共查询到20条相似文献,搜索用时 15 毫秒
1.
Alterations of human erythrocyte membrane fluidity by oxygen-derived free radicals and calcium 总被引:9,自引:0,他引:9
Hiroshi Watanabe Akira Kobayashi Takahashi Yamamoto Shingo Suzuki Hideharu Hayashi Noboru Yamazaki 《Free radical biology & medicine》1990,8(6):507-514
Two possible reasons for the structural alterations of cell membranes caused by free radicals are lipid peroxidation and an increase in the intracellular calcium ion concentration. To characterize the alterations in membrane molecular dynamics caused by oxygen-derived free radicals and calcium, human erythrocytes were spin-labeled with 5-doxyl stearic acid, and alterations in membrane fluidity were quantified by electron spin resonance oxidase (0.07 U/mL) decreased membrane fluidity, and the addition of superoxide dismutase and catalase inhibited the effect on membrane fluidity of the hypoxanthine-xanthine oxidase system. Hydrogen peroxide (0.1 and 1 nM) also decreased membrane fluidity and caused alterations to erythrocyte morphology. In addition, a decrease in membrane fluidity was observed in erythrocytes incubated with 2.8 mM CaCl2. On the other hand, incubation of erythrocytes with calcium-free solution decreased the changes in membrane fluidity caused by hydrogen peroxide.
These results suggest that changes in membrane fluidity are directly due to lipid peroxidation and are indirectly the result of increased intracellular calcium concentration. We support the hypothesis that alterations of the biophysical properties of membranes caused by free radicals play an important role in cell injury, and that the accumulation of calcium amplifies the damge to membranes weakened by free radicals. 相似文献
2.
Recycling of ascorbic acid from its oxidized forms helps to maintain the vitamin in human erythrocytes. To determine the relative contributions of recycling from the ascorbate radical and dehydroascorbic acid, we studied erythrocytes exposed to a trans-membrane oxidant stress from ferricyanide. Ferricyanide was used both to induce oxidant stress across the cell membrane and to quantify ascorbate recycling. Erythrocytes reduced ferricyanide with generation of intracellular ascorbate radical, the concentrations of which saturated with increasing intracellular ascorbate and which were sustained over time in cells incubated with glucose. Ferricyanide also generated dehydroascorbic acid that accumulated in the cells and incubation medium to concentrations much higher than those of the radical, especially in the absence of glucose. Ferricyanide-stimulated ascorbate recycling from dehydroascorbic acid depended on intracellular GSH but was well maintained at the expense of intracellular ascorbate when GSH was severely depleted by diethylmaleate. This likely reflects continued radical reduction, which is not dependent on GSH. Erythrocyte hemolysates showed both NAD- and NADPH-dependent ascorbate radical reduction. The latter was partially due to thioredoxin reductase. GSH-dependent dehydroascorbate reduction in hemolysates, which was both direct and enzyme-dependent, was greater than that of the radical reductase activity but of lower apparent affinity. Together, these results suggest an efficient two-tiered system in which high affinity reduction of the ascorbate radical is sufficient to remove low concentrations of the radical that might be encountered by cells not under oxidant stress, with back-up by a high capacity system for reducing dehydroascorbate under conditions of more severe oxidant stress. 相似文献
3.
4.
5.
Cell-mediated reduction of protein and peptide hydroperoxides to reactive free radicals 总被引:4,自引:0,他引:4
Radical attack on proteins in the presence of O(2) gives protein hydroperoxides in high yields. These peroxides are decomposed by transition metal ions, reducing agents, UV light and heat, with the formation of a range of reactive radicals that are capable of initiating further damage. Evidence has been presented for the formation of alcohols as stable products of peroxide decomposition, and these have been employed as markers of oxidative damage in vivo. The mechanism of formation of these alcohols is unclear, with both radical and nonradical pathways capable of generating these products. In this study we have investigated the reduction of peptide and protein hydroperoxides by THP-1 (human monocyte-like) cells and it is shown that this process is accompanied by radical formation as detected by EPR spin trapping. The radicals detected, which are similar to those detected from metal-ion catalyzed reduction, are generated externally to the cell. In the absence of cells, or with cell-conditioned media or cell lysates, lower concentrations of radicals were detected, indicating that intact cells are required for rapid hydroperoxide decomposition. The rate of radical generation was enhanced by preloading the cells with ascorbate, and this was accompanied by intracellular formation of the ascorbate radical. It is proposed that decomposition of some amino acid and peptide hydroperoxides occurs extracellularly via the involvement of a cell-surface reducing system, such as a trans-plasma membrane electron transport system (TPMET) either directly, or indirectly via redox cycling of trace transition metal ions. 相似文献
6.
7.
8.
The anaerobic enzymatic one-electron reduction of uroporphyrin I (in the absence of light) by the ferredoxin/ferredoxin:NADP+ oxidoreductase system was investigated using NADPH as the source of reducing equivalents. The porphyrin anion free radical metabolite formed by one-electron reduction of the parent molecule was detected with ESR spectroscopy. The ESR spectrum exhibited a singlet (g = 2.0021) with a 5.4-G peak-to-peak linewidth. The reduction process was also investigated under aerobic conditions. The reduction of molecular oxygen to superoxide anion radical by the porphyrin anion radical was demonstrated by using the ESR technique of spin trapping. The ESR spectra of the spin-trapped oxygen-derived radicals were superoxide dismutase-sensitive and catalase-insensitive, supporting the assignment of the trapped radical to the superoxide anion radical. These aerobic experiments demonstrate electron transfer from the porphyrin anion radical to molecular oxygen. The anaerobic reduction of Photofrin II by hepatic microsomes and the ferredoxin/ferredoxin:NADP+ oxidoreductase system to a porphyrin anion radical was also investigated. Free radical formation by ferredoxin: NADP+ oxidoreductase is totally dependent upon ferredoxin. The ESR spectrum of this porphyrin free radical also exhibited a singlet (g = 2.0026) with a 15-G peak-to-peak linewidth. 相似文献
9.
The role of thioredoxin reductase in the reduction of free radicals at the surface of the epidermis 总被引:1,自引:0,他引:1
A study of guinea pig and human skin in vivo has revealed that keratinocytes contain a thioenzyme which reduces radicals. This enzyme has been purified by affinity column chromatography and identified as thioredoxin reductase. In vivo and in vitro bioassays were performed by using a spin-labelled surfactant as the radical substrate, because it can diffuse through the stratum corneum and react by surface complexation with the epidermis and also on the outer plasma membrane of keratinocytes from cell cultures. Thioredoxin, the native substrate for thioredoxin reductase effectively competes for electrons with radical substrates. Nicotinamide adenine dinucleotide phosphate (NADPH) is the electron donating coenzyme in both the reduction of radicals and thioredoxin. Reduced thioredoxin has been shown to be an inhibitor of tyrosinase, whereas oxidized thioredoxin has no effect on this enzyme activity. Taken together these results indicate that the thioredoxin/thioredoxin reductase system plays an important role in preventing cell damage from UV-generated free radicals on the skin. 相似文献
10.
The study of free radical reactions is not an isolated and esoteric branch of science. A knowledge of free radical chemistry and biochemistry is relevant to an understanding of all diseases and the mode of action of all toxins, if only because diseased or damaged tissues undergo radical reactions more readily than do normal tissues. However it does not follow that because radical reactions can be demonstrated, they are important in any particular instance. We hope that the careful techniques needed to assess the biological role of free radicals will become more widely used. 相似文献
11.
R G Sa?futdinov 《Biulleten' eksperimental'no? biologii i meditsiny》1982,94(10):78-79
The electron-spin resonance method was applied to examine human plasma and red cells at a temperature of 77 degrees K and variation in the level of free radicals (FR) under the effect of adrenaline. In plasma, the signals of transferrin (g approximately 4.26), ceruloplasmin (g approximately 2.05), and FR (g approximately 2.0024-2.0029 and delta H 6-8 Oe) were registered, while in red cells, the signals of hemoglobin (g approximately 6.00), superoxide dismutase (g approximately 2.063), and flavosemiquinone (g approximately 2.0030-2.0040 and delta H 12-15 Oe). Addition of adrenaline entailed an increase in the level of FR and a lowering of the ceruloplasmin signal intensity in plasma. The level of FR in red cells was found to be elevated. The mechanisms of the phenomena described are discussed. 相似文献
12.
E F Roth 《The Journal of biological chemistry》1987,262(32):15678-15682
The metabolism of glucose in Plasmodium falciparum-infected human erythrocytes is increased 50- to 100-fold. This is accomplished in part by parasite-directed synthesis of a protozoan hexokinase with unique kinetic, electrophoretic, and heat stability properties. The total hexokinase activity is increased approximately 25-fold over that of control uninfected erythrocytes of the same age from the same donor. The parasite hexokinase has a lower affinity for glucose than the mammalian enzyme (Km = 431 microM +/- 21 S.D. for the parasite enzyme versus 98 microM +/- 10 for the erythrocyte enzyme), but the Km for ATP and the Vmax for both glucose and ATP are similar. The NADPH-dependent reduction of oxidized glutathione (GSSG) requires the formation of glucose 6-phosphate which in turn is metabolized by the pentose shunt pathway in which NADPH is generated. Using glucose as the substrate, lysates of P. falciparum-infected normal erythrocytes demonstrated enhanced ability to reduce GSSG. The rate of GSSG reduction was proportional both to the parasitemia and the hexokinase activity of the lysates. However, infected glucose-6-phosphate dehydrogenase-deficient red cell lysates displayed a severely restricted ability to reduce GSSG under the same conditions. In conclusion, P. falciparum-infected red cells contain a parasite-encoded hexokinase with unique properties which initiates the large increase in glucose consumption. In normal infected red cells, reduction of GSSG is also dependent upon hexokinase activity, but in infected glucose-6-phosphate dehydrogenase-deficient red cells, the absence of this pentose shunt enzyme remains the rate-limiting step in GSSG reduction. 相似文献
13.
Reduction of the ascorbate free radical (AFR) at the plasma membrane provides an efficient mechanism to preserve the vitamin in a location where it can recycle alpha-tocopherol and thus prevent lipid peroxidation. Erythrocyte ghost membranes have been shown to oxidize NADH in the presence of the AFR. We report that this activity derives from an AFR reductase because it spares ascorbate from oxidation by ascorbate oxidase, and because ghost membranes decrease steady-state concentrations of the AFR in a protein- and NADH-dependent manner. The AFR reductase has a high apparent affinity for both NADH and the AFR (< 2 microM). When measured in open ghosts, the reductase is comprised of an inner membrane activity (both substrate sites on the cytosolic membrane face) and a trans-membrane activity that mediates extracellular AFR reduction using intracellular NADH. However, the trans-membrane activity constitutes only about 12% of the total measured in ghosts. Ghost AFR reductase activity can also be differentiated from NADH-dependent ferricyanide reductase(s) by its sensitivity to the detergent Triton X-100 and insensitivity to enzymatic digestion with cathepsin D. This NADH-dependent AFR reductase could serve to recycle ascorbic acid at a crucial site on the inner face of the plasma membrane. 相似文献
14.
A method is described for the preparation of haemoglobin free human erythrocyte ghosts in isotonic solutions using dielectric breakdown technique. In this single haemolytic procedure, almost complete removal of haemoglobin (? 0.1%) was achieved by subjecting the erythrocytes suspended in phosphate buffered, isotonic KCl solution at 0°C to three consecutive electrical field pulses of 16 kV/cm in the presence of 10 mM EDTA; EDTA was used to prevent electrical haemolysis. Haemolysis is induced by subsequent dilution with isotonic and isoionic solution to lower the EDTA concentration. Haemolysis is complete after 5 min; the cells are centrifuged, washed and resuspended in a solution of the same composition and osmolarity containing 4 mM MgCl2, but no EDTA. The resealing process, carried out at 37°C, was complete in about 1 h. Measurements of the size distribution of the ghost cells in the hydrodynamically focusing Coulter Counter at varying field strengths in the orifice revealed that the ghost population is nearly uniform. The mean (modal) volume of the ghost cells was 110–120 when suspended in phosphate buffered NaCl solution. The apparent breakdown voltage was about 1.3 V. 相似文献
15.
Maitra D Byun J Andreana PR Abdulhamid I Saed GM Diamond MP Pennathur S Abu-Soud HM 《Free radical biology & medicine》2011,51(2):364-373
Here, we show that hypochlorous acid (HOCl), a potent neutrophil-generated oxidant, can mediate destruction of free heme (Ht) and the heme precursor, protoporphyrin IX (PPIX). Ht displays a broad Soret absorbance peak centered at 365 and 394 nm, indicative of the presence of monomer and μ-oxo-dimer. Oxidation of Ht by HOCl was accompanied by a marked decrease in the Soret absorption peak and release of free iron. Kinetic measurements showed that the Ht-HOCl reaction was triphasic. The first two phases were HOCl concentration dependent and attributable to HOCl binding to the monomeric and dimeric forms. The third phase was HOCl concentration independent and attributed to Ht destruction with the release of free iron. HPLC and LC-ESI-MS analyses of the Ht-HOCl reaction revealed the formation of a number of degradation products, resulting from the cleavage or modification of one or more carbon-methene bridges of the porphyrin ring. Similar studies with PPIX showed that HOCl also mediated tetrapyrrole ring destruction. Collectively, this work demonstrates the ability of HOCl to modulate destruction of heme, through a process that occurs independent of the iron molecule that resides in the porphyrin center. This phenomenon may play a role in HOCl-mediated oxidative injury in pathological conditions. 相似文献
16.
Gouk SS Kocherginsky NM Kostetski YY Moser HO Yang P Lim TM Sun WQ 《Radiation research》2005,163(5):535-543
The present work characterizes the formation of free radicals in an implantable human acellular dermal tissue (Alloderm, LifeCell Corp., Branchburg, NJ) upon irradiation. The tissue was preserved in a vitreous carbohydrate matrix by freeze-drying. Freeze-dried samples were irradiated using a synchrotron light source, and free radicals generated were investigated using the electron paramagnetic resonance (EPR) technique. At least two free radical populations, with g factors of 1.993 (approximately 43%) and 2.002 (approximately 57%), respectively, were identified in the irradiated tissue. The transformation (reaction) kinetics of free radicals produced was investigated in the presence of nitrogen, oxygen and moisture. The reaction kinetics of free radicals was extremely slow in the nitrogen environment. The presence of oxygen and moisture greatly accelerated free radical reactions in the tissue matrix. The reaction of free radicals could not be described by traditional reaction kinetics. A dispersive kinetics model and a diffusion model were developed to analyze the reaction kinetics in the present study. The dispersive model took into consideration molecular mobility and dispersivity of free radicals in the heterogeneous tissue material. The diffusion model described the radical reaction kinetics as two parallel and simultaneous processes: a first-order fast kinetics mainly on tissue surface and a diffusion-limited slow kinetics in deeper layers of the tissue matrix. Both models described quantitative experimental data well. Further investigation is needed to verify whether any of these two models or concepts describes the inherent radical reaction kinetics in the solid tissue matrix. 相似文献
17.
K Ciechanowski 《Polski tygodnik lekarski (Warsaw, Poland : 1960)》1987,42(31-32):939-941
18.
J Bianchi R C Rose 《Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.)》1986,181(3):333-337
It has been previously reported that glucose and its structural analogs inhibit dehydroascorbic acid (DHA) transport across the membranes of nonpolar cells, which led to the suggestion that the hexose transporter mediates dehydroascorbic acid transport. The present study examines the role of the erythrocyte hexose transport system in dehydroascorbic acid uptake. We have confirmed that dehydroascorbic acid may be a ligand of the hexose transport system under certain experimental conditions. However, there is an additional pathway of dehydroascorbic acid transport that is uninfluenced by external glucose. This pathway is one of facilitated diffusion, demonstrating saturation kinetics of transport, cis-inhibition, and trans-stimulation. The Km for the system is 412 microM. It is suggested that this previously undescribed sugar-independent transporter is the physiologically important route of DHA uptake in erythrocytes. 相似文献
19.
Erythrocytes can reduce extracellular ascorbate free radicals by a plasma membrane redox system using intracellular ascorbate as an electron donor. In order to test whether the redox system has electrogenic properties, we studied the effect of ascorbate free radical reduction on the membrane potential of the cells using the fluorescent dye 3,3'-dipropylthiadicarbocyanine iodide. It was found that the erythrocyte membrane depolarized when ascorbate free radicals were reduced. Also, the activity of the redox system proved to be susceptible to changes in the membrane potential. Hyperpolarized cells could reduce ascorbate free radical at a higher rate than depolarized cells. These results show that the ascorbate-driven reduction of extracellular ascorbate free radicals is an electrogenic process, indicating that vectorial electron transport is involved in the reduction of extracellular ascorbate free radical. 相似文献
20.
We investigated the possibility that human erythrocytes can reduce extracellular ascorbate free radical (AFR). When the AFR was generated from ascorbate by ascorbate oxidase, intact cells slowed the loss of extracellular ascorbate, an effect that could not be explained by changes in enzyme activity or by release of ascorbate from the cells. If cells preserve extracellular ascorbate by regenerating it from the AFR, then they should decrease the steady-state concentration of the AFR. This was confirmed directly by electron paramagnetic resonance spectroscopy, in which the steady-state extracellular AFR signal varied inversely with the cell concentration and was a saturable function of the absolute AFR concentration. Treatment of cells N-ethylmaleimide (2 mM) impaired their ability both to preserve extracellular ascorbate, and to decrease the extracellular AFR concentration. These results suggest that erythrocytes spare extracellular ascorbate by enhancing recycling of the AFR, which could help to maintain extracellular concentrations of the vitamin. 相似文献