共查询到20条相似文献,搜索用时 15 毫秒
1.
Enhanced Deletion Formation by Aberrant DNA Replication in Escherichia Coli 总被引:7,自引:0,他引:7
下载免费PDF全文

Repeated genes and sequences are prone to genetic rearrangements including deletions. We have investigated deletion formation in Escherichia coli strains mutant for various replication functions. Deletion was selected between 787 base pair tandem repeats carried either on a ColE1-derived plasmid or on the E. coli chromosome. Only mutations in functions associated with DNA Polymerase III elevated deletion rates in our assays. Especially large increases were observed in strains mutant in dnaQ, the ε editing subunit of Pol III, and dnaB, the replication fork helicase. Mutations in several other functions also altered deletion formation: the α polymerase (dnaE), the γ clamp loader complex (holC, dnaX), and the β clamp (dnaN) subunits of Pol III and the primosomal proteins, dnaC and priA. Aberrant replication stimulated deletions through several pathways. Whereas the elevation in dnaB strains was mostly recA- and lexA-dependent, that in dnaQ strains was mostly recA- and lexA-independent. Deletion product analysis suggested that slipped mispairing, producing monomeric replicon products, may be preferentially increased in a dnaQ mutant and sister-strand exchange, producing dimeric replicon products, may be elevated in dnaE mutants. We conclude that aberrant Polymerase III replication can stimulate deletion events through several mechanisms of deletion and via both recA-dependent and independent pathways. 相似文献
2.
Alkylating Agents Induce Uvm, a Reca-Independent Inducible Mutagenic Phenomenon in Escherichia Coli 总被引:1,自引:0,他引:1
下载免费PDF全文

G. Wang V. A. Palejwala P. M. Dunman D. H. Aviv H. S. Murphy M. S. Rahman M. Z. Humayun 《Genetics》1995,141(3):813-823
Noninstructive DNA damage in Escherichia coli induces SOS functions hypothesized to be required for mutagenesis and translesion DNA synthesis at noncoding DNA lesions. We have recently demonstrated that in E. coli cells incapable of SOS induction, prior UV-irradiation nevertheless strongly enhances mutagenesis at a noninstructive lesion borne on M13 DNA. Here, we address the question whether this effect, named UVM for UV modulation of mutagenesis, can be induced by other DNA damaging agents. Exponentially growing δrecA cells were pretreated with alkylating agents before transfection with M13 single-stranded DNA bearing a site-specific ethenocytosine residue. Effect of cell pretreatment on survival of the transfected DNA was determined as transfection efficiency. Mutagenesis at the ethenocytosine site in pretreated or untreated cells was analyzed by multiplex DNA sequencing, a phenotype-independent technology. Our data show that 1-methyl-3-nitro-1-nitrosoguanidine, N-nitroso-N-methylurea and dimethylsulfate, but not methyl iodide, are potent inducers of UVM. Because alkylating agents induce the adaptive response to defend against DNA alkylation, we asked if the genes constituting the adaptive response are required for UVM. Our data show that MNNG induction of UVM is independent of ada, alkA and alkB genes and define UVM as an inducible mutagenic phenomenon distinct from the E. coli adaptive and SOS responses. 相似文献
3.
On the Deletion of Inverted Repeated DNA in Escherichia Coli: Effects of Length, Thermal Stability, and Cruciform Formation in Vivo 总被引:7,自引:2,他引:7
下载免费PDF全文

We have studied the deletion of inverted repeats cloned into the EcoRI site within the CAT gene of plasmid pBR325. A cloned inverted repeat constitutes a palindrome that includes both EcoRI sites flanking the insert. In addition, the two EcoRI sites represent direct repeats flanking a region of palindromic symmetry. A current model for deletion between direct repeats involves the formation of DNA secondary structure which may stabilize the misalignment between the direct repeats during DNA replication. Our results are consistent with this model. We have analyzed deletion frequencies for several series of inverted repeats, ranging from 42 to 106 bp, that were designed to form cruciforms at low temperatures and at low superhelical densities. We demonstrate that length, thermal stability of base pairing in the hairpin stem, and ease of cruciform formation affect the frequency of deletion. In general, longer palindromes are less stable than shorter ones. The deletion frequency may be dependent on the thermal stability of base pairing involving approximately 16-20 bp from the base of the hairpin stem. The formation of cruciforms in vivo leads to a significant increase in the deletion frequency. A kinetic model is presented to describe the relationship between the physical-chemical properties of DNA structure and the deletion of inverted repeats in living cells. 相似文献
4.
The contributions of direct and inverted repeats to deletion formation were studied by characterizing Ampr revertants of plasmids with a series of insertion mutations at a specific site in the pBR322 ampicillin resistance (amp) gene. The inserts at this site are palindromic, variable in length, and bracketed by 9- or 10-bp direct repeats of amp sequence. There is an additional direct repeat composed of 4 bp within the insert and 4 bp of adjoining amp sequence. DNA sequencing and colony hybridization of Ampr revertants showed that they contained either the parental amp sequence, implying deletion endpoints in the flanking 9- or 10-bp repeats, or a specific 1-bp substitution, implying endpoints in the 4-bp repeats. Although generally direct repeats seem to be used as deletion endpoints with a frequency proportional to their lengths, we found that with uninterrupted palindromes longer than 32 bp, the majority of deletions ended in the 4 bp, not the 9- or 10-bp repeats. This preferential use of the shorter direct repeats associated with palindromes is interpreted according to a DNA synthesis-error model in which hairpin structures formed by intrastrand pairing foster the slippage of nascent strands during DNA synthesis. 相似文献
5.
The Mechanism of Reca Pola Lethality: Suppression by Reca-Independent Recombination Repair Activated by the Lexa(def) Mutation in Escherichia Coli 总被引:3,自引:0,他引:3
下载免费PDF全文

The mechanism of recA polA lethality in Escherichia coli has been studied. Complementation tests have indicated that both the 5' -> 3' exonuclease and the polymerization activities of DNA polymerase I are essential for viability in the absence of RecA protein, whereas the viability and DNA replication of DNA polymerase I-defective cells depend on the recombinase activity of RecA. An alkaline sucrose gradient sedimentation analysis has indicated that RecA has only a minor role in Okazaki fragment processing. Double-strand break repair is proposed for the major role of RecA in the absence of DNA polymerase I. The lexA(Def)::Tn5 mutation has previously been shown to suppress the temperature-sensitive growth of recA200(Ts) polA25::spc mutants. The lexA(Def) mutation can alleviate impaired DNA synthesis in the recA200(Ts) polA25::spc mutant cells at the restrictive temperature. recF(+) is essential for this suppression pathway. recJ and recQ mutations have minor but significant adverse effects on the suppression. The recA200(Ts) allele in the recA200(Ts) polA25::spc lexA(Def) mutant can be replaced by δrecA, indicating that the lexA(Def)-induced suppression is RecA independent. lexA(Def) reduces the sensitivity of δrecA polA25::spc cells to UV damage by ~10(4)-fold. lexA(Def) also restores P1 transduction proficiency to the δrecA polA25::spc mutant to a level that is 7.3% of the recA(+) wild type. These results suggest that lexA(Def) activates a RecA-independent, RecF-dependent recombination repair pathway that suppresses the defect in DNA replication in recA polA double mutants. 相似文献
6.
The Escherichia coli rRNA operons each have one of two types of spacer separating the 16S and 23S coding regions. The spacers of four operons encode tRNA(Glu2) and the other three encode both tRNA(Ile) and tRNA(Ala1B). We have prepared a series of mutants in which the spacer region of a particular rrn operon has been replaced by the opposite type. Included among these were a mutant retaining only a single copy of the tRNA(Glu2) spacer (at rrnG) and another retaining only a single copy of the tRNA(Ile)-tRNA(Ala1B) spacer (at rrnA). While both mutants grew more slowly than controls, the mutant deficient in tRNA(Glu2) spacers was more severely affected. At a frequency of 6 X 10(-5), these mutants phenotypically reverted to faster growing types by increasing the copy number of the deficient spacer. In most of these phenotypic revertants, the deficient spacer type appeared in a rrn operon which previously contained the surplus type, bringing the ratio of spacer types closer to normal. In a few cases, these spacer changes were accompanied by an inversion of the chromosomal material between the donor and recipient rrn operons. Two examples of inversion of one-half of the E. coli chromosome between rrnG and rrnH were observed. The correlation of spacer change with inversion indicated that, in these particular cases, the change was due to an intrachromatid gene conversion event accompanied by a reciprocal crossover rather than reciprocal exchange between sister chromatids. 相似文献
7.
8.
The Influence of Primary and Secondary DNA Structure in Deletion and Duplication between Direct Repeats in Escherichia Coli 总被引:4,自引:2,他引:4
下载免费PDF全文

We describe a system to measure the frequency of both deletions and duplications between direct repeats. Short 17- and 18-bp palindromic and nonpalindromic DNA sequences were cloned into the EcoRI site within the chloramphenicol acetyltransferase gene of plasmids pBR325 and pJT7. This creates an insert between direct repeated EcoRI sites and results in a chloramphenicol-sensitive phenotype. Selection for chloramphenicol resistance was utilized to select chloramphenicol resistant revertants that included those with precise deletion of the insert from plasmid pBR325 and duplication of the insert in plasmid pJT7. The frequency of deletion or duplication varied more than 500-fold depending on the sequence of the short sequence inserted into the EcoRI site. For the nonpalindromic inserts, multiple internal direct repeats and the length of the direct repeats appear to influence the frequency of deletion. Certain palindromic DNA sequences with the potential to form DNA hairpin structures that might stabilize the misalignment of direct repeats had a high frequency of deletion. Other DNA sequences with the potential to form structures that might destabilize misalignment of direct repeats had a very low frequency of deletion. Duplication mutations occurred at the highest frequency when the DNA between the direct repeats contained no direct or inverted repeats. The presence of inverted repeats dramatically reduced the frequency of duplications. The results support the slippage-misalignment model, suggesting that misalignment occurring during DNA replication leads to deletion and duplication mutations. The results also support the idea that the formation of DNA secondary structures during DNA replication can facilitate and direct specific mutagenic events. 相似文献
9.
Mapping Simple Repeated DNA Sequences in Heterochromatin of Drosophila Melanogaster 总被引:8,自引:7,他引:8
下载免费PDF全文

Heterochromatin in Drosophila has unusual genetic, cytological and molecular properties. Highly repeated DNA sequences (satellites) are the principal component of heterochromatin. Using probes from cloned satellites, we have constructed a chromosome map of 10 highly repeated, simple DNA sequences in heterochromatin of mitotic chromosomes of Drosophila melanogaster. Despite extensive sequence homology among some satellites, chromosomal locations could be distinguished by stringent in situ hybridizations for each satellite. Only two of the localizations previously determined using gradient-purified bulk satellite probes are correct. Eight new satellite localizations are presented, providing a megabase-level chromosome map of one-quarter of the genome. Five major satellites each exhibit a multichromosome distribution, and five minor satellites hybridize to single sites on the Y chromosome. Satellites closely related in sequence are often located near one another on the same chromosome. About 80% of Y chromosome DNA is composed of nine simple repeated sequences, in particular (AAGAC)(n) (8 Mb), (AAGAG)(n) (7 Mb) and (AATAT)(n) (6 Mb). Similarly, more than 70% of the DNA in chromosome 2 heterochromatin is composed of five simple repeated sequences. We have also generated a high resolution map of satellites in chromosome 2 heterochromatin, using a series of translocation chromosomes whose breakpoints in heterochromatin were ordered by N-banding. Finally, staining and banding patterns of heterochromatic regions are correlated with the locations of specific repeated DNA sequences. The basis for the cytochemical heterogeneity in banding appears to depend exclusively on the different satellite DNAs present in heterochromatin. 相似文献
10.
11.
Joseph Greenberg 《Genetics》1964,49(5):771-778
12.
Isolation and Characterization of Escherichia Coli Mutants with Altered Rates of Deletion Formation 总被引:5,自引:4,他引:5
下载免费PDF全文

Using site-specific mutagenesis in vitro we constructed a genetic system to detect mutants with altered rates of deletion formation between short repeated sequences in Escherichia coli. After in vivo mutagenesis with chemical mutagens and transposons, the system allowed the identification of mutants with either increased or decreased deletion frequencies. One mutational locus, termed mutR, that results in an increase in deletion formation, was studied in detail. The mutR gene maps at 38.5 min on the E. coli genetic map. Since the precise excision of many transposable elements is also mediated at short repeated sequences, we investigated the effects of the mutant alleles, as well as recA, on precise excision of the transposon Tn9. Neither mutR nor recA affect precise excision of the transposon Tn9, from three different insertions in lacI, whereas these alleles do affect other spontaneous deletions in the same system. These results indicate that deletion events leading to precise excision occur principally via a different pathway than other random spontaneous deletions. It is suggested that, whereas precise excision occurs predominantly via a pathway involving replication enzymes (for instance template strand slippage), deletions on an F'factor are stimulated by recombination enzymes. 相似文献
13.
Using site-specific mutagenesis in vitro, we have constructed Escherichia coli strains that allow the detection of the inversion of an 800-bp segment in the lac region. The invertible segment is bounded by inverted repeats of either 12 or 23 bp. Inversions occurring at these inverted repeats will restore the Lac+ phenotype. Inversions can be detected at both short homologies at frequencies ranging from 0.5 x 10(-8) to 1 x 10(-7). These events, which have been verified by DNA sequence analysis, are reduced up to 1000-fold in strains deficient for either RecA, RecB or RecC. They are not reduced in strains deficient in the RecF, J pathway. These results show that the RecB,C,D system can mediate rearrangements at short sequence repeats, and probably plays a major role in cellular rearrangements. 相似文献
14.
Exchange of Genetic Material between Salmonella Typhimurium and Escherichia Coli K-12 总被引:10,自引:0,他引:10
下载免费PDF全文

Tadashi Miyake 《Genetics》1962,47(8):1043-1052
15.
When carrot explants are placed on an agar medium containingphytohormones, a satellite DNA begins to replicate earlier thanthe bulk DNA during the first cell division cycle. The majorityof this early replicating satellite DNA was previously shownto have an identical buoyant density to ribosomal DNA (rDNA)(Hase et al. 1982). Molecular sizes of EcoRI-digests of 3H-labeledDNA were analyzed in the present study by gel electrophoresisfollowed by fluorography. Most of the labeled DNA bands didnot correspond to EcoRI-digests of carrot rDNA. The resultsindicated that the majority of the early replicating satelliteDNA is not rDNA, but probably a type or types of highly repeatedDNA sequences. (Received June 6, 1985; Accepted November 4, 1985) 相似文献
16.
17.
18.
The presence of repeated sequences in the genome represents a potential source of karyotypic instability. Genetic control of recombination is thus important to preserve the integrity of the genome. To investigate the genetic control of recombination between repeated sequences, we have created a series of isogenic strains in which we could assess the role of genes involved in DNA repair in two types of recombination: direct repeat recombination and ectopic gene conversion. Naturally occurring (Ty elements) and artificially constructed repeats could be compared in the same cell population. We have found that direct repeat recombination and gene conversion have different genetic requirements. The role of the RAD51, RAD52, RAD54, RAD55, and RAD57 genes, which are involved in recombinational repair, was investigated. Based on the phenotypes of single and double mutants, these genes can be divided into three functional subgroups: one composed of RAD52, a second one composed of RAD51 and RAD54, and a third one that includes the RAD55 and RAD57 genes. Among seven genes involved in excision repair tested, only RAD1 and RAD10 played a role in the types of recombination studied. We did not detect a differential effect of any rad mutation on Ty elements as compared to artificially constructed repeats. 相似文献
19.
Double-Stranded Gap Repair of DNA by Gene Conversion in Escherichia Coli 总被引:10,自引:3,他引:10
下载免费PDF全文

We demonstrated repair of a double-stranded DNA gap through gene conversion by a homologous DNA sequence in Escherichia coli. We made a double-stranded gap in one of the two regions of homology in an inverted orientation on a plasmid DNA molecule and introduced it into an E. coli strain which has the RecE system of recombination (genotype; sbcA23 recB21 recC22). We detected repair products by genetic selection. The repair products were those expected by the double-strand-gap repair model. Gene conversion was frequently accompanied by crossing over of the flanking sequences as in eukaryotes. This double-strand gap repair mechanism can explain plasmid recombination in the absence of an artificial double-stranded break reported in a companion study by Yamamoto et al. 相似文献
20.
The Evolution of Restricted Recombination and the Accumulation of Repeated DNA Sequences 总被引:13,自引:6,他引:13
下载免费PDF全文

We suggest hypotheses to account for two major features of chromosomal organization in higher eukaryotes. The first of these is the general restriction of crossing over in the neighborhood of centromeres and telomeres. We propose that this is a consequence of selection for reduced rates of unequal exchange between repeated DNA sequences for which the copy number is subject to stabilizing selection: microtubule binding sites, in the case of centromeres, and the short repeated sequences needed for terminal replication of a linear DNA molecule, in the case of telomeres. An association between proximal crossing over and nondisjunction would also favor the restriction of crossing over near the centromere. The second feature is the association between highly repeated DNA sequences of no obvious functional significance and regions of restricted crossing over. We show that highly repeated sequences are likely to persist longest (over evolutionary time) when crossing over is infrequent. This is because unequal exchange among repeated sequences generates single copy sequences, and a population that becomes fixed for a single copy sequence by drift remains in this state indefinitely (in the absence of gene amplification processes). Increased rates of exchange thus speed up the process of stochastic loss of repeated sequences. 相似文献