首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In only 1 bee species(Tetragona clavipes) of 24 sampled in 145 colonies (0.69%) did we detect the presence of more than one allele for glycerol-3-phosphate dehydrogenase (EC 1.1.1.8), an enzyme that is involved in flight. In 34 colonies containing 9 wasp species, 5 colonies of only 2 species(Polybia paulista andP. sericea) showed variation in larval G-3-PDH (14.7%). The small amount of variation observed for theG-3-PDH-1 locus in the bee and wasp species analyzed in the present study agrees with that reported for the G-3-PDH system in other insects.Research supported by FAPESP and CNPq-PIG IV.  相似文献   

2.
Two fast migrating, major, multiple molecular forms (MMF) of glucose-6-phosphate dehydrogenase [EC:1.1.1.49]: G-6-PDH-1 and G-6-PDH-2, and two minor forms: G-6-PDH-3 and G-6-PDH-4 were revealed in the electrophoregrams of both erythrocytes haemolisates as well in the homogenates of bone marrow cellular lines of rats at control conditions. Daily 1 cGy irradiation of rats up to a cumulative dose of 20 cGy led to a drop of G-6-PDH total activity and it caused a redistribution of the MMF of the enzyme in bone marrow cellular populations. However, G-6-PDH activity in erythrocytes exceeded the control means in all the experimental terms. The calculation of the local redistribution coefficient (l(G-6-FDH-i)) showed that these changes are mainly determined by the increase of the activity of the isoform G-6-PDH-3. Vitamin D3 administration to rats generated a correction of G-6-PDH activity in all studied cellular populations. Meanwhile, the MMF profiles were characterized by multidirectional rearrangements in the bone marrow erythroid and granulocyte-monocyte cells and in erythrocytes. The specificity of changes in the distribution of the MMF of G-6-PDH in the three studied cellular populations depends on the particularities of their energetic metabolism at irradiation conditions and on the modifying action of the natural adaptogen 1,25-dihydroxicholecalciferol.  相似文献   

3.
Small hive beetle, Aethina tumida Murray, is a parasite of social bee colonies and has become an invasive species, raising concern of the potential threat to native pollinators in its new ranges. Here, we report the defensive behavior strategies used by workers of the Australian stingless bee, Austroplebeia australis Friese, against the small hive beetle. A non-destructive method was used to observe in-hive behavior and interactions between bees and different life stages of small hive beetle (egg, larva, and adult). A number of different individual and group defensive behaviors were recorded. Up to 97% of small hive beetle eggs were destroyed within 90 min of introduction, with a significant increase in temporal rate of destruction between the first and subsequent introductions. A similar result was recorded for 3-day-old small hive beetle larvae, with an increased removal rate from 62.5 to 92.5% between the first and second introductions. Of 32 adult beetles introduced directly into the 4 colonies, 59% were ejected, with the remainder being entombed alive in hives within 6 h. Efficiency of ejection also significantly increased between the first and third introductions. Our observations suggest that A. australis colonies, despite no previous exposure to this exotic parasite, have well developed hive defences that are likely to minimize entry and survival of small hive beetles.  相似文献   

4.
We construct a mathematical model to quantify the loss of resilience in collapsing honey bee colonies due to the presence of a strong Allee effect. In the model, recruitment and mortality of adult bees have substantial social components, with recruitment enhanced and mortality reduced by additional adult bee numbers. The result is an Allee effect, a net per-individual rate of hive increase that increases as a function of adult bee numbers. The Allee effect creates a critical minimum size in adult bee numbers, below which mortality is greater than recruitment, with ensuing loss of viability of the hive. Under ordinary and favorable environmental circumstances, the critical size is low, and hives remain large, sending off viably-sized swarms (naturally or through beekeeping management) when hive numbers approach an upper stable equilibrium size (carrying capacity). However, both the lower critical size and the upper stable size depend on many parameters related to demographic rates and their enhancement by bee sociality. Any environmental factors that increase mortality, decrease recruitment, or interfere with the social moderation of these rates has the effect of exacerbating the Allee effect by increasing the lower critical size and substantially decreasing the upper stable size. As well, the basin of attraction to the upper stable size, defined by the model potential function, becomes narrower and shallower, indicating the loss of resilience as the hive becomes subjected to increased risk of falling below the critical size. Environmental effects of greater severity can cause the two equilibria to merge and the basin of attraction to the upper stable size to disappear, resulting in collapse of the hive from any initial size. The model suggests that multiple proximate causes, among them pesticides, mites, pathogens, and climate change, working singly or in combinations, could trigger hive collapse.  相似文献   

5.
Honey bee colonies are subject to numerous pathogens and parasites. Interaction among multiple pathogens and parasites is the proposed cause for Colony Collapse Disorder (CCD), a syndrome characterized by worker bees abandoning their hive. Here we provide the first documentation that the phorid fly Apocephalus borealis, previously known to parasitize bumble bees, also infects and eventually kills honey bees and may pose an emerging threat to North American apiculture. Parasitized honey bees show hive abandonment behavior, leaving their hives at night and dying shortly thereafter. On average, seven days later up to 13 phorid larvae emerge from each dead bee and pupate away from the bee. Using DNA barcoding, we confirmed that phorids that emerged from honey bees and bumble bees were the same species. Microarray analyses of honey bees from infected hives revealed that these bees are often infected with deformed wing virus and Nosema ceranae. Larvae and adult phorids also tested positive for these pathogens, implicating the fly as a potential vector or reservoir of these honey bee pathogens. Phorid parasitism may affect hive viability since 77% of sites sampled in the San Francisco Bay Area were infected by the fly and microarray analyses detected phorids in commercial hives in South Dakota and California's Central Valley. Understanding details of phorid infection may shed light on similar hive abandonment behaviors seen in CCD.  相似文献   

6.
Specialized relationships with bacteria often allow animals to exploit a new diet by providing a novel set of metabolic capabilities. Bees are a monophyletic group of Hymenoptera that transitioned to a completely herbivorous diet from the carnivorous diet of their wasp ancestors. Recent culture-independent studies suggest that a set of distinctive bacterial species inhabits the gut of the honey bee, Apis mellifera. Here we survey the gut microbiotae of diverse bee and wasp species to test whether acquisition of these bacteria was associated with the transition to herbivory in bees generally. We found that most bee species lack phylotypes that are the same or similar to those typical of A. mellifera, rejecting the hypothesis that this dietary transition was symbiont-dependent. The most common bacteria in solitary bee species are a widespread phylotype of Burkholderia and the pervasive insect associate, Wolbachia. In contrast, several social representatives of corbiculate bees do possess distinctive bacterial phylotypes. Samples of A. mellifera harboured the same microbiota as in previous surveys, and closely related bacterial phylotypes were identified in two Asian honey bees (Apis andreniformis and Apis dorsata) and several bumble bee (Bombus) species. Potentially, the sociality of Apis and Bombus species facilitates symbiont transmission and thus is key to the maintenance of a more consistent gut microbiota. Phylogenetic analyses provide a more refined taxonomic placement of the A. mellifera symbionts.  相似文献   

7.
Vespula germanica (F.) is a social vespid that has invaded many parts of the world, including Argentina. This wasp usually becomes a pest, affecting several economic activities. It also may impact the host community through predation or competition. The purpose of our study was to field test toxic baiting for reduction of wasp abundance. Wasps were poisoned with 0.1% fipronil mixed with raw minced beef in two beech forest sites on 20 February 2000 in northwestern Patagonia. All nests (46) within the two 6-ha sites with poisoned bait stations were killed, whereas Malaise traps in those sites captured 81.1% fewer wasps at the end of the season than traps in the two control sites. The average reduction of forager wasps on nontoxic baits was 87%. Fipronil was very effective in controlling wasp numbers, although there are limitations to the method, especially concerning conservation purposes. Toxic baiting can be useful in controlling wasp numbers in honey bee hive yards, farms, and parks.  相似文献   

8.
The small hive beetle (Aethina tumida Murray) is a scavenger and facultative predator in honey bee colonies, where it feeds on pollen, honey, and bee brood. Although a minor problem in its native Africa, it is an invasive pest of honey bees in the United States and Australia. Adult beetles enter bee hives to oviposit and feed. Larval development occurs within the hive, but mature larvae leave the hive to pupate in soil. The numbers leaving, which can be estimated by trapping, measure the reproductive success of adult beetles in the hive over any given period of time. We describe a trap designed to intercept mature larvae as they reach the end of the bottom board on their way to the ground. Trap efficiency was estimated by releasing groups of 100 larvae into empty brood boxes and counting the numbers trapped. Some larvae escaped, but mean efficiency ranged from 87.2 to 94.2%. We envision the trap as a research tool for study of beetle population dynamics, and we used it to track numbers of larvae leaving active hives for pupation in the soil. The traps detected large increases and then decreases in numbers of larvae leaving colonies that weakened and died. They also detected small numbers of larvae leaving strong European and African colonies, even when no larvae were observed in the hives.  相似文献   

9.
Plant diversity changes can impact the abundance, diversity, and functioning of species at higher trophic levels. We used an experimental gradient in grassland plant diversity ranging from 1 to 16 plant species to study multitrophic interactions among plants, cavity-nesting bees and wasps, and their natural enemies, and analysed brood cell density, insect diversity (species richness), and bee and wasp community similarity over two consecutive years. The bee and wasp communities were more similar among the high (16 species) diversity plots than among plots of the lower diversity levels (up to 8 species), and a more similar community of bees and wasps resulted in a more similar community of their parasitoids. Plant diversity, which was closely related to flower diversity, positively and indirectly affected bee diversity and the diversity of their parasitoids via increasing brood cell density of bees. Increasing plant diversity directly led to higher wasp diversity. Parasitism rates of bees and wasps (hosts) were not affected by plant diversity, but increased with the diversity of their respective parasitoids. Decreases in parasitism rates of bees arose from increasing brood cell density of bees (hosts), whereas decreasing parasitism rates of wasps arose from increasing wasp diversity (hosts). In conclusion, decreases in plant diversity propagated through different trophic levels: from plants to insect hosts to their parasitoids, decreasing density and diversity. The positive relationship between plant diversity and the community similarity of higher trophic levels indicates a community-stabilising effect of high plant diversity.  相似文献   

10.
All members of the solitary bee species Osmia lignaria (the orchard bee) forage upon emergence from their natal nest cell. Conversely, in the honey bee, days-to-weeks of socially regulated behavioral development precede the onset of foraging. The social honey bee's behavioral transition to foraging is accompanied by neuroanatomical changes in the mushroom bodies, a region of the insect brain implicated in learning. If these changes were general adaptations to foraging, they should also occur in the solitary orchard bee. Using unbiased stereological methods, we estimated the volume of the major compartments of the mushroom bodies, the neuropil and Kenyon cell body region, in adult orchard bees. We compared the mushroom bodies of recently emerged bees with mature bees that had extensive foraging experience. To separate effects of general maturation from field foraging, some orchard bees were confined to a cage indoors. The mushroom body neuropil of experienced field foragers was significantly greater than that of both recently emerged and mature caged orchard bees, suggesting that, like the honey bee, this increase is driven by outdoor foraging experience. Unlike the honey bee, where increases in the ratio of neuropil to Kenyon cell region occur in the worker after emerging from the hive cell, the orchard bee emerged from the natal nest cell with a ratio that did not change with maturation and was comparable to honey-bee foragers. These results suggest that a common developmental endpoint may be reached via different development paths in social and solitary species of foraging bees.  相似文献   

11.
Epoxide hydrolase and three cytochrome P-450 isozymes were immunochemically determined in microsomes from adult and fetal human liver and tentatively correlated with some enzyme activities. The P-450 isozymes 5, 8 and 9 present in adult liver could not be positively correlated with the total cytochrome P-450 concentration spectrophotometrically determined. In fetal liver microsomes, isozyme 8 could not be detected by either electrophoretic or immunochemical procedures. Isozyme 5 was the major isozyme present in the fetal liver and its concentration increased in close relation with the total P-450 level. As shown previously, arylhydrocarbon hydroxylase activity was related to the concentration of isozyme 8 in adult liver. In fetal preparations, the absence of isozyme 8 was associated with a very low arylhydrocarbon hydroxylase activity. Aldrin epoxidase and benzphetamine-N-demethylase activities were correlated with isozyme 5 concentration, but with different slopes for adult and fetal microsomes: adult preparations catalyzed these two reactions more efficiently. Conversely, the dehydroepiandrosterone 16 beta-hydroxylase, also associated with isozyme 5 concentration, was more active in fetal than in adult microsomes. Moreover, if acetanilide hydroxylase increased with isozyme 5 concentration in adult samples, no correlation occurred between activity and P-450 isozyme level in fetal microsomes. Hydroxylations of lauric acid in positions 11 and 12 and of dehydroepiandrosterone in position 16 alpha increased with total P-450 concentration but not with isozyme concentrations whatever the age considered. Lastly, epoxide hydrolase activity towards benzopyrene 4,5-oxide was closely associated with its immunochemically determined level. These results clearly suggest that multiple mechanisms are involved in the regulation of different drug-metabolizing enzymes in the human fetus.  相似文献   

12.
Honey bee division of labor is characterized by temporal polyethism, in which young workers remain in the hive and perform tasks there, whereas old workers perform more risky outside tasks, mainly foraging. We present a model of honey bee division of labor based on (1) an intrinsic process of behavioral development and (2) inhibition of development through social interactions among the workers in a colony. The model shows that these two processes can explain the main features of honey bee temporal polyethism: the correlation between age and task performance; the age at which a worker first forages and how this age varies among hives; the balanced allocation of workers to hive tasks and foraging; the recovery of a colony from demographic perturbations; and the differentiation of workers into different behavioral roles. The model provides a baseline picture of individual and colony behavior that can serve as the basis for studies of more fine-grained regulation of division of labor.  相似文献   

13.
The ontogeny of the lactate dehydrogenase (LDH; EC 1.1.1.27) isozymes during medaka (Oryzias latipes) embryogenesis was determined after the genetic and molecular bases of this multilocus isozyme system were established. Three LDH loci are differentially expressed among the tissues of the adult medaka. The LDH-A locus was expressed almost exclusively in the white skeletal muscle, the LDH-B locus in all tissues examined, and the LDH-C locus in the eye and brain. The contribution of each of these LDH loci was quantitatively determined throughout early medaka embryogenesis by using a combination of electrophoretic, immunochemical, and spectrophotometric procedures. LDH-B4 is present throughout embryogenesis and is the predominant LDH isozyme during this period. LDH-C subunit activity was first detected 146 hr after fertilization (26°C), 142 hr prior to hatching. LDH-A subunit activity, however, was not detected until after hatching and, then, only as heterotetramers containing LDH-B subunits. The pattern of LDH gene expression during medaka embryogenesis was compared with the patterns of LDH gene expression during early development in five other teleost species. Some common patterns of differential LDH gene expression appear to exist among the teleosts. In all species examined, isozymes encoded in at least one LDH locus, A and/or B, were present throughout development. Those isozymes present continually during embryogenesis also tend to be active in a wide variety of differentiated tissues in the adult fish. Conversely, LDH isozymes which are active in a restricted number of adult tissues are detected only later in embryogenesis. The initiation of LDH-C gene expression, however, is closely coupled with morphological and functional differentiation of those cells in which this locus is predominantly expressed in the adult.  相似文献   

14.
Recent studies have shown that honey bees, bumble bees, and some meliponine bee species of the genera Trigona, Meliponula, and Dactylurina are hosts of the small hive beetle (SHB) Aethina tumidaMurray (Coleoptera: Nitidulidae), a pest of honey bee colonies in various regions of the world. Olfaction has been implicated in SHB infestations of honey bee and bumble bee colonies. We used olfactometer bioassays to investigate responses of adult male and female SHBs to odors from intact colonies and separate hive components (pot honey, pot pollen, cerumen, and propolis) of three African meliponine bee species, Meliponula ferruginea (Lepeletier) (black morphospecies), M. ferruginea (reddish brown morphospecies), and Meliponula bocandei (Spinola) (Hymenoptera: Apidae). Although both sexes of the beetle strongly preferred intact colony, pot honey, and pot pollen odors, there was no evidence of attraction to propolis and cerumen odors from the three meliponine bee species. Both sexes of SHB also strongly preferred odors from honey bees, Apis mellifera L. (Hymenoptera: Apidae), over odors from the three meliponine bee species. Our results provide substantial evidence of the host potential of African meliponine bees for the SHB, and we discuss this complex association of the SHB with species within the Apidae family.  相似文献   

15.
1. Venom preparations have been made of six ant, one pompilid wasp, two mutillid wasp, and four social wasp species. 2. The venoms were analysed pharmacologically in order to detect kinin-like activity. 3. Due to the small amounts of venoms available only a cascade of smooth muscle preparation could be used. 4. Kinin activities have been found in five ant venoms and in four social wasp venoms. 5. No kinin activity has been found in the venoms of the pompilid and mutillid wasps. 6. All ant venoms also contain unidentified agonists for vertebrate smooth muscle preparations.  相似文献   

16.
When invasive species move to new environments they typically experience population bottlenecks that limit the probability that pathogens and parasites are also moved. The invasive species may thus be released from biotic interactions that can be a major source of density-dependent mortality, referred to as enemy release. We examined for evidence of enemy release in populations of the common wasp (Vespula vulgaris), which attains high densities and represents a major threat to biodiversity in its invaded range. Mass spectrometry proteomic methods were used to compare the microbial communities in wasp populations in the native (Belgium and England) and invaded range (Argentina and New Zealand). We found no evidence of enemy release, as the number of microbial taxa was similar in both the introduced and native range. However, some evidence of distinctiveness in the microbial communities was observed between countries. The pathogens observed were similar to a variety of taxa observed in honey bees. These taxa included Nosema, Paenibacillus, and Yersina spp. Genomic methods confirmed a diversity of Nosema spp., Actinobacteria, and the Deformed wing and Kashmir bee viruses. We also analysed published records of bacteria, viruses, nematodes and fungi from both V. vulgaris and the related invader V. germanica. Thirty-three different microorganism taxa have been associated with wasps including Kashmir bee virus and entomophagous fungi such as Aspergillus flavus. There was no evidence that the presence or absence of these microorganisms was dependent on region of wasp samples (i.e. their native or invaded range). Given the similarity of the wasp pathogen fauna to that from honey bees, the lack of enemy release in wasp populations is probably related to spill-over or spill-back from bees and other social insects. Social insects appear to form a reservoir of generalist parasites and pathogens, which makes the management of wasp and bee disease difficult.  相似文献   

17.
The small hive beetle (Aethina tumida Murray) is an endemic scavenger in colonies of western honey bee subspecies (Apis mellifera L.) inhabiting sub-Saharan Africa where it only occasionally damages host colonies. Such damage is usually restricted to weakened/diseased colonies or is associated with after absconding events (all bees, including the queen, leave the hive) due to behavioral resistance mechanisms of its host. In sharp contrast, the beetle has proven deleterious to honey bee colonies in introduced ranges of the United States and Australia. With this review we synthesize the existing data in a manner that allows us to discuss the beetle’s natural history from an ecological perspective. A thorough exploration of beetle ecology allows us to 1) illuminate the unique symbiotic relationship it and its host share and understand how this relationship is fostered, 2) place this relationship in context with those of other arthropods inhabiting social insect colonies, 3) understand its natural reliance on honey bee colonies, 4) predict its spread outside its native range, and 5) predict its effects on non-African honey bees and non-target species. Here we present an amalgamation of information that will contribute to a more thorough and appropriate understanding of not only small hive beetles as symbionts, but of social insect symbionts in general. Received 4 April 2005; revised 15 October 2005; accepted 18 October 2005.  相似文献   

18.
A user-friendly method to deliver Metarhizium spores to honey bee colonies for control of Varroa mites was developed and tested. Patty blend formulations protected the fungal spores at brood nest temperatures and served as an improved delivery system of the fungus to bee hives. Field trials conducted in 2006 in Texas using freshly harvested spores indicated that patty blend formulations of 10 g of conidia per hive (applied twice) significantly reduced the numbers of mites per adult bee, mites in sealed brood cells, and residual mites at the end of the 47-day experimental period. Colony development in terms of adult bee populations and brood production also improved. Field trials conducted in 2007 in Florida using less virulent spores produced mixed results. Patty blends of 10 g of conidia per hive (applied twice) were less successful in significantly reducing the number of mites per adult bee. However, hive survivorship and colony strength were improved, and the numbers of residual mites were significantly reduced at the end of the 42-day experimental period. The overall results from 2003 to 2008 field trials indicated that it was critical to have fungal spores with good germination, pathogenicity and virulence. We determined that fungal spores (1 × 1010 viable spores per gram) with 98% germination and high pathogenicity (95% mite mortality at day 7) provided successful control of mite populations in established honey bee colonies at 10 g of conidia per hive (applied twice). Overall, microbial control of Varroa mite with M. anisopliae is feasible and could be a useful component of an integrated pest management program.  相似文献   

19.
Host-symbiont dynamics are known to influence host phenotype, but their role in social behavior has yet to be investigated. Variation in life history across honey bee (Apis mellifera) castes may influence community composition of gut symbionts, which may in turn influence caste phenotypes. We investigated the relationship between host-symbiont dynamics and social behavior by characterizing the hindgut microbiome among distinct honey bee castes: queens, males and two types of workers, nurses and foragers. Despite a shared hive environment and mouth-to-mouth food transfer among nestmates, we detected separation among gut microbiomes of queens, workers, and males. Gut microbiomes of nurses and foragers were similar to previously characterized honey bee worker microbiomes and to each other, despite differences in diet, activity, and exposure to the external environment. Queen microbiomes were enriched for bacteria that may enhance metabolic conversion of energy from food to egg production. We propose that the two types of workers, which have the highest diversity of operational taxonomic units (OTUs) of bacteria, are central to the maintenance of the colony microbiome. Foragers may introduce new strains of bacteria to the colony from the environment and transfer them to nurses, who filter and distribute them to the rest of the colony. Our results support the idea that host-symbiont dynamics influence microbiome composition and, reciprocally, host social behavior.  相似文献   

20.
Temperature and the pollinating activity of social bees   总被引:1,自引:0,他引:1  
Abstract.
  • 1 Thermal constraints on flight acivity limit the pollinating effectiveness of bees. Each species of social bee has a microclimatic ‘window’ within which foraging flight can be sustained.
  • 2 To predict whether a given species of social bee is worth testing as a pollinator in a given climate, it is useful to know at least the lower limits of that microclimatic ‘window’. We consider how information from a series of bee counts through a day can be used to characterize a bee species in terms of activity/microclimate relations as a basis for predicting the diel pattern of foraging activity of a bee introduced into a new climate as a pollinator.
  • 3 We discuss the relative merits of bee counts at a foraging patch and counts based on hive traffic as indices of the proportion of bees active.
  • 4 We suggest that the activity/microclimate relations of a species be expressed in terms of the lower threshold black globe temperature for flight activity. Black globe temperature, Tg, is easily measured with inexpensive equipment, and can substitute for measurements of ambient temperature and radiation as a predictor of diel patterns of bee activity.
  • 5 We use examples of field data to explore the relationship between microclimate and activity for the honeybee Apis mellifera and several species of bumblebee, Bombus. Regression analysis is used to relate activity to Tg and to identify the lower temperature threshold for activity from field bee counts.
  • 6 In field studies analysed here, the bumblebees Bombus terrestrisllucorum, B.pascuorum and B.hortorum began foraging at lower temperatures than honey-bees or B.lapidarius.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号