-dependent protein kinase in extracts of islets of Langerhans. The concentration of DHU required for 50% inhibition was 0.09 mM. DHU did not inhibit islet cyclic AMP-dependent protein kinase and caused only slight inhibition of Ca2+-phospholipid-dependent protein kinase. Inhibition of Ca2+-calmodulin-dependent protein kinase was neither prevented nor reversed by dithiothreitol. DHU did not affect the ability of calmodulin to activate cyclic AMP phosphodiesterase. In intact islets, pre-exposure to DHU impaired the insulin-secretory response to glucose and blocked the potentiatory effect on insulin secretion of forskolin, an activator of adenylate cyclase, and of tetradecanoylphorbol acetate (TPA), an activator of Ca2+-phospholipid-dependent protein kinase. The increase in islet cyclic AMP elicited by forskolin was not affected by DHU. The data are consistent with the hypothesis that protein phosphorylation catalysed by a Ca2+-calmodulin-dependent protein kinase may play a central role in the regulation of insulin secretion.  相似文献   

3.
Protein kinase C (PKC)-dependent phosphorylation of endogenous substrates was measured in electrically permeabilised rat islets of Langerhans. The PKC-activating phorbol ester, 4 beta-phorbol myristate acetate (PMA), caused a slow but prolonged increase in insulin secretion from permeabilised islets, which was accompanied by increased 32P incorporation into several islet proteins of apparent M.W. 30-50 kDa. Depletion of islet PKC by prolonged exposure to PMA abolished subsequent secretory and phosphorylating responses to the phorbol ester. However, PKC-depleted islets did not show diminished responses to glucose, suggesting that PKC-mediated phosphorylation of these proteins is not essential for nutrient-induced insulin secretion.  相似文献   

4.
5.
6.
The possible involvement of chemiosmotic lysis of secretory granules in the exocytosis of insulin from pancreatic beta cells was investigated by comparing insulin release from isolated secretory granules, from intact islets of Langerhans, and from electrically permeabilised islets. Lysis of isolated granules was stimulated by ATP in the presence of Mg2+. ATP-induced granule lysis was pH and temperature dependent and was inhibited by collapsing the pH gradient across the granule membrane by removal of permeant anions, or by increasing the extragranular osmolarity. However, insulin secretion from intact islets in response to glucose, a phosphodiesterase inhibitor or a Ca2+ ionophore was only partially inhibited by anion replacement, while Ca2+ -induced insulin release from electrically permeabilised islets was not affected by altering the extragranular or intragranular pH. These results suggest that studies of the stability of isolated granules in vitro do not necessarily relate to insulin release from whole cells, and do not support a major role for chemiosmotic lysis of secretory granules in the exocytotic release of insulin.  相似文献   

7.
Polymyxin B (0.01-1 mM), a polyamine antibiotic, inhibited both phorbol ester- and glucose-stimulated insulin secretion from isolated rat islets of Langerhans. This inhibition was rapidly reversible. Assay of the cytosolic protein kinase C by measurement of incorporation of labelled phosphate into a histone substrate demonstrated the presence of activity in islet extracts which could be stimulated by 12-O-tetradecanoylphorbol-13-acetate and inhibited by polymyxin B. These results suggest that protein kinase C plays a role in glucose-induced insulin secretion.  相似文献   

8.
The role of the Ca2+/phospholipid-dependent protein kinase C (PKC) in cholinergic potentiation of insulin release was investigated by measuring islet PKC activity and insulin secretion in response to carbachol (CCh), a cholinergic agonist. CCh caused a dose-dependent increase in insulin secretion from cultured rat islets at stimulatory glucose concentrations (greater than or equal to 7 mM), with maximal effects observed at 100 microM. Short-term exposure (5 min) of islets to 500 microM-CCh at 2 mM- or 20 mM-glucose resulted in redistribution of islet PKC activity from a predominantly cytosolic location to a membrane-associated form. Prolonged exposure (greater than 20 h) of islets to 200 nM-phorbol myristate acetate caused a virtual depletion of PKC activity associated with the islet cytosolic fraction. Under these conditions of PKC down-regulation, the potentiation of glucose-stimulated insulin secretion by CCh (500 microM) was significantly decreased, but not abolished. CCh stimulated the hydrolysis of inositol phospholipids in both normal and PKC-depleted islets, as assessed by the generation of radiolabelled inositol phosphates. These results suggest that the potentiation of glucose-induced insulin secretion by cholinergic agonists is partly mediated by activation of PKC as a consequence of phospholipid hydrolysis.  相似文献   

9.
Conditions for studying protein phosphorylation in intact pancreatic islets were developed in order to study the effects of glucose and other effectors. Islets were incubated in Krebs-Ringer bicarbonate buffer containing 5 mM malate and 5 mM pyruvate (metabolic fuels that are not insulin secretagogues) for 150 min to permit incorporation of 32Pi into islet phosphate pools. Glucose or other effectors were then added, and the incubation was terminated after 10 to 30 min. Glucose increased phosphorylation of four islet peptides with molecular weights of 20,000, 33,000, 43,000 and 57,000. The calcium channel blockers, verapamil and D-600, inhibited phosphorylation of each of the four proteins, and trifluoperazine inhibited phosphorylation of the proteins with molecular weights of 20,000 and 57,000. The results indicate that glucose-induced insulin release may be mediated in part by protein phosphorylation, and that calcium may act as an intracellular messenger in coupling the glucose stimulus to the secretory process.  相似文献   

10.
The potentiation of glucose-stimulated insulin release induced by 100 nM-12-O-tetradecanoylphorbol 13-acetate (TPA) was inhibited by clomiphene, an inhibitor of protein kinase C (PK C), in a dose-dependent manner. Clomiphene at concentrations up to 50 microM had a modest inhibitory action (27%) on insulin release stimulated by 10 mM-glucose alone, but had no effect on the potentiation of insulin release induced by forskolin. Islet PK C activity, associated with a particulate fraction, was stimulated maximally by 100 nM-TPA. This stimulation was blocked by clomiphene in a dose-dependent manner, with 50% inhibition at 30 microM. Incubation of intact islets with TPA after preincubation with [32P]Pi and 10 mM-glucose to label intracellular ATP resulted primarily in enhanced phosphorylation of a 37 kDa protein (mean value, +/- S.E.M., 36,700 +/- 600 Da; n = 7). This increased phosphorylation was blocked by the simultaneous inclusion of clomiphene. Subcellular fractionation revealed the presence of the 37 kDa phosphoprotein in a 24,000 g particulate fraction of islet homogenates. Neither clomiphene nor TPA affected the rate of glucose oxidation by islets. These results show that the phosphorylation state of a 37 kDa membrane protein parallels the modulation of insulin release induced by TPA and clomiphene and support a role for PK C in the insulin-secretory mechanism.  相似文献   

11.
The effect of adenosine in insulin secretion and adenylate cyclase activity of rat islets of Langerhans was investigated. Adenosine inhibited insulin secretion stimulated by glucose, glucagon, prostaglandin E2, tolbutamine and theophylline. Adenosine decreased basal adenylate cyclase activity of the islets as well as that stimulated by glucagon prostaglandin E2 and GTP, although fluoride-stimulated activity was not affected. Neither insulin secretion nor adenylate cyclase activity of the islets was affected by adenine, AMP or ADP. The inhibitory effect of adenosine on adenylate cyclase activity was not altered by either phenoxybenzamine (alpha-adrenergic blocker) or propranolol (beta-adrenergic blocker), suggesting that the effect is not mediated through the adrenergic receptors of the islet cells. These results suggest that the intracellular concentration of adenosine in the beta-cell may play a role in regulating insulin secretion and that this effect may be mediated via alterations in the activity of adenylate cyclase in the beta-cell.  相似文献   

12.
The effects of L-asparaginase were evaluated on glucose-induced insulin release from isolated rat islets of Langerhans. Islets were obtained by enzymatic digestion of pancreas from Sprague-Dawley rats. The study of L-asparaginase effects on insulin secretion was performed in a static incubation of islets. Insulin secretion was measured at 60 min of incubation with different secretagogues with and without L-asparaginase. L-Asparaginase at concentrations from 310 to 5,000 U/ml could inhibit the glucose-induced insulin secretion in a dose-dependent manner. This effect was not recovered after incubation in the absence of the drug for another 2 h. The half-maximal inhibitory effect of the enzyme on insulin secretion was observed at L-asparaginase concentrations of 1,000 U/ml. Tolbutamide (200 microM) and ketoisocaproic acid (20 mM) did not induce insulin secretion in the presence of moderately high L-asparaginase concentrations. L-Asparaginase did not inhibit glucose-induced insulin secretion in the presence of isobutyl-methyl-xanthine (IBMX) (20 microM) or forskolin (20 microM). L-Asparaginase promoted a decrease in total c-AMP in isolated rat islets at concentrations from 500 to 1,500 U/ml when they were stimulated by glucose. If islets were treated with IBMX or forskolin, L-asparaginase did not inhibit the glucose-induced total c-AMP levels in islets.  相似文献   

13.
14.
To investigate substrates for cyclic AMP-dependent protein kinase in intact islets of Langerhans, batches of islets were incubated with [32P]Pi for 1 h in the presence of 10 mM-glucose; the adenylate cyclase activator forskolin, which in parallel experiments was shown to increase islet cyclic AMP content and insulin release, was then added. Islets were homogenized and subcellular fractions prepared by differential centrifugation. Phosphopeptides were electrophoresed on sodium dodecyl sulphate/polyacrylamide gels and quantified by autoradiography and densitometry. Within 5 min forskolin caused increased labelling of Mr-25 000 and -30 000 cytosolic and Mr-23 000 and -32 000 particulate peptides; a rapid decrease in phosphorylation of Mr-18 000 and -34 000 cytosolic peptides was also observed. In addition, rather slower phosphorylation occurred of the Mr-15 000 peptide previously identified as histone H3 [Christie & Ashcroft (1984) Biochem. J. 218, 87-99]. When similar subcellular fractions were incubated with [gamma-32P]ATP and purified catalytic subunit of cyclic AMP-dependent protein kinase, peptides phosphorylated included cytosolic species of Mr 25 000 and 30 000 and particulate species of Mr 23 000 and 32 000. The distribution of RNA in the subcellular fractions suggested that the Mr-32 000 species could be a ribosomal protein. The 24 000 g pellet was heterogeneous, as judged by marker assays, and was therefore fractionated further by Percoll-density-gradient centrifugation. The peak containing the Mr-23 000 peptide was resolved from marker enzymes for plasma membranes, mitochondria and endoplasmic reticulum and coincided with a peak for insulin: hence the Mr-23 000 peptide is likely to be a secretory-granule component. The study demonstrates that the potentiation of insulin release that occurs when islet cyclic AMP is increased is accompanied by rapid phosphorylation of specific islet substrates for cyclic AMP-dependent protein kinase. The data are consistent with the hypothesis that protein phosphorylation is involved in the regulation of insulin secretion.  相似文献   

15.
There is no consensus on the role of insulin secreted from pancreatic β-cells in regulating its own secretion, either in rodent islets or in human islets. We have now investigated whether there is an autocrine signalling role for insulin in human islets by determining insulin receptor expression and assessing the effects of insulin receptor activation using a non-peptidyl insulin mimetic termed L-783,281. Human insulin receptor mRNA was detected by PCR amplification of human islet cDNA, and translation of the message in human islets was confirmed by Western blotting. Perifusion experiments revealed that both glucose-stimulated and basal insulin secretion were significantly inhibited following human islet insulin receptor activation with L-783,281, and that signalling through phosphatidylinositol 3-kinase (PI 3-kinase) was responsible, at least in part, for this inhibitory effect. These studies indicate that human islets express insulin receptors and that they are functionally coupled to a PI 3-kinase-dependent inhibition of insulin secretion.  相似文献   

16.
Steroidogenesis is not stimulated by ACTH in the inner zone of the guinea pig adrenal cortex; adenylate cyclase is normally stimulated. To further explore the lack of a steroidogenic response to ACTH in the inner zone, cAMP-dependent protein kinase activity and protein phosphorylation were examined in the outer and inner adrenocortical zones. To summarize: total cAMP-dependent protein kinase activity was 40% higher in the outer zone than in the inner zone; of the total cAMP-dependent protein kinase activity, cytosol contained 80% for the outer and 70% for the inner zone. In both zones only the type II isozyme was present. Qualitative and quantitative differences in protein phosphorylation were noted for the two zones.  相似文献   

17.
18.
A Ca2+-activated and calmodulin-dependent protein kinase activity which phosphorylates predominantly two endogenous proteins of 57kDa and 54kDa was found in a microsomal fraction from islet cells. Half-maximal activation of the protein kinase occurs at approx. 1.9 microM-Ca2+ and 4 micrograms of calmodulin/ml (250 nM) for phosphorylation of both protein substrates. Similar phosphoprotein bands (57kDa and 54kDa) were identified in intact islets that had been labelled with [32P]Pi. Islets prelabelled with [32P]Pi and incubated with 28 mM-glucose secreted significantly more insulin and had greater incorporation of radioactivity into the 54 kDa protein than did islets incubated under basal conditions in the presence of 5 mM-glucose. Thus the potential importance of the phosphorylation of these proteins in the regulation of insulin secretion is indicated both by activation of the protein kinase activity by physiological concentrations of free Ca2+ and by correlation of the phosphorylation of the substrates with insulin secretion in intact islets. Experiments undertaken to identify the endogenous substrates indicated that this calmodulin-dependent protein kinase may phosphorylate the alpha- and beta-subunits of tubulin. These findings suggest that Ca2+-stimulated phosphorylation of islet-cell tubulin via a membrane-bound calmodulin-dependent protein kinase may represent a critical step in the initiation of insulin secretion from the islets of Langerhans.  相似文献   

19.
Filamin is a high molecular weight actin-binding protein found in large quantities in smooth muscle and other non-muscle cells. We have studied the phosphorylation of filamin in a mammalian smooth muscle, the guinea pig vas deferens. Intact vas deferens incorporated [32P]orthophosphate into filamin. Incubation of particulate fractions of vas deferens with [gamma-32P]ATP resulted in 32P-labeling of filamin. Cyclic AMP stimulated this phosphorylation, whereas cyclic GMP and Ca2+ had no effect. Purified vas deferens filamin can be phosphorylated by purified cyclic AMP-dependent protein kinase. We have compared cyclic AMP and cyclic GMP effects on phosphorylation in smooth muscle. Cyclic GMP stimulated phosphorylation of two particulate proteins, G-I (Mr = 130,000) a protein previously described by Casnellie, J. E., and Greengard, P. (1974) Proc. Natl. Acad, Sci. U.S.A. 71, 1891-1895 and G-III (Mr = 240,000). Both proteins and the kinase responsible for their phosphorylation appear to be membrane-bound. Phosphorylation of both proteins is stimulated by cyclic GMP (Ka = 3 x 10(-8) M), cyclic AMP (Ka = 3 x 10(-7) M), and to a lesser degree by Ca2+. In contrast, filamin phosphorylation is due to a soluble kinase stimulated only by cyclic AMP (Ka = 3 x 10(-7) M) and not by cyclic GMP or Ca2+.  相似文献   

20.
Melittin , an amphipathic polypeptide, stimulated the secretion of insulin from rat islets of Langerhans incubated in vitro . The secretory response was dose-dependent and saturable with half the maximal response elicited by a melittin concentration of 4 g/ml. The response was rapid in onset, an increase in secretion occurring within 2 rain of exposure of the islets to melittin (2 g/ml). An enhanced secretory rate could be maintained for at least 40 rain in the presence of melittin but declined steadily when the agent was removed. Stimulation of secretion by melittin occurred in the absence of glucose and in the presence of both 4 mM and 8 mM glucose but not in the presence of 20 mM glucose. The effect of melittin on secretion was dependent on the presence of extracellular calcium but was not inhibited by norepinephrine. The data suggest that melittin may be a valuable agent for further study of the role played by the B-cell plasma membrane in the regulation of insulin secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号